
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
https://www.cs.cmu.edu/~malin199/
https://www.cs.cmu.edu/~malin199/

15-445/645 (Fall 2021)

2

Databases!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Mid-Term Grade
→ Release today
→ Attend instructor’s office hour to check your exam

Lin’s office hour changed to Tue @ 2:30pm-
4:00pm, GHC 9019

Project #2 is due on Sun Thu 21th @ 11:59pm

Project #3 will be released on Wed Oct 20th

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Remember that SQL is declarative.
→ User tells the DBMS what answer they want, not how to

get the answer.

There can be a big difference in performance based
on plan is used

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

First implementation of a query optimizer from
the 1970s.
→ People argued that the DBMS could never choose a query

plan better than what a human could write.

Many concepts and design decisions from the
System R optimizer are still used today.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Evaluate multiple equivalent plans for a query and pick

the one with the lowest cost.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Application

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

SQL Rewriter
(Optional / Rare)

SQL Query1

Application

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

SQL Rewriter
(Optional / Rare)

SQL Query1

SQL Query2

Application

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

SQL Rewriter
(Optional / Rare)

Binder

SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Application

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

System
Catalog

SQL Rewriter
(Optional / Rare)

Binder

SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Application

Name→Internal ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

SQL Rewriter
(Optional / Rare)

Binder

SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Application

Name→Internal ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

SQL Rewriter
(Optional / Rare)

Binder

SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Application

Name→Internal ID

Schema Info

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

SQL Rewriter
(Optional / Rare)

Binder

Optimizer
SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Logical
Plan

5

Application

Name→Internal ID

Schema Info

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

SQL Rewriter
(Optional / Rare)

Binder

Optimizer
SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Logical
Plan

5

Application

Name→Internal ID

Schema Info

Schema Info

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

Cost
Model

SQL Rewriter
(Optional / Rare)

Binder

Optimizer
SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Logical
Plan

5

Application

Name→Internal ID

Schema Info

Schema Info

Estimates

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

Cost
Model

SQL Rewriter
(Optional / Rare)

Binder

Optimizer
SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Logical
Plan

5

Physical
Plan

6

Application

Name→Internal ID

Schema Info

Schema Info

Estimates

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The optimizer generates a mapping of a logical
algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution
strategy using an access path.
→ They can depend on the physical format of the data that

they process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

This is the hardest part of building a DBMS.

If you are good at this, you will get paid $$$.

People are starting to look at employing ML to
improve the accuracy and efficacy of optimizers.
→ IBM DB2 tried this with LEO in the early 2000s…

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://ieeexplore.ieee.org/document/5386840

15-445/645 (Fall 2021)

Relational Algebra Equivalences

Logical Query Optimization

Nested Queries

Expression Rewriting

Cost Model

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Two relational algebra expressions are equivalent
if they generate the same set of tuples.

The DBMS can identify better query plans without
a cost model.

This is often called query rewriting.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

12

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

π σ ⋈

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

12

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

s
p

⨝

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

12

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

⨝
s

p

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

s
p

⨝

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

13

π σ ⋈

π ⋈ σ

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Selections:
→ Perform filters as early as possible.
→ Break a complex predicate, and push down

σp1∧p2∧…pn(R) = σp1(σp2(…σpn(R)))

Simplify a complex predicate
→ (X=Y AND Y=3) → X=3 AND Y=3

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Joins:
→ Commutative, associative

R⋈S = S⋈R
(R⋈S)⋈T = R⋈(S⋈T)

The number of different join orderings for an n-
way join is a Catalan Number (≈4n)
→ Exhaustive enumeration will be too slow.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://en.wikipedia.org/wiki/Catalan_number

15-445/645 (Fall 2021)

Projections:
→ Perform them early to create smaller tuples and reduce

intermediate results (if duplicates are eliminated)
→ Project out all attributes except the ones requested or

required (e.g., joining keys)

This is not important for a column store…

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

17

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

⨝
s

p

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

17

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

⨝
s

p

student enrolled

s.sid=e.sid

grade='A'

s.name,e.cid

⨝

s

p

sid,cidpsid,namep

SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Transform a logical plan into an equivalent logical
plan using pattern matching rules.

The goal is to increase the likelihood of
enumerating the optimal plan in the search.

Cannot compare plans because there is no cost
model but can "direct" a transformation to a
preferred side.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

15-445/645 (Fall 2021)

20

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

ARTIST.NAMEp

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

20

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST APPEARS ALBUM

×

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

ARTIST.NAMEp
ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

21

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
applicable point in the plan.

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

21

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
applicable point in the plan.

×

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

22

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

22

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

23

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

23

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them
→ Decompose nested query and store result to temporary

table

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

26

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid

AND R.day = '2018-10-15'
)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

26

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid

AND R.day = '2018-10-15'
)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

26

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid

AND R.day = '2018-10-15'
)

SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

27

For each sailor with the highest rating (over all sailors) and at
least two reservations for red boats, find the sailor id and the
earliest date on which the sailor has a reservation for a red boat.

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

27

For each sailor with the highest rating (over all sailors) and at
least two reservations for red boats, find the sailor id and the
earliest date on which the sailor has a reservation for a red boat.

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on one
block at a time.

Sub-queries are written to a temporary table that
are discarded after the query finishes.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

29

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Outer Block

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

An optimizer transforms a query's expressions
(e.g., WHERE clause predicates) into the
optimal/minimal set of expressions.

Implemented using if/then/else clauses or a
pattern-matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

31

SELECT * FROM A WHERE 1 = 0;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

31

SELECT * FROM A WHERE 1 = 0;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

31

SELECT * FROM A WHERE 1 = 0;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

31

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE 1 = 1;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

31

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE 1 = 1;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

31

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE 1 = 1;SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

Join Elimination

31

SELECT * FROM A WHERE 1 = 0;

SELECT A1.*
FROM A AS A1 JOIN A AS A2
ON A1.id = A2.id;

SELECT * FROM A WHERE 1 = 1;SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

Join Elimination

31

SELECT * FROM A WHERE 1 = 0;

SELECT A1.*
FROM A AS A1 JOIN A AS A2
ON A1.id = A2.id;

SELECT * FROM A WHERE 1 = 1;SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Impossible / Unnecessary Predicates

Join Elimination

31

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE 1 = 1;

SELECT * FROM A;

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Join Elimination with Sub-Query

32

SELECT * FROM A AS A1
WHERE EXISTS(SELECT val FROM A AS A2

WHERE A1.id = A2.id);

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Join Elimination with Sub-Query

32

SELECT * FROM A AS A1
WHERE EXISTS(SELECT val FROM A AS A2

WHERE A1.id = A2.id);

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Join Elimination with Sub-Query

32

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Join Elimination with Sub-Query

Merging Predicates

32

SELECT * FROM A
WHERE val BETWEEN 1 AND 100

OR val BETWEEN 50 AND 150;

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Join Elimination with Sub-Query

Merging Predicates

32

SELECT * FROM A
WHERE val BETWEEN 1 AND 100

OR val BETWEEN 50 AND 150;

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Join Elimination with Sub-Query

Merging Predicates

32

SELECT * FROM A
WHERE val BETWEEN 1 AND 150;

SELECT * FROM A;

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

15-445/645 (Fall 2021)

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick

the one with the lowest cost.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick

the one with the lowest cost.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Generate an estimate of the cost of executing a
particular query plan for the current state of the
database.
→ Estimates are only meaningful internally.

This is independent of the plan enumeration step
that we will talk about next class.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM

consumption, pre-fetching, etc…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate result sizes per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
→ Complexity of the operator algorithm implementation.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The number of disk accesses will always dominate
the execution time of a query.
→ CPU costs are negligible.
→ Must consider sequential vs. random I/O.

This is easier to model if the DBMS has full
control over buffer management.
→ We will know the replacement strategy, pinning, and

assume exclusive access to disk.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.postgresql.org/docs/current/static/runtime-config-query.html

15-445/645 (Fall 2021)

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.postgresql.org/docs/current/static/runtime-config-query.html

15-445/645 (Fall 2021)

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)

Communications bandwidth (distributed only)

Memory resources (buffer pools, sort heaps)

Concurrency Environment
→ Average number of users
→ Isolation level / blocking
→ Number of available locks

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

15-445/645 (Fall 2021)

We can use static rules and heuristics to optimize a
query plan without needing to understand the
contents of the database.

We use cost model to help perform more
advanced query optimizations

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Statistics and plan enumeration

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

