Intro to Database
15-445/ 15_-645“‘
Fall 2021 '

Lin Ma
Computer Science
Carnegie Mellon University

[4
\\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
https://www.cs.cmu.edu/~malin199/
https://www.cs.cmu.edu/~malin199/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ADMINISTRIVIA

Mid-Term Grade

— Release today
— Attend instructor’s office hour to check your exam

Lin’s office hour changed to Tue @ 2:30pm-
4:00pm, GHC 9019

Project #2 is due on Sun Thu 21" @ 11:59pm

Project #3 will be released on Wed Oct 20™

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

QUERY OPTIMIZATION

Remember that SQL is declarative.
— User tells the DBMS what answer they want, not how to
get the answer.

There can be a big difference in performance based
on plan is used

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

IBM SYSTEM R

First implementation of a query optimizer from

the 1970s.

— People argued that the DBMS could never choose a query
plan better than what a human could write.

Many concepts and design decisions from the
System R optimizer are still used today.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

QUERY OPTIMIZATION

Heuristics / Rules

— Rewrite the query to remove stupid / inefficient things.
— These techniques may need to examine catalog, but they
do not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.
— Evaluate multiple equivalent plans for a query and pick
the one with the lowest cost.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

A
Application K3
ZZER

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

A
Application K3

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

Parser

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

£CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

1((C

q
System ¢
C?l)talog g

(

" A~ A A A 4

Name—Internal ID

$CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

(U

q
System ¢
C?l)talog g

(

" A~ A A A 4

$CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

(U

q
System ¢
C?l)talog g

(

" A~ A A A 4

Schema Info

$CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

(U

q
System ¢
C?l)talog g

(

" A~ A A A 4

Optimizer

$CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

(U

Schema Info

q
System ¢
C?l)talog g

(

" A~ A A A 4

Optimizer

$CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

= . %mates
,

= Modst
System g: g Schema Info oae
Catalog)

()

$CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ARCHITECTURE OVERVIEW

(Cost
System g Schema Info Model
Catalog (

§|== p,
. Estimates
I

(U

" A~ A A A 4

$CMU-DB A

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical
algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution

strategy using an access path.

— They can depend on the physical format of the data that
they process (i.e., sorting, compression).

— Not always a 1:1 mapping from logical to physical.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

QUERY OPTIMIZATION IS NP-HARD

This is the hardest part of building a DBMS.
If you are good at this, you will get paid $$8$.

People are starting to look at employing ML to

improve the accuracy and efficacy of optimizers.
— [BM DB?2 tried this with LEO in the early 2000s...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://ieeexplore.ieee.org/document/5386840

TODAY'S AGENDA

Relational Algebra Equivalences
Logical Query Optimization
Nested Queries

Expression Rewriting

Cost Model

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent
if they generate the same set of tuples.

The DBMS can identify better query plans without
a cost model.

This is often called query rewriting.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PREDICATE PUSHDOWN

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

M ame, cid(Ograde=a(Studentxenrolled))

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PREDICATE PUSHDOWN

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

Ss.name,e.cid

grade="A"

N s.sid=e.sid

student enrolled

TC
4
o)
t

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PREDICATE PUSHDOWN

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

n S.name,e.cid n S.name,e.cid
9 o

grade="A"

s sid=e.sid
t

N s.sid=e.sid I
Ggrade 'A'

TN

student enrolled student enrolled

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

RELATIONAL ALGEBRA EQUIVALENCES

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

M ame, cid(Ograde=a(Studentxenrolled))

o (studentX (0,4 _n(enrolled)))

name, cid

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

RELATIONAL ALGEBRA EQUIVALENCES

Selections:

— Perform filters as early as possible.
— Break a complex predicate, and push down

o (R) = 0,(0,(...0,,(R)))

PIApP2A...pn p2\t ™~ pn

pl

Simplify a complex predicate
— (X=Y AND Y=3) » X=3 AND Y=3

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

RELATIONAL ALGEBRA EQUIVALENCES

Joins:
— Commutative, associative
RS = SR

(RXS)XWT = RWK(SXNT)

The number of different join orderings for an n-

way join is a Catalan Number (*4")
— Exhaustive enumeration will be too slow.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://en.wikipedia.org/wiki/Catalan_number

RELATIONAL ALGEBRA EQUIVALENCES

Projections:

— Perform them early to create smaller tuples and reduce
intermediate results (if duplicates are eliminated)

— Project out all attributes except the ones requested or
required (e.g., joining keys)

This is not important for a column store...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROJECTION PUSHDOWN

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

n S.name,e.cid

s sid=e.sid

/ G grade="A"

student enrolled

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROJECTION PUSHDOWN

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

ns.name,e.cid ns.name,e.cid
1 ¢

4= q Ms.sid=e.sid

s sid=e.si » f L
sid, cid
Ggrade A’ sid,namen &
/ Ggrade='A'
<
student enrolled student enrolled

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LOGICAL QUERY OPTIMIZATION

Transform a logical plan into an equivalent logical
plan using pattern matching rules.

The goal is to increase the likelihood of
enumerating the optimal plan in the search.

Cannot compare plans because there is no cost
model but can "direct" a transformation to a
preferred side.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates
Predicate Pushdown
Replace Cartesian Products with Joins

Projection Pushdown

Source: Thomas Neumann

$CMU-DB

15-445/645 (Fall 2021)

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

$CMU-DB

15-445/645 (Fall 2021)

’ l ARTIST.NAME

I

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS . ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's 0OG Remix"

I

X
-

X
N

ARTIST APPEARS ALBUM

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

$CMU-DB

15-445/645 (Fall 2021)

’ l ARTIST.NAME

t

QQQ

/_/’

X
N

ARTIST

APPEARS

ARTIST.ID=APPEARS.ARTIST_ID
APPEARS . ALBUM_ID=ALBUM. ID

ALBUM.NAME="Andy's OG Remix"

X

ALBUM

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Move the predicate to the lowest
applicable point in the plan.

$CMU-DB

15-445/645 (Fall 2021)

’ l ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID

APPEARS . ALBUM_ID=ALBUM. ID

QQQ

ALBUM.NAME="Andy's OG Remix"

X
-

X
N

ARTIST APPEARS ALBUM

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Move the predicate to the lowest
applicable point in the plan.

$CMU-DB

15-445/645 (Fall 2021)

’ l ARTIST.NAME

G APPEARS . ALBUM_ID=ALBUM. ID

t
X

—

GALBUM.NAME="Andy's 0G Remix"
G ARTIST.ID=APPEARS.ARTIST_ID

X
N

ARTIST APPEARS ALBUM

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

$CMU-DB

15-445/645 (Fall 2021)

G ARTIST.ID=APPEARS.ARTIST_ID

X
N

ARTIST

o)

’ l ARTIST.NAME

APPEARS . ALBUM_ID=ALBUM. ID

t
X

—

GALBUM.NAME="Andy's 0G Remix"

APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

$CMU-DB

15-445/645 (Fall 2021)

AN

ARTIST

’ l ARTIST.NAME

|

N APPEARS . ALBUM_ID=ALBUM. ID

GALBUM.NAME="Andy's 0G Remix"

ARTIST ID=APPEARS.ARTIST_ID

APPEARS ALBUM

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

$CMU-DB

15-445/645 (Fall 2021)

’ l ARTIST.NAME

|

APPEARS.ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Andy s 0G Remix"

ARTIST ID=APPEARS.ARTIST_ID

AN

ARTIST APPEARS ALBUM

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROJECTION PUSHDOWN

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM n SIS
WHERE ARTIST.ID=APPEARS.ARTIST_ID 1
AND APPEARS.ALBUM_ID=ALBUM.ID

APPEARS . ALBUM_ID=ALBUM. ID

ARTIST.NAME,
Eliminate redundant attributes E@ALBUM_ID TC m\

AND ALBUM.NAME="Andy's OG Remix"

before pipeline breakers to
reduce materialization cost. N RN ©) ALBLNAWHE="any s 05 Reni

S

ARTIST_ID,
n I?AME n ALBUM_ID

ARTIST APPEARS ALBUM

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NESTED SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them

— Decompose nested query and store result to temporary
table

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NESTED SUB-QUERIES: REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15"

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NESTED SUB-QUERIES: REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE|S.sid = R.sid
AND R.day = '2018-10-15"

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NESTED SUB-QUERIES: REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE|S.sid = R.sid
AND R.day = '2018-10-15"

SELECT name

FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15"

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

27

NESTED SUB-QUERIES: DECOMPOSE

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1

For each sailor with the highest rating (over all sailors) and at
least two reservations for red boats, find the sailor id and the

earliest date on which the sailor has a reservation for a red boat.
£2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NESTED SUB-QUERIES: DECOMPOSE

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)
FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1

For each sailor with the highest rating (over all sailors) and at
least two reservations for red boats, find the sailor id and the

earliest date on which the sailor has a reservation for a red boat.
£2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DECOMPOSING QUERIES

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on one
block at a time.

Sub-queries are written to a temporary table that
are discarded after the query finishes.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DECOMPOSING QUERIES

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DECOMPOSING QUERIES

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1 /r

Nested Block

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1 /r

Nested Block

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =| ### ‘

HAVING COUNT(*) > 1

GROUP BY S.sid /r

Nested Block

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating = $### «

GROUP BY S.sid
HAVING COUNT(*) > 1

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating = $### «

GROUP BY S.sid
HAVING COUNT(*) > 1

Outer Block

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXPRESSION REWRITING

An optimizer transforms a query's expressions
(e.g., WHERE clause predicates) into the
optimal/minimal set of expressions.

Implemented using if/then/else clauses or a

pattern-matching rule engine.

— Search for expressions that match a pattern.

— When a match is found, rewrite the expression.
— Halt if there are no more rules that match.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CREATE TABLE A (
id INT PRIMARY KEY,

val INT NOT NULL); MORE EXAMPLES

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 0;

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,

val INT NOT NULL); MORE EXAMPLES

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE |1 = 0j;

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Impossible / Unnecessary Predicates

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A WHERE

1

0

, X

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,

val INT NOT NULL); MORE EXAMPLES

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE |1 = @;)(

SELECT * FROM A WHERE 1 = 1;

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,

val INT NOT NULL); MORE EXAMPLES

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE |1 = @;)(

SELECT * FROM A WHERE |1 = 1j;

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Impossible / Unnecessary Predicates

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A WHERE

1

0

, X

SELECT * FROM A;

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE |1 = 0@

- X

SELECT * FROM A;

Join Elimination

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

SELECT A1.*
FROM A AS A1 JOIN A AS A2
ON Al.id = A2.id;

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,

val INT NOT NULL); MORE EXAMPLES

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE |1 = @;)(

SELECT * FROM A;

Join Elimination

SELECT A1.%
FROM A AS A1 JOIN A AS A2
ON[A1.id = A2.id;

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE |1 = 0j; x

SELECT * FROM A;

Join Elimination

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A;

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Join Elimination with Sub-Query

Source: Lukas Eder

£CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A AS AT
WHERE EXISTS(SELECT val FROM A AS A2
WHERE Al.id = A2.id);

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Join Elimination with Sub-Query

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A AS Al

WHERE [EXISTS(SELECT val FROM A AS A2
WHERE A1.id = A2.id);

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Join Elimination with Sub-Query

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A;

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Join Elimination with Sub-Query

Merging Predicates

Source: Lukas Eder

£CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A;

SELECT * FROM A
WHERE val BETWEEN 1 AND 100
OR val BETWEEN 50 AND 150;

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

MORE EXAMPLES

Join Elimination with Sub-Query

Merging Predicates

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

SELECT * FROM A;

SELECT * FROM A
WHERE val BETWEEN 1 AND 100
OR val BETWEEN 50 AND 150;

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

CREATE TABLE A (
id INT PRIMARY KEY,

val INT NOT NULL); MORE EXAMPLES

Join Elimination with Sub-Query

SELECT * FROM A;

Merging Predicates
SELECT * FROM A
WHERE val BETWEEN 1 AND 150;

Source: Lukas Eder

$CMU-DB

15-445/645 (Fall 2021)

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://blog.jooq.org/2017/09/28/10-cool-sql-optimisations-that-do-not-depend-on-the-cost-model/

QUERY OPTIMIZATION

Heuristics / Rules

— Rewrite the query to remove stupid / inefficient things.

— These techniques may need to examine catalog, but they
do not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

QUERY OPTIMIZATION

Heuristics / Rules

— Rewrite the query to remove stupid / inefficient things.

— These techniques may need to examine catalog, but they
do not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

COST-BASED QUERY PLANNING

Generate an estimate of the cost of executing a
particular query plan for the current state of the

database.
— Estimates are only meaningful internally.

This is independent of the plan enumeration step
that we will talk about next class.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

COST MODEL COMPONENTS

Choice #1: Physical Costs

— Predict CPU cycles, I/O, cache misses, RAM
consumption, pre-fetching, etc...

— Depends heavily on hardware.

Choice #2: Logical Costs

— Estimate result sizes per operator.
— Independent of the operator algorithm.
— Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
— Complexity of the operator algorithm implementation.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DISK-BASED DBMS COST MODEL

The number of disk accesses will always dominate

the execution time of a query.
— CPU costs are negligible.
— Must consider sequential vs. random I/O.

This is easier to model if the DBMS has full

control over buffer management.
— We will know the replacement strategy, pinning, and
assume exclusive access to disk.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident

database without a lot of memory:

— Processing a tuple in memory is 400x faster than reading
a tuple from disk.

— Sequential I/O is 4x faster than random I/O.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

£CMU-DB

15-445/645 (Fall 2021)

19.7.2. Planner Cost Constants

The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the
planner's choices. By default, these cost variables are based on the cost of sequential page fetches;
that is, seq_page cost is conventionally set to 1.0 and the other cost variables are set with
reference to that. But you can use a different scale if you prefer, such as actual execution times in

milliseconds on a particular machine.

Note: Unfortunately, there is no well-defined method for determining ideal values for the
cost variables. They are best treated as averages over the entire mix of queries that a
particular installation will receive. This means that changing them on the basis of just a few

experiments is very risky.

seq_page_cost (floating point)

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of
sequential fetches. The default is 1.0. This value can be overridden for tables and indexes in
a particular tablespace by setting the tablespace parameter of the same name (see ALTER

TABLESPACE).

random_page_cost (floating point)

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.postgresql.org/docs/current/static/runtime-config-query.html

£CMU-DB

15-445/645 (Fall 2021)

19.7.2. Planner Cost Constants

The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the
planner's choices. By default, these cost variables are based on the cost of sequential page fetches;
that is, seq_page cost is conventionally set to 1.0 and the other cost variables are set with
reference to that. But you can use a different scale if you prefer, such as actual execution times in

milliseconds on a particular machine.

Note: Unfortunately, there is no well-defined method for determining ideal values for the
cost variables. They are best treated as averages over the entire mix of queries that a

particular installation will receive. This means that changing them on the basis of just a few
experiments is very risky.

seq_page_cost (floating point)

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of
sequential fetches. The default is 1.0. This value can be overridden for tables and indexes in
a particular tablespace by setting the tablespace parameter of the same name (see ALTER

TABLESPACE).

random_page_cost (floating point)

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.postgresql.org/docs/current/static/runtime-config-query.html

IBM DB2 COST MODEL

Database characteristics in system catalogs
Hardware environment (microbenchmarks)
Storage device characteristics (microbenchmarks)
Communications bandwidth (distributed only)
Memory resources (buffer pools, sort heaps)

Concurrency Environment
— Average number of users

— Isolation level / blocking

— Number of available locks

Source: Guy Lohman
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

CONCLUSION

We can use static rules and heuristics to optimize a
query plan without needing to understand the
contents of the database.

We use cost model to help perform more
advanced query optimizations

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NEXT CLASS

Statistics and plan enumeration

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

