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Project #2 is due tomorrow, Thu Oct 21st @ 
11:59pm
→ Check your score again on Gradescope with formatting!

Project #3 will be released today.
It is due Sun Nov 14th @ 11:59pm.

Homework #4 will be released next week.
It is due Sun Nov 7th @ 11:59pm.
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An Overview of the Starburst Trino Query 
Optimizer
→ Monday Oct 25th @ 4:30pm ET

3
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Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they 

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Evaluate multiple equivalent plans for a query and pick 

the one with the lowest cost.

4
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Moe Cost Estimation (Statistics)

Plan Enumeration
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Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM 

consumption,  pre-fetching, etc…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate result sizes per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
→ Complexity of the operator algorithm implementation.
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The DBMS stores internal statistics about tables, 
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS
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For each relation R, the DBMS maintains the 
following information:
→ NR: Number of tuples in R.
→ V(A,R): Number of distinct values for attribute A.
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The selection cardinality SC(A,R) is the 
average number of records with a value for an 
attribute A given NR / V(A,R)

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

The selection cardinality SC(A,R) is the 
average number of records with a value for an 
attribute A given NR / V(A,R)

Note that this formula assumes data uniformity
where every value has the same frequency as all 
other values.
→ Example: 10,000 students, 10 colleges – how many 

students in SCS?
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Equality predicates on unique keys are 
easy to estimate. 

10
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Equality predicates on unique keys are 
easy to estimate. 

10

SELECT * FROM people 
WHERE id = 123

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
age INT NOT NULL,
status VARCHAR(16)

);
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Equality predicates on unique keys are 
easy to estimate. 

Computing the logical cost of complex 
predicates is more difficult…

10

SELECT * FROM people 
WHERE id = 123

SELECT * FROM people 
WHERE val > 1000

SELECT * FROM people 
WHERE age = 30
AND status = 'Lit'
AND age+id IN (1,2,3)

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
age INT NOT NULL,
status VARCHAR(16)

);
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The selectivity (sel) of a predicate P is the 
fraction of tuples that qualify.

Formula depends on type of predicate:
→ Equality
→ Range
→ Negation
→ Conjunction
→ Disjunction

11
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Assume that V(age,people) has five 
distinct values (0–4) and NR = 5

Equality Predicate: A=constant
→ sel(A=constant) = SC(P) / NR

12

SELECT * FROM people 
WHERE age = 2
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Assume that V(age,people) has five 
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Range Predicate:
→ sel(A>=a) = (Amax– a+1) / (Amax– Amin+1)
→ Example: sel(age>=2) 

13

SELECT * FROM people 
WHERE age >= 2
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Range Predicate:
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→ Example: sel(age>=2) 
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Range Predicate:
→ sel(A>=a) = (Amax– a+1) / (Amax– Amin+1)
→ Example: sel(age>=2) 

13

agemin = 0

SELECT * FROM people 
WHERE age >= 2

agemax = 4
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Range Predicate:
→ sel(A>=a) = (Amax– a+1) / (Amax– Amin+1)
→ Example: sel(age>=2) 

13

≈ (4–2+1) / (4–0+1)
≈ 3/5

agemin = 0

SELECT * FROM people 
WHERE age >= 2

agemax = 4
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Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

14

SELECT * FROM people 
WHERE age != 2
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→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

14

SC(age=2)=1

SELECT * FROM people 
WHERE age != 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

co
u

n
t

age

Negation Query:
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→ Example: sel(age != 2)

14

SC(age!=2)=2 SC(age!=2)=2

SELECT * FROM people 
WHERE age != 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

co
u

n
t

age

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

14

= 1 – (1/5) = 4/5

SC(age!=2)=2 SC(age!=2)=2

SELECT * FROM people 
WHERE age != 2
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Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

Observation: Selectivity ≈ Probability

14

= 1 – (1/5) = 4/5

SC(age!=2)=2 SC(age!=2)=2

SELECT * FROM people 
WHERE age != 2
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Conjunction: 
→ sel(P1 ⋀ P2) = sel(P1) ∙ sel(P2)
→ sel(age=2 ⋀ name LIKE 'A%')

This assumes that the predicates are 
independent.

15

SELECT * FROM people 
WHERE age = 2
AND name LIKE 'A%'
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Disjunction: 
→ sel(P1 ⋁ P2)

= sel(P1) + sel(P2) – sel(P1⋀P2)
= sel(P1) + sel(P2) – sel(P1) ∙ 

sel(P2)
→ sel(age=2 OR name LIKE 'A%')

This again assumes that the
selectivities are independent.

16

SELECT * FROM people 
WHERE age = 2

OR name LIKE 'A%'
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Given a join of R and S, what is the range of 
possible result sizes in # of tuples?

In other words, for a given tuple of R,  how many 
tuples of S will it match?

Assume each key in the inner relation will exist in 
the outer table

17
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General case: Rcols⋂Scols={A} where A is not a 
primary key for either table.
→ Match each R-tuple with S-tuples:

estSize ≈ NR ∙ NS / V(A,S)
→ Symmetrically, for S:

estSize ≈ NR ∙ NS / V(A,R)

Overall: 
→ estSize ≈ NR ∙ NS / max({V(A,S), V(A,R)})

18
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Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the 

inner relation will also exist in the outer table.

19
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Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

20
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Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

With the independence and uniformity 
assumptions,  the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real 
selectivity is 1/100 = 0.01
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Our formulas are nice, but we assume that data 
values are uniformly distributed.

21

Uniform Approximation 
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Our formulas are nice, but we assume that data 
values are uniformly distributed.

21

Uniform Approximation 

Distinct values of attribute

# of occurrences
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Our formulas are nice, but we assume that data 
values are uniformly distributed.

22

Non-Uniform Approximation
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Our formulas are nice, but we assume that data 
values are uniformly distributed.

22

Non-Uniform Approximation

15 Keys × 32-bits = 60 bytes
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Non-Uniform Approximation

All buckets have the same width (i.e., the same 
number of values).

23
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Non-Uniform Approximation

All buckets have the same width (i.e., the same 
number of values).

23

Bucket Ranges
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All buckets have the same width (i.e., the same 
number of values).

23

Equi-Width Histogram

Bucket Ranges
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Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.

24

Histogram (Quantiles)
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Probabilistic data structures that generate 
approximate statistics about a data set.

Cost-model can replace histograms with sketches 
to improve its selectivity estimate accuracy.

Most common examples:
→ Count-Min Sketch (1988): Approximate frequency count 

of elements in a set.
→ HyperLogLog (2007): Approximate the number of 

distinct elements in a set.
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Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

26

⋮

SELECT AVG(age)
FROM people 
WHERE age > 50

id name age status

1001 Obama 59 Rested

1002 Kanye 41 Weird

1003 Tupac 25 Dead

1004 Bieber 26 Crunk

1005 Andy 39 Shaved

1006 TigerKing 57 Jailed
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Now that we can (roughly) estimate the selectivity 
of predicates, and subsequently the cost of query 
plans, what can we do with them?

27
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After performing rule-based rewriting, the DBMS 
will enumerate different plans for the query and 
estimate their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query 
after exhausting all plans or some timeout.

28
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Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

OLTP queries are especially easy…

29
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Query planning for OLTP queries is easy because 
they are sargable (Search Argument Able).
→ It is usually just picking the best index.
→ Joins are almost always on foreign key relationships with 

a small cardinality.
→ Can be implemented with simple heuristics.

30
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CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
⋮

);

SELECT * FROM people
WHERE id = 123;
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As number of joins increases, number of 
alternative plans grows rapidly
→ We need to restrict search space.

Fundamental decision in System R: only left-deep 
join trees are considered.
→ Modern DBMSs do not always make this assumption 

anymore.

31
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Fundamental decision in System R: Only consider 
left-deep join trees.

32
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Fundamental decision in System R is to only 
consider left-deep join trees.

Allows for fully pipelined plans where 
intermediate results are not written to temp files.
→ Not all left-deep trees are fully pipelined.
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Enumerate the orderings
→ Example: Left-deep tree #1, Left-deep tree #2…

Enumerate the plans for each operator
→ Example: Hash, Sort-Merge, Nested Loop…

Enumerate the access paths for each table
→ Example: Index #1, Index #2, Seq Scan…

34
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Enumerate the orderings
→ Example: Left-deep tree #1, Left-deep tree #2…

Enumerate the plans for each operator
→ Example: Hash, Sort-Merge, Nested Loop…

Enumerate the access paths for each table
→ Example: Index #1, Index #2, Seq Scan…

Use dynamic programming to reduce the 
number of cost estimations.
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R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

R
S
T
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35

SortMerge Join
R.a=S.a

SortMerge Join
T.b=S.b

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a SELECT * FROM R, S, T

WHERE R.a = S.a
AND S.b = T.b

R
S
T
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35

SortMerge Join
R.a=S.a

SortMerge Join
T.b=S.b

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a SELECT * FROM R, S, T

WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
400

Cost: 
280

Cost: 
200

R
S
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

35

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a SELECT * FROM R, S, T

WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

R
S
T
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35

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.b=T.b

SortMerge Join
S.a=R.a

Hash Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

Cost: 
450

Cost: 
300

Cost: 
400

Cost: 
380

R
S
T
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35

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T

Hash Join
R.a=S.a

Hash Join
S.b=T.b

SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
300

Cost: 
200

Cost: 
300

Cost: 
380

R
S
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

35

Hash Join
T.b=S.b

R ⨝ S
T

T ⨝ S
R

R ⨝ S ⨝ T
SortMerge Join
S.a=R.a

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

Cost: 
200

Cost: 
300

R
S
T
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How to generate plans for search 
algorithm:
→ Enumerate relation orderings
→ Enumerate join algorithm choices
→ Enumerate access method choices

No real DBMSs does it this way.
It’s actually more messy…
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SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b
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Step #1: Enumerate relation orderings

37
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R ×
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R
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Step #1: Enumerate relation orderings

37

⨝

⨝

T R

S ⨝

⨝

S T

R ×

⨝

R S

T

⨝

⨝

R S

T ⨝

⨝

S R

T ×

⨝

S T

R

Prune plans with cross-
products immediately!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021


15-445/645 (Fall 2021)

Step #1: Enumerate relation orderings
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Step #1: Enumerate relation orderings

37
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T R

S ⨝

⨝

S T

R ×

⨝

R S

T

⨝

⨝

R S

T ⨝

⨝

S R

T ×

⨝

S T

R

Prune plans with cross-
products immediately!
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Step #2: Enumerate join algorithm choices

38

⨝
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Step #2: Enumerate join algorithm choices

38
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Step #2: Enumerate join algorithm choices

38

⨝

⨝

R S

T

Do this for the other 
plans. 

R S

T
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T
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T

R S
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Step #2: Enumerate join algorithm choices

38
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T

Do this for the other 
plans. 

R S

T
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T
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T
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Step #3: Enumerate access method choices

39
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Step #3: Enumerate access method choices
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Step #3: Enumerate access method choices

39

R S

T

Do this for the other 
plans. 
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Examines all types of join trees
→ Left-deep, Right-deep, bushy

Two optimizer implementations:
→ Traditional Dynamic Programming Approach
→ Genetic Query Optimizer (GEQO)

Postgres uses the traditional algorithm when # of 
tables in query is less than 12 and switches to 
GEQO when there are 12 or more.
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1st Generation 2nd Generation 3rd Generation

…
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Filter early as possible.

Selectivity estimations
→ Uniformity
→ Independence
→ Inclusion
→ Histograms
→ Join selectivity

Dynamic programming for join orderings

Again, query optimization is hard…
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Transactions!
→ aka the second hardest part about database systems
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