Carnegie Mellon University

Query Planning - Part II

Lin Ma Computer Science Carnegie Mellon University

ADMINISTRIVIA

Project #2 is due tomorrow, Thu Oct 21st @ 11:59pm → Check your score again on Gradescope with formatting!

Project #3 will be released today. It is due Sun Nov 14th @ 11:59pm.

Homework #4 will be released next week. It is due Sun Nov 7th @ 11:59pm.

UPCOMING DATABASE TALK

<u>An Overview of the Starburst Trino Query</u> <u>Optimizer</u>

 \rightarrow Monday Oct 25th @ 4:30pm ET

QUERY OPTIMIZATION

Heuristics / Rules

- \rightarrow Rewrite the query to remove stupid / inefficient things.
- \rightarrow These techniques may need to examine catalog, but they do <u>not</u> need to examine data.

Cost-based Search

- \rightarrow Use a model to estimate the cost of executing a plan.
- \rightarrow Evaluate multiple equivalent plans for a query and pick the one with the lowest cost.

QUERY OPTIMIZATION

Heuristics / Rules

- \rightarrow Rewrite the query to remove stupid / inefficient things.
- \rightarrow These techniques may need to examine catalog, but they do <u>not</u> need to examine data.

Cost-based Search

- \rightarrow Use a model to estimate the cost of executing a plan.
- \rightarrow Evaluate multiple equivalent plans for a query and pick the one with the lowest cost.

TODAY'S AGENDA

Moe Cost Estimation (Statistics) Plan Enumeration

COST MODEL COMPONENTS

Choice #1: Physical Costs

- → Predict CPU cycles, I/O, cache misses, RAM consumption, pre-fetching, etc...
- \rightarrow Depends heavily on hardware.

Choice #2: Logical Costs

- \rightarrow Estimate result sizes per operator.
- \rightarrow Independent of the operator algorithm.
- \rightarrow Need estimations for operator result sizes.

Choice #3: Algorithmic Costs

 \rightarrow Complexity of the operator algorithm implementation.

STATISTICS

The DBMS stores internal statistics about tables, attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:

- \rightarrow Postgres/SQLite: **ANALYZE**
- $\rightarrow Oracle/MySQL: \textbf{ANALYZE TABLE}$
- \rightarrow SQL Server: **UPDATE STATISTICS**
- \rightarrow DB2: **RUNSTATS**

STATISTICS

For each relation **R**, the DBMS maintains the following information:

 \rightarrow N_R: Number of tuples in **R**.

 \rightarrow V(A,R): Number of distinct values for attribute A.

DERIVABLE STATISTICS

The <u>selection cardinality</u> SC(A,R) is the average number of records with a value for an attribute A given $N_R / V(A,R)$

DERIVABLE STATISTICS

The <u>selection cardinality</u> SC(A,R) is the average number of records with a value for an attribute A given $N_R / V(A,R)$

Note that this formula assumes *data uniformity* where every value has the same frequency as all other values.

→ Example: 10,000 students, 10 colleges – how many students in SCS?

LOGICAL COSTS

Equality predicates on unique keys are easy to estimate.

LOGICAL COSTS

Equality predicates on unique keys are easy to estimate.

SELECT * FROM people
WHERE id = 123

CREATE TABLE people (
 id INT PRIMARY KEY,
 val INT NOT NULL,
 age INT NOT NULL,
 status VARCHAR(16)
);

LOGICAL COSTS

Equality predicates on unique keys are easy to estimate.

SELECT * FROM people
WHERE id = 123

CREATE TABLE people (
 id INT PRIMARY KEY,
 val INT NOT NULL,
 age INT NOT NULL,
 status VARCHAR(16)
);

Computing the logical cost of complex

predicates is more difficult...

SELECT * FROM people
WHERE val > 1000

```
SELECT * FROM people
WHERE age = 30
AND status = 'Lit'
AND age+id IN (1,2,3)
```

COMPLEX PREDICATES

The <u>selectivity</u> (sel) of a predicate P is the fraction of tuples that qualify.

Formula depends on type of predicate:

- \rightarrow Equality
- \rightarrow Range
- \rightarrow Negation
- \rightarrow Conjunction
- \rightarrow Disjunction

ECMU·DB 15-445/645 (Fall 2021

COMPLEX PREDICATES

The <u>selectivity</u> (sel) of a predicate P is the fraction of tuples that qualify.

Formula depends on type of predicate:

- \rightarrow Equality
- \rightarrow Range
- \rightarrow Negation
- \rightarrow Conjunction
- \rightarrow Disjunction

ECMU·DB 15-445/645 (Fall 2021

Assume that V(age, people) has five distinct values (0–4) and $N_R = 5$ Equality Predicate: A=constant \rightarrow sel(A=constant) = SC(P) / N_R

SELECT * FROM people
WHERE age = 2

Assume that V(age, people) has five distinct values (0-4) and $N_R = 5$ Equality Predicate: A=constant

 \rightarrow sel(A=constant) = SC(P) / N_R

 \rightarrow Example: **sel(age=2) =**

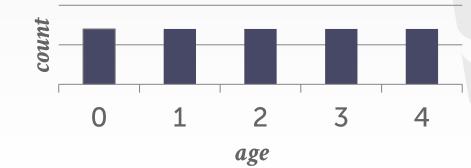
SELECT * FROM people
WHERE age = 2

Assume that V(age, people) has five distinct values (0-4) and $N_R = 5$ Equality Predicate: A=constant

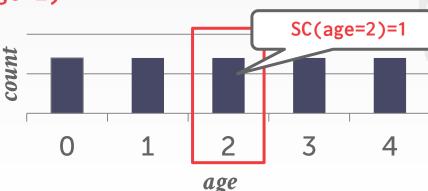
 \rightarrow sel(A=constant) = SC(P) / N_R

 \rightarrow Example: **sel(age=2) =**

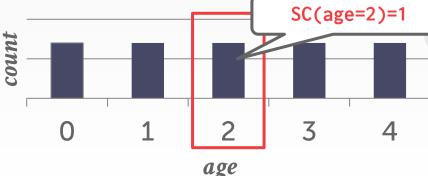
SELECT * FROM people
WHERE age = 2



Assume that V(age, people) has five distinct values (0-4) and $N_R = 5$ Equality Predicate: A=constant \rightarrow sel(A=constant) = SC(P) / N_R \rightarrow Example: sel(age=2) =



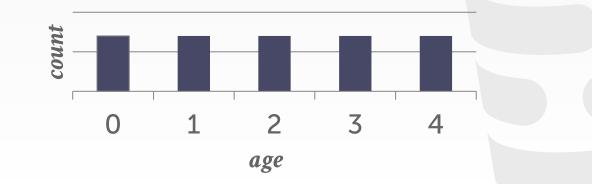
Assume that V(age, people) has five distinct values (0-4) and $N_R = 5$ Equality Predicate: A=constant \rightarrow sel(A=constant) = SC(P) / N_R \rightarrow Example: sel(age=2) = 1/5 SC(age=2)=1



Range Predicate:

 $\rightarrow sel(A>=a) = (A_{max}-a+1) / (A_{max}-A_{min}+1)$ $\rightarrow Example: sel(age>=2)$

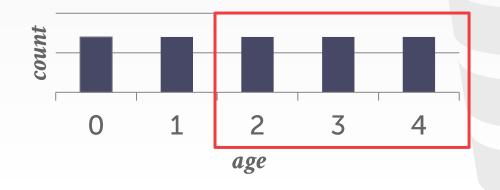
SELECT * FROM people
WHERE age >= 2



Range Predicate:

 $\rightarrow sel(A>=a) = (A_{max}-a+1) / (A_{max}-A_{min}+1)$ $\rightarrow Example: sel(age>=2)$

SELECT * FROM people
WHERE age >= 2



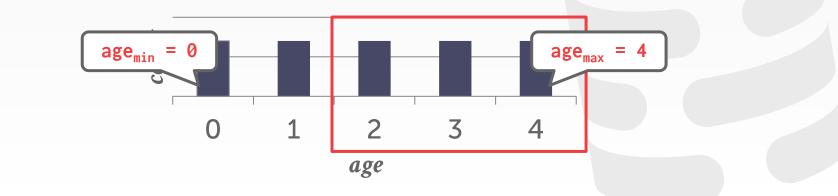
Range Predicate:

15-445/645 (Fall 2021

 $\rightarrow sel(A>=a) = (A_{max}-a+1) / (A_{max}-A_{min}+1)$ $\rightarrow Example: sel(age>=2)$

SELECT * FROM people
WHERE age >= 2

13

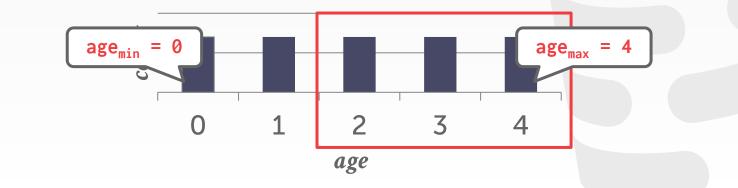


Range Predicate:

$$\rightarrow sel(A \ge a) = (A_{max} - a + 1) / (A_{max} - A_{min} + 1)$$

$$\rightarrow Example: sel(age \ge 2) \approx (4 - 2 + 1) / (4 - 0 + 1)$$

$$\approx 3/5$$

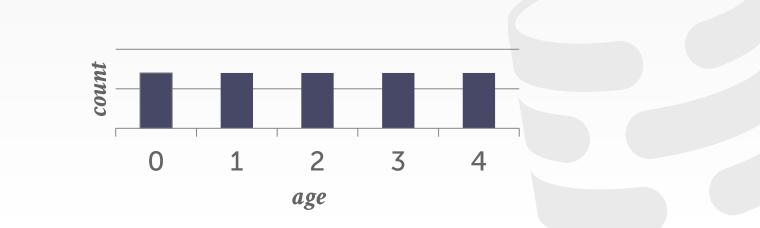


Negation Query: → sel(not P) = 1 - sel(P) → Example: sel(age != 2)

15-445/645 (Fall 2021)

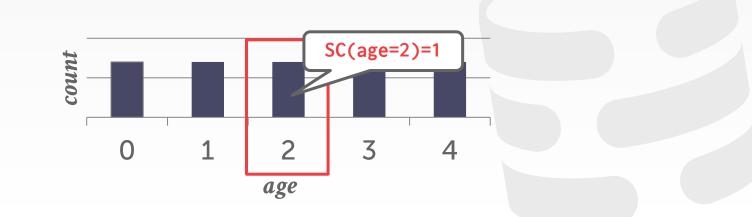
SELECT * **FROM** people WHERE age != 2

14



Negation Query: → sel(not P) = 1 - sel(P) → Example: sel(age != 2)

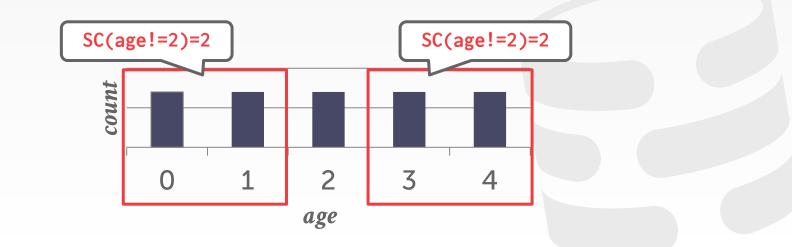
SELECT * **FROM** people WHERE age != 2



Negation Query: → sel(not P) = 1 - sel(P) → Example: sel(age != 2)

```
SELECT * FROM people
WHERE age != 2
```


Negation Query: \rightarrow sel(not P) = 1 - sel(P) \rightarrow Example: sel(age != 2) = 1 - (1/5) = 4/5 SELECT * FROM people WHERE age != 2



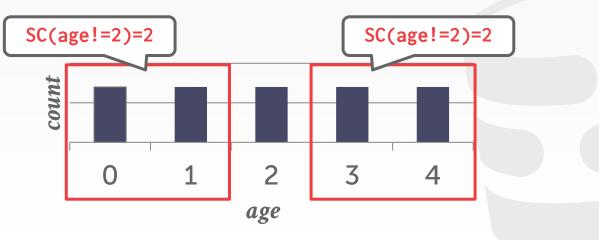
Negation Query:

 \rightarrow sel(not P) = 1 - sel(P)

 \rightarrow Example: sel(age != 2) = 1 - (1/5) = 4/5

SELECT * FROM people
WHERE age != 2

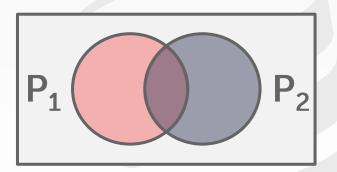
Observation: Selectivity \approx Probability



Conjunction: \rightarrow sel(P1 \land P2) = sel(P1) • sel(P2) \rightarrow sel(age=2 \land name LIKE 'A%')

This assumes that the predicates are **independent**.

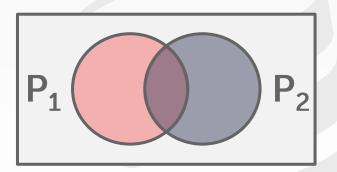
```
SELECT * FROM people
WHERE age = 2
AND name LIKE 'A%'
```



Conjunction: \rightarrow sel(P1 \land P2) = sel(P1) • sel(P2) \rightarrow sel(age=2 \land name LIKE 'A%')

This assumes that the predicates are **independent**.

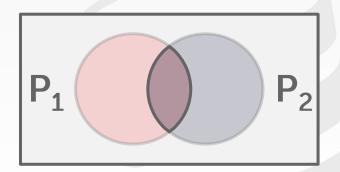
```
SELECT * FROM people
WHERE age = 2
AND name LIKE 'A%'
```



Conjunction: \rightarrow sel(P1 \land P2) = sel(P1) • sel(P2) \rightarrow sel(age=2 \land name LIKE 'A%')

This assumes that the predicates are **independent**.

```
SELECT * FROM people
WHERE age = 2
AND name LIKE 'A%'
```




```
Disjunction:

→ sel(P1 V P2)

= sel(P1) + sel(P2) - sel(P1\/P2)

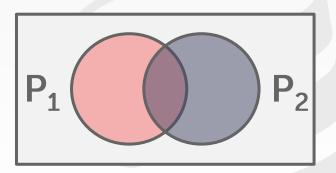
= sel(P1) + sel(P2) - sel(P1) •

sel(P2)

→ sel(age=2 OR name LIKE 'A%')
```

This again assumes that the selectivities are **independent**.

```
SELECT * FROM people
WHERE age = 2
OR name LIKE 'A%'
```




```
Disjunction:

→ sel(P1 V P2)

= sel(P1) + sel(P2) - sel(P1\/P2)

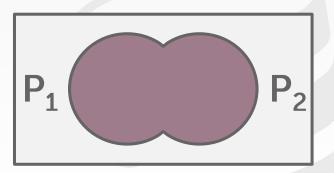
= sel(P1) + sel(P2) - sel(P1) •

sel(P2)

→ sel(age=2 OR name LIKE 'A%')
```

This again assumes that the selectivities are **independent**.

```
SELECT * FROM people
WHERE age = 2
OR name LIKE 'A%'
```



RESULT SIZE ESTIMATION FOR JOINS

Given a join of **R** and **S**, what is the range of possible result sizes in # of tuples?

In other words, for a given tuple of **R**, how many tuples of **S** will it match?

Assume each key in the inner relation will exist in the outer table

RESULT SIZE ESTIMATION FOR JOINS

General case: $R_{cols} \cap S_{cols} = \{A\}$ where A is not a primary key for either table. \rightarrow Match each R-tuple with S-tuples: estSize $\approx N_R \cdot N_S / V(A,S)$ \rightarrow Symmetrically, for S: estSize $\approx N_R \cdot N_S / V(A,R)$

Overall:

 \rightarrow estSize \approx N_R • N_S / max({V(A,S), V(A,R)})

SELECTION CARDINALITY

Assumption #1: Uniform Data

 \rightarrow The distribution of values (except for the heavy hitters) is the same.

Assumption #2: Independent Predicates

 \rightarrow The predicates on attributes are independent

Assumption #3: Inclusion Principle

 \rightarrow The domain of join keys overlap such that each key in the inner relation will also exist in the outer table.

CORRELATED ATTRIBUTES

Consider a database of automobiles:
 → # of Makes = 10, # of Models = 100
 And the following query:
 → (make="Honda" AND model="Accord")

Source: Guy Lohman **CMU-DB** 15-445/645 (Fall 2021)

CORRELATED ATTRIBUTES

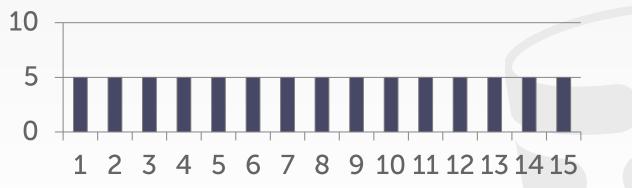
Consider a database of automobiles: \rightarrow # of Makes = 10, # of Models = 100 And the following query: \rightarrow (make="Honda" AND model="Accord") With the independence and uniformity assumptions, the selectivity is: \rightarrow 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real selectivity is 1/100 = 0.01

Source: Guy Lohman CMU-DB

Our formulas are nice, but we assume that data values are uniformly distributed.

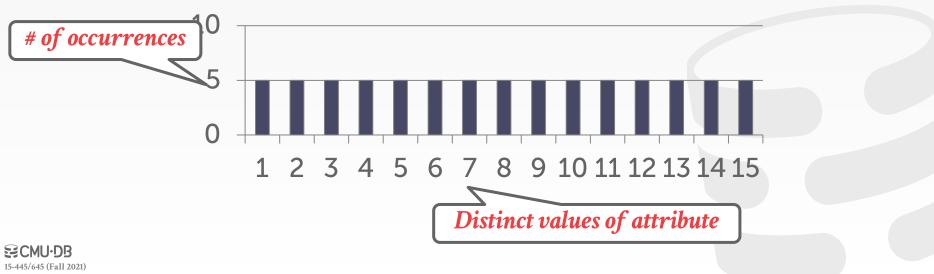
Uniform Approximation



21

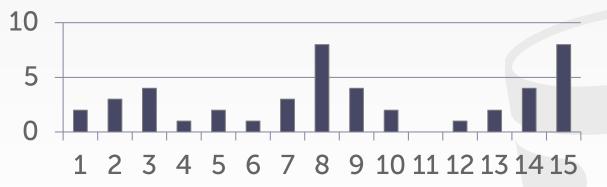
Our formulas are nice, but we assume that data values are uniformly distributed.

Uniform Approximation



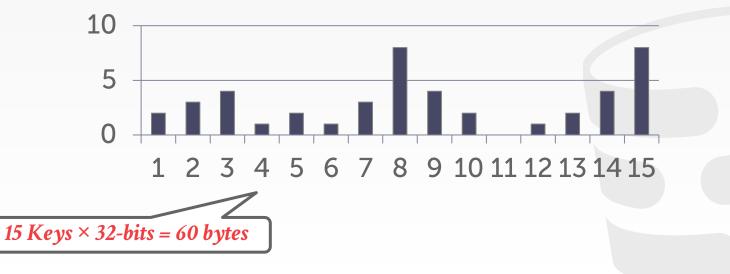
Our formulas are nice, but we assume that data values are uniformly distributed.

Non-Uniform Approximation



Our formulas are nice, but we assume that data values are uniformly distributed.

Non-Uniform Approximation

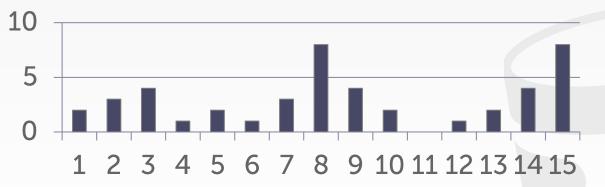


15-445/645 (Fall 2021

EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same number of values).

Non-Uniform Approximation

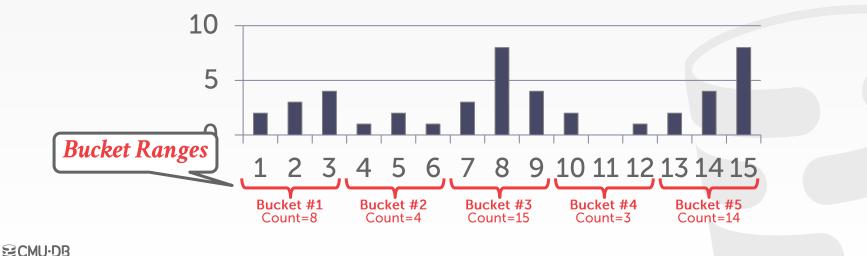


EQUI-WIDTH HISTOGRAM

23

All buckets have the same width (i.e., the same number of values).

Non-Uniform Approximation

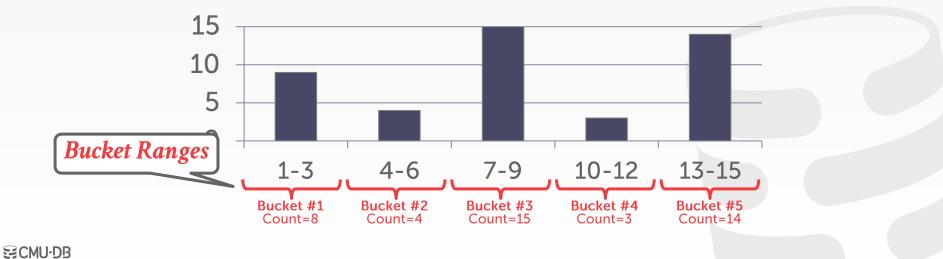


15-445/645 (Fall 2021)

EQUI-WIDTH HISTOGRAM

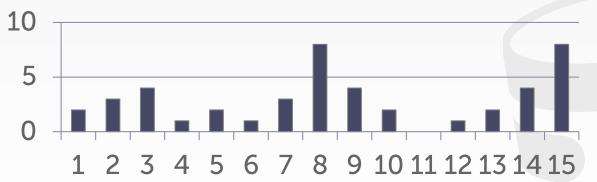
All buckets have the same width (i.e., the same number of values).

Equi-Width Histogram



15-445/645 (Fall 2021)

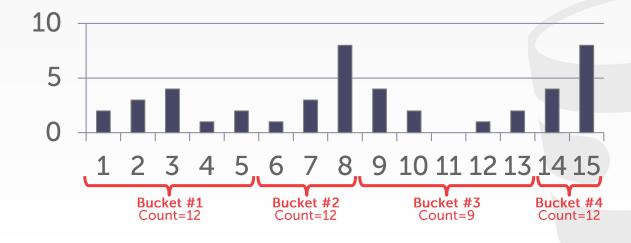
Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.



Histogram (Quantiles)

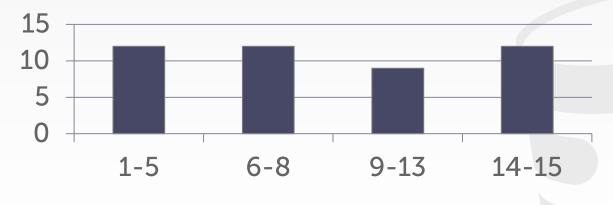
Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.

Histogram (Quantiles)



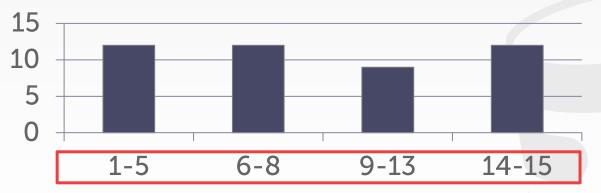
Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.

Histogram (Quantiles)



Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.

Histogram (Quantiles)



SKETCHES

Probabilistic data structures that generate approximate statistics about a data set. Cost-model can replace histograms with sketches

to improve its selectivity estimate accuracy.

Most common examples:

- \rightarrow <u>Count-Min Sketch</u> (1988): Approximate frequency count of elements in a set.
- \rightarrow <u>HyperLogLog</u> (2007): Approximate the number of distinct elements in a set.

Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

SELECT AVG(age)
 FROM people
 WHERE age > 50

id	name	age	status
1001	Obama	59	Rested
1002	Kanye	41	Weird
1003	Тирас	25	Dead
1004	Bieber	26	Crunk
1005	Andy	39	Shaved
1006	TigerKing	57	Jailed

: 1 billion tuples

Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

SELECT AVG(age)
 FROM people
 WHERE age > 50

id	name	age	status
1001	Obama	59	Rested
1002	Kanye	41	Weird
1003	Тирас	25	Dead
1004	Bieber	26	Crunk
1005	Andy	39	Shaved
1006	TigerKing	57	Jailed

1 billion tuples

.

Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

Table Sample	e
--------------	---

1001	Obama	59	Rested
1003	Тирас	25	Dead
1005	Andy	39	Shaved

SELECT AVG(age)
 FROM people
 WHERE age > 50

id	name	age	status
1001	Obama	59	Rested
1002	Kanye	41	Weird
1003	Тирас	25	Dead
1004	Bieber	26	Crunk
1005	Andy	39	Shaved
1006	TigerKing	57	Jailed

1 billion tuples

.

Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

Table	Sample

1001	Obama	59	Rested
1003	Тирас	25	Dead
1005	Andy	39	Shaved

SELECT AVG(age)
 FROM people
 WHERE age > 50

id	name	age	status
1001	Obama	59	Rested
1002	Kanye	41	Weird
1003	Тирас	25	Dead
1004	Bieber	26	Crunk
1005	Andy	39	Shaved
1006	TigerKing	57	Jailed

1 billion tuples

.

sel(age>50) =

Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

	1 doit Sumpic				
	1001	Obama	59	Rested	
)) =	1003	Тирас	25	Dead	
	1005	Andy	39	Shaved	

Table Sample

SELECT	AVG(age)
FROM	people
WHERE	age > 50

id	name	age	status
1001	Obama	59	Rested
1002	Kanye	41	Weird
1003	Тирас	25	Dead
1004	Bieber	26	Crunk
1005	Andy	39	Shaved
1006	TigerKing	57	Jailed

1 billion tuples

.

sel(age>50) =

Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

	Table Sample					
	1001	Obama	59	Rested		
sel(age>50) = 1/3	1003	Тирас	25	Dead		
	1005	Andy	39	Shaved		

SELECT AVG(age)
 FROM people
 WHERE age > 50

id	name	age	status
1001	Obama	59	Rested
1002	Kanye	41	Weird
1003	Тирас	25	Dead
1004	Bieber	26	Crunk
1005	Andy	39	Shaved
1006	TigerKing	57	Jailed

1 billion tuples

.

5-445/645 (Fall 2021)

OBSERVATION

Now that we can (roughly) estimate the selectivity of predicates, and subsequently the cost of query plans, what can we do with them?

QUERY OPTIMIZATION

After performing rule-based rewriting, the DBMS will enumerate different plans for the query and estimate their costs.

- \rightarrow Single relation.
- \rightarrow Multiple relations.
- \rightarrow Nested sub-queries.

It chooses the best plan it has seen for the query after exhausting all plans or some timeout.

SINGLE-RELATION QUERY PLANNING

Pick the best access method.

- \rightarrow Sequential Scan
- \rightarrow Binary Search (clustered indexes)
- \rightarrow Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this. OLTP queries are especially easy...

OLTP QUERY PLANNING

Query planning for OLTP queries is easy because they are <u>sargable</u> (<u>Search Arg</u>ument <u>Able</u>).

- \rightarrow It is usually just picking the best index.
- \rightarrow Joins are almost always on foreign key relationships with a small cardinality.
- \rightarrow Can be implemented with simple heuristics.

OLTP QUERY PLANNING

Query planning for OLTP queries is easy because they are <u>sargable</u> (<u>Search Arg</u>ument <u>Able</u>).

- \rightarrow It is usually just picking the best index.
- \rightarrow Joins are almost always on foreign key relationships with a small cardinality.
- \rightarrow Can be implemented with simple heuristics.

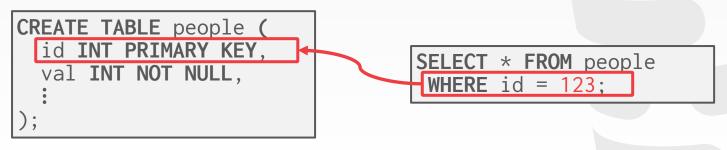
CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
• •
);

SELECT * FROM people
WHERE id = 123;

OLTP QUERY PLANNING

Query planning for OLTP queries is easy because they are <u>sargable</u> (<u>Search Arg</u>ument <u>Able</u>).

- \rightarrow It is usually just picking the best index.
- \rightarrow Joins are almost always on foreign key relationships with a small cardinality.
- \rightarrow Can be implemented with simple heuristics.

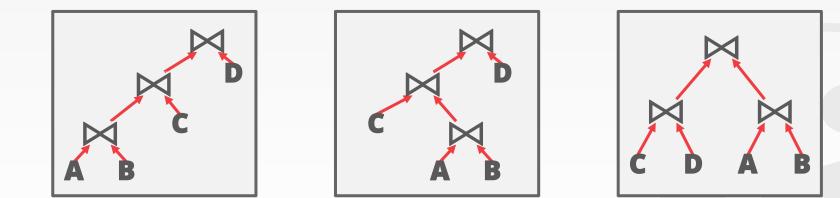


As number of joins increases, number of alternative plans grows rapidly \rightarrow We need to restrict search space.

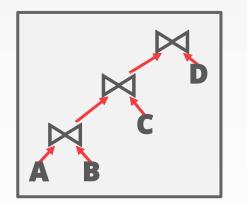
Fundamental decision in **System R**: only left-deep join trees are considered.

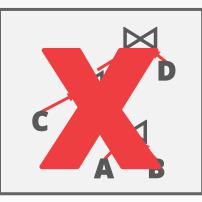
 \rightarrow Modern DBMSs do not always make this assumption anymore.

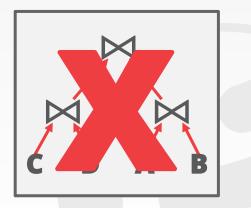
Fundamental decision in **System R**: Only consider left-deep join trees.



Fundamental decision in **System R**: Only consider left-deep join trees.







Fundamental decision in **System R** is to only consider left-deep join trees.

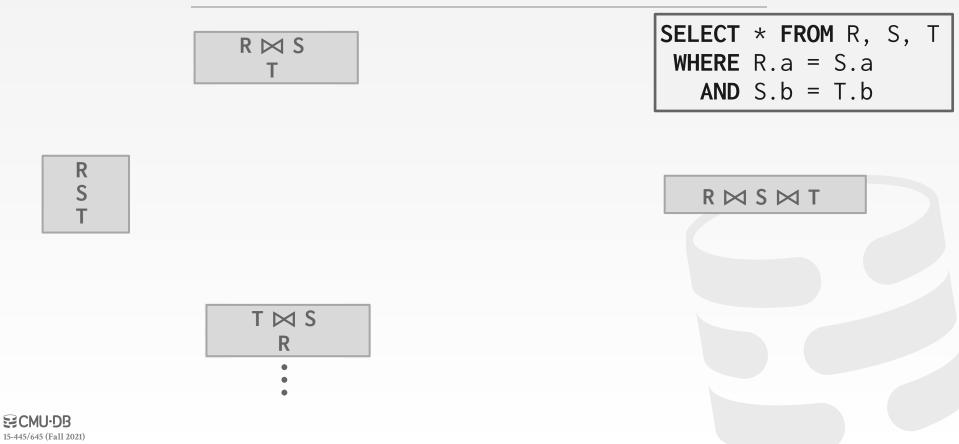
Allows for fully pipelined plans where intermediate results are not written to temp files. \rightarrow Not all left-deep trees are fully pipelined.

Enumerate the orderings \rightarrow Example: Left-deep tree #1, Left-deep tree #2... Enumerate the plans for each operator \rightarrow Example: Hash, Sort-Merge, Nested Loop... Enumerate the access paths for each table \rightarrow Example: Index #1, Index #2, Seq Scan...

Enumerate the orderings \rightarrow Example: Left-deep tree #1, Left-deep tree #2... Enumerate the plans for each operator \rightarrow Example: Hash, Sort-Merge, Nested Loop... Enumerate the access paths for each table \rightarrow Example: Index #1, Index #2, Seq Scan...

Use **dynamic programming** to reduce the number of cost estimations.

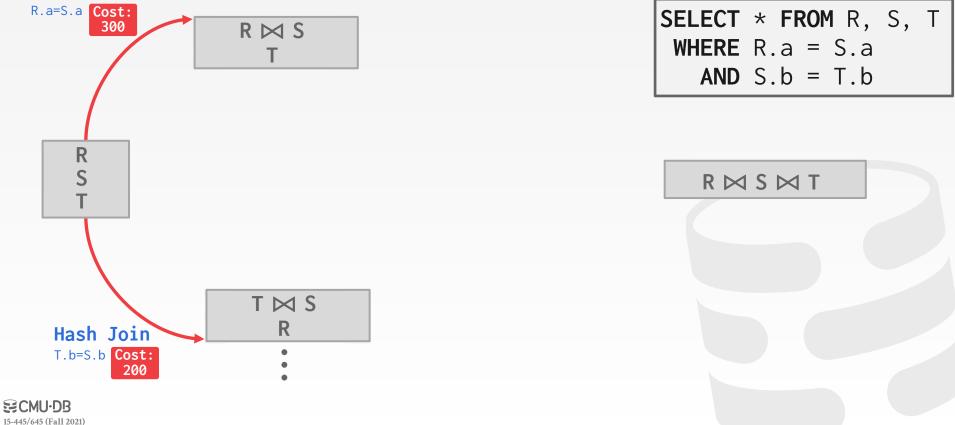
DYNAMIC PROGRAMMING

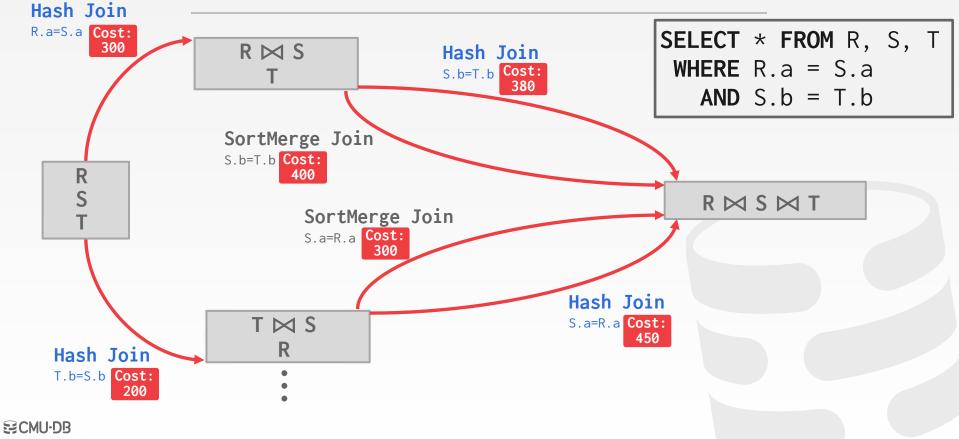


DYNAMIC PROGRAMMING Hash Join R.a=S.a **SELECT** * **FROM** R, S, T $R \bowtie S$ WHERE R.a = S.aAND S.b = T.bSortMerge Join R.a=S.a R S $R \bowtie S \bowtie T$ SortMerge Join T.b=S.b T 🖂 S R Hash Join T.b=S.b

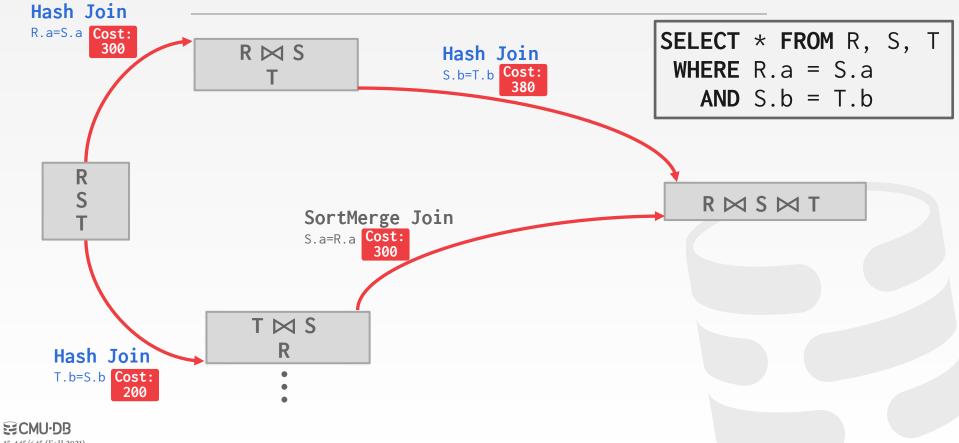
CMU·DB 15-445/645 (Fall 2021)

Hash Join R.a=S.a Cost: 300 R M S R M S SELECT * FROM R, S,

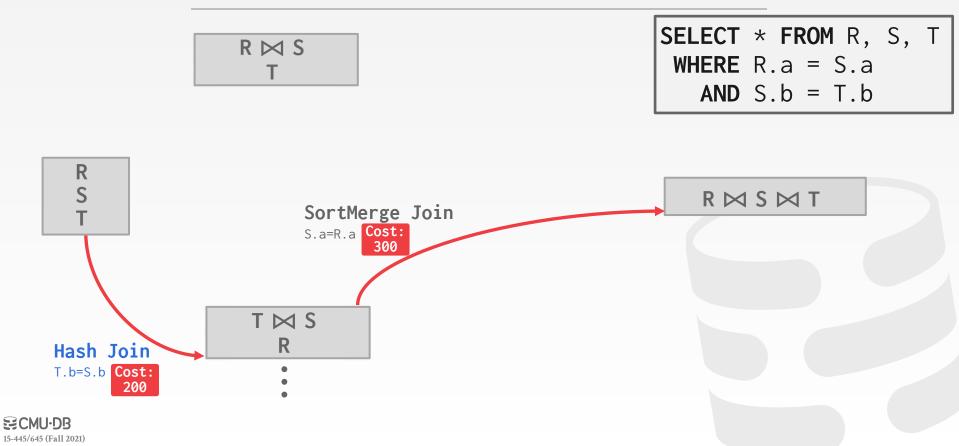




15-445/645 (Fall 2021)



15-445/645 (Fall 2021)

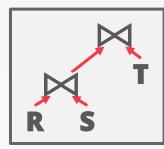


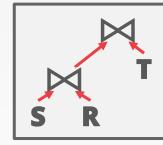
CANDIDATE PLAN EXAMPLE

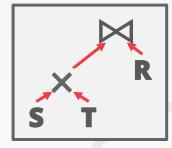
- How to generate plans for search algorithm:
- \rightarrow Enumerate relation orderings
- \rightarrow Enumerate join algorithm choices
- \rightarrow Enumerate access method choices

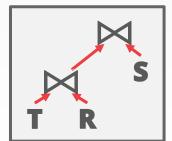
No real DBMSs does it this way. It's actually more messy... SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

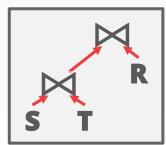
Step #1: Enumerate relation orderings

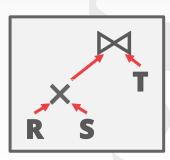


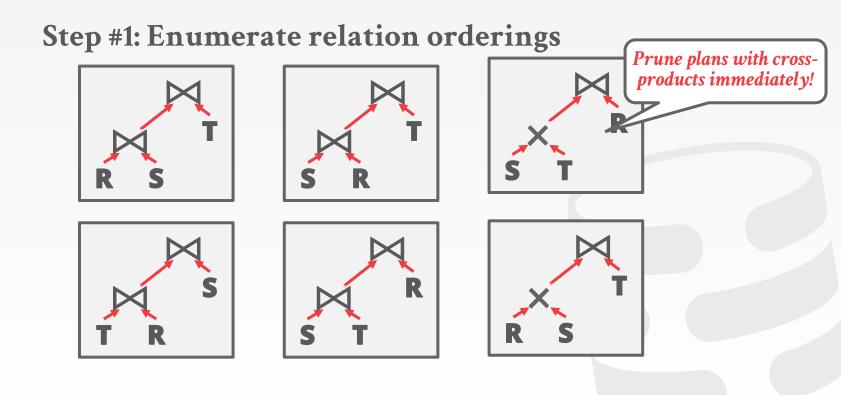


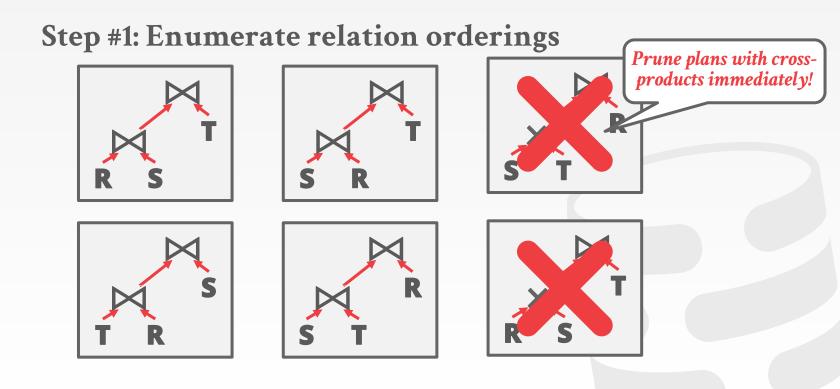


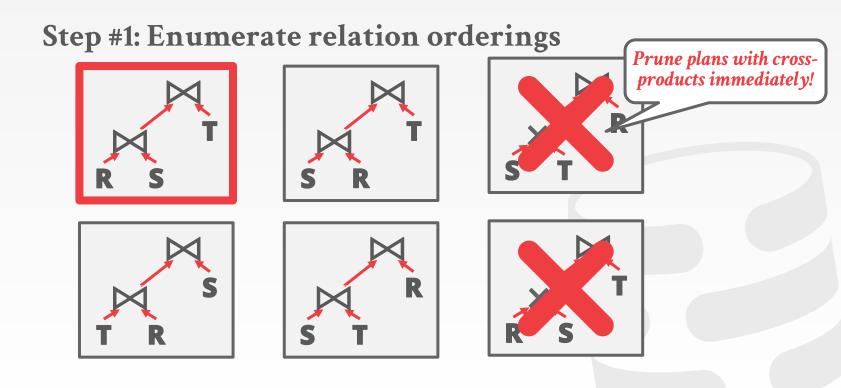


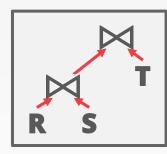


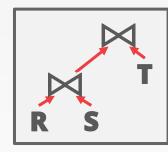


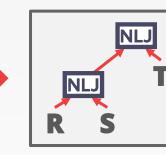


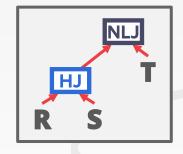


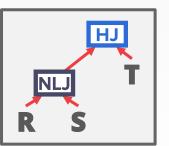


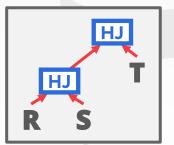


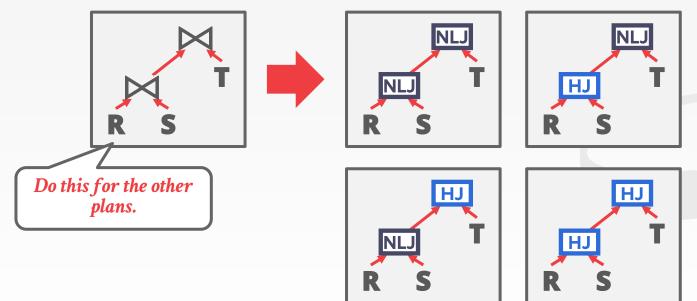


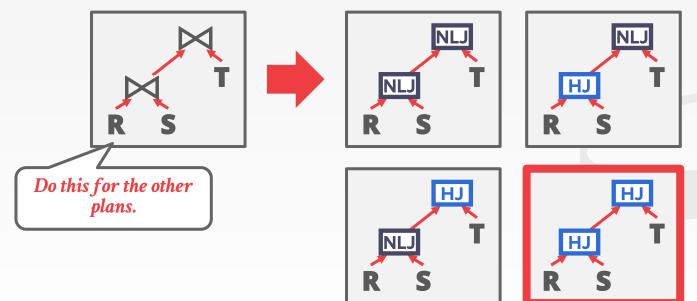




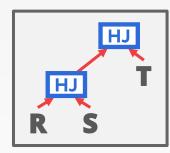




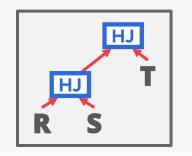


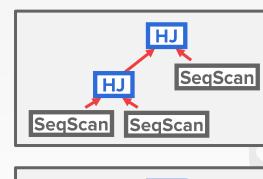


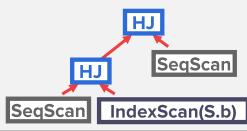
Step #3: Enumerate access method choices



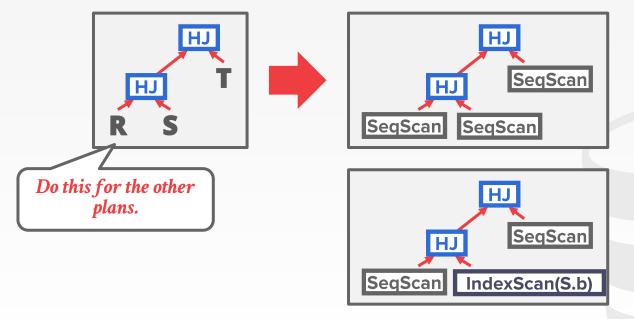
Step #3: Enumerate access method choices







Step #3: Enumerate access method choices



POSTGRES OPTIMIZER

Examines all types of join trees

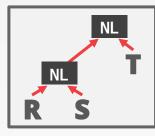
 \rightarrow Left-deep, Right-deep, bushy

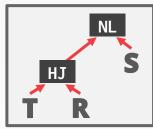
Two optimizer implementations:

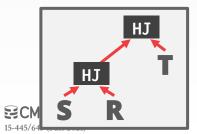
- \rightarrow Traditional Dynamic Programming Approach
- \rightarrow Genetic Query Optimizer (GEQO)

Postgres uses the traditional algorithm when # of tables in query is <u>less</u> than 12 and switches to GEQO when there are 12 or more.

POSTGRES GENETIC OPTIMIZER







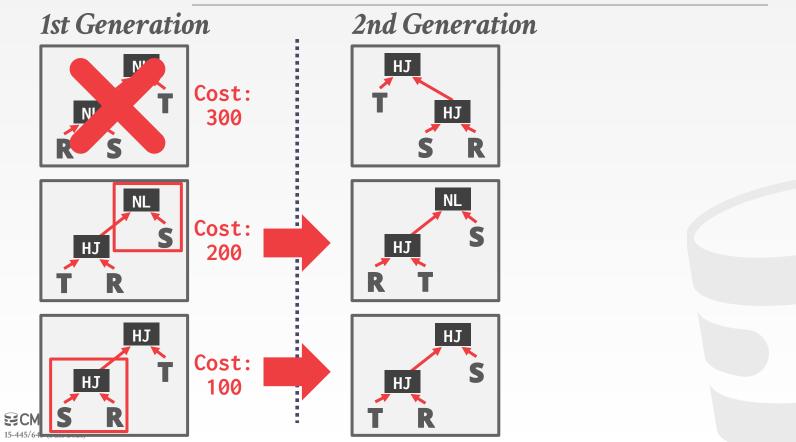
POSTGRES GENETIC OPTIMIZER

POSTGRES GENETIC OPTIMIZER Best: 100

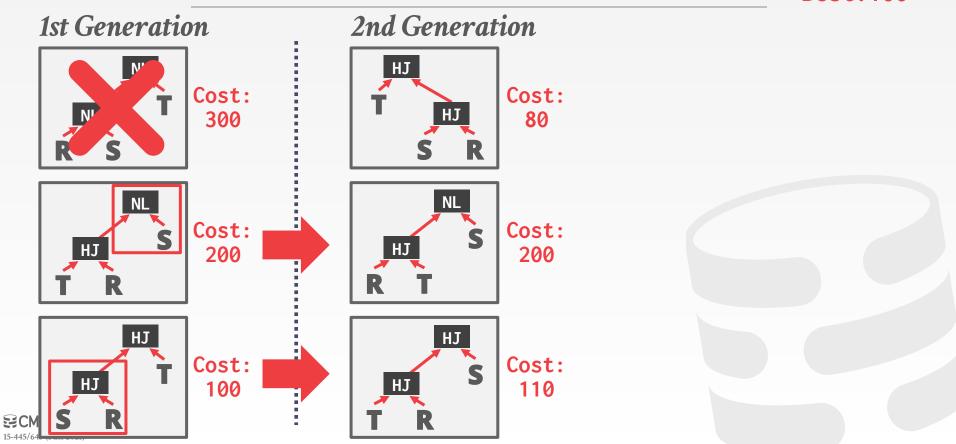
POSTGRES GENETIC OPTIMIZER Best: 100

POSTGRES GENETIC OPTIMIZER Best: 100

POSTGRES GENETIC OPTIMIZER Best:

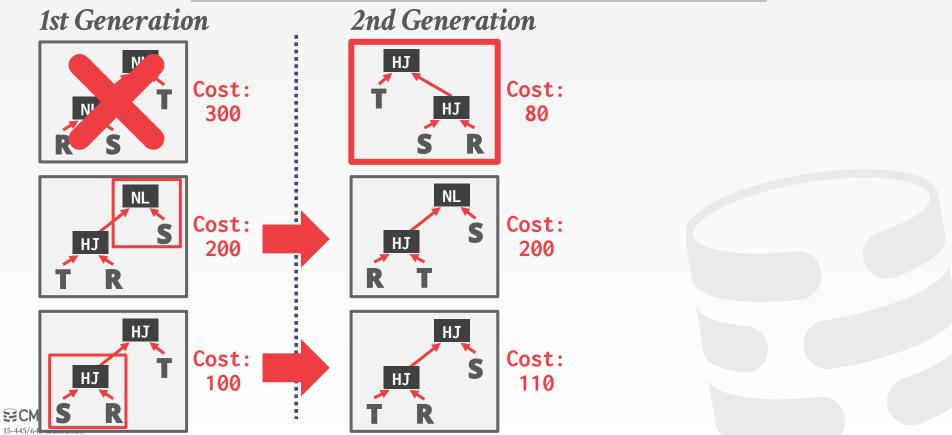


POSTGRES GENETIC OPTIMIZER

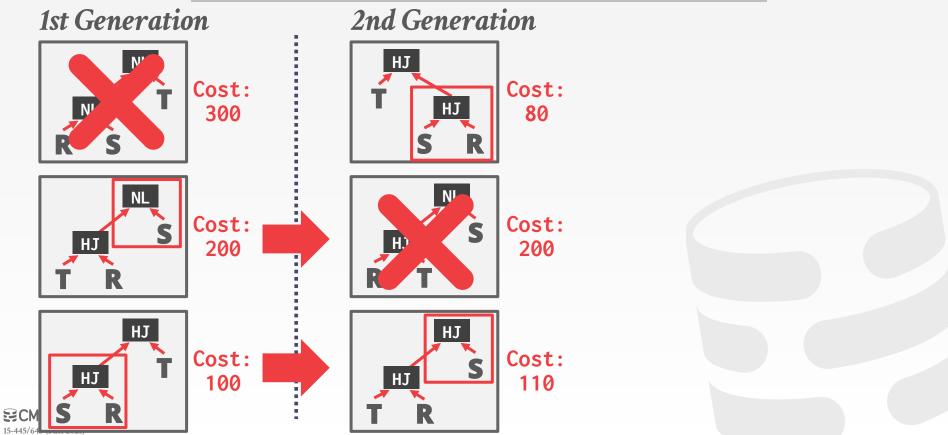


41

POSTGRES GENETIC OPTIMIZER

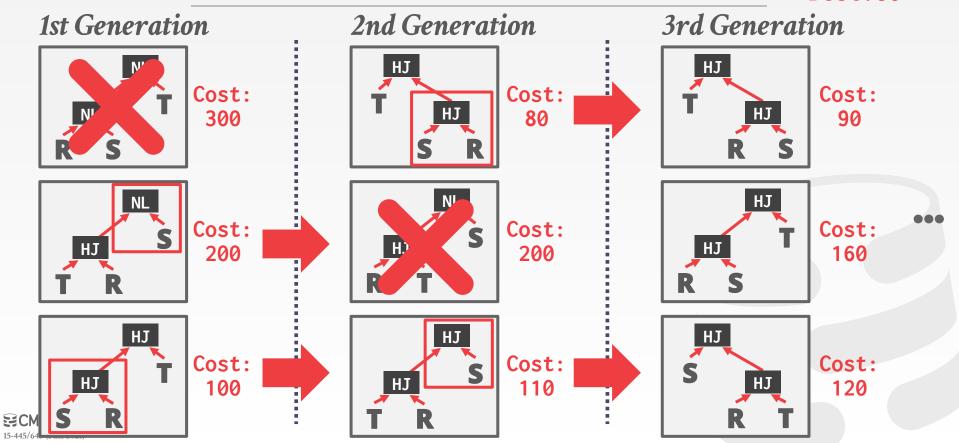


POSTGRES GENETIC OPTIMIZER



41

POSTGRES GENETIC OPTIMIZER



CONCLUSION

Filter early as possible.

Selectivity estimations

- \rightarrow Uniformity
- \rightarrow Independence
- \rightarrow Inclusion
- \rightarrow Histograms
- \rightarrow Join selectivity

Dynamic programming for join orderings Again, query optimization is hard...

ECMU·DB 15-445/645 (Fall 2021)

NEXT CLASS

Transactions!

 \rightarrow aka the second hardest part about database systems

