
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
https://www.cs.cmu.edu/~malin199/
https://www.cs.cmu.edu/~malin199/

15-445/645 (Fall 2021)

Homework #4 will be released on Wednesday.
It is due Sun Nov 7th @ 11:59pm.

Project #3 is due Sun Nov 14th @ 11:59pm

Project #2 practice submission available on
Gradescope

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

An Overview of the Starburst Trino Query
Optimizer
→ Today Oct 25th @ 4:30pm ET

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://db.cs.cmu.edu/events/vaccination-2021-an-overview-of-the-starburst-trino-query-optimizer-karol-sobczak/

15-445/645 (Fall 2021)

A DBMS's concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A DBMS's concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We both change the same record in a
table at the same time.
How to avoid race condition?

You transfer $100 between bank
accounts but there is a power failure.
What is the correct database state?

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We both change the same record in a
table at the same time.
How to avoid race condition?

You transfer $100 between bank
accounts but there is a power failure.
What is the correct database state?

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Valuable properties of DBMSs.

Based on concept of transactions with ACID
properties.

Let's talk about transactions…

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A transaction is the execution of a sequence of
one or more operations (e.g., SQL queries) on a
database to perform some higher-level function.

It is the basic unit of change in a DBMS:
→ Partial transactions are not allowed!

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Move $100 from Lin' bank account to his
promotor's account.

Transaction:
→ Check whether Lin has $100.
→ Deduct $100 from his account.
→ Add $100 to his promotor account.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.
→ One and only one txn can be running at the same time in

the DBMS.

Before a txn starts, copy the entire database to a
new file and make all changes to that file.
→ If the txn completes successfully, overwrite the original

file with the new one.
→ If the txn fails, just remove the dirty copy.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

But we also would like:
→ Correctness
→ Fairness

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving is valid.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A txn may carry out many operations on the data
retrieved from the database

The DBMS is only concerned about what data is
read/written from/to the database.
→ Changes to the "outside world" are beyond the scope of

the DBMS.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Database: A fixed set of named data objects (e.g.,

A, B, C, …).
→ We do not need to define what these objects are now.

Transaction: A sequence of read and write

operations (R(A), W(B), …)
→ DBMS's abstract view of a user program

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:
→ If commit, the DBMS either saves all the txn's changes

or aborts it.
→ If abort, all changes are undone so that it's like as if the

txn never executed at all.

Abort can be either self-inflicted or caused by the
DBMS.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

Durability: If a txn commits, its effects persist.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Atomicity: “all or nothing”

Consistency: “it looks correct to me”

Isolation: “as if alone”

Durability: “survive failures”

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Atomicity

Consistency

Isolation

Durability

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.
→ From user's point of view: txn always either executes all

its actions or executes no actions at all.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Scenario #1:
→ We take $100 out of Lin’s account but then the DBMS

aborts the txn before we transfer it.

Scenario #2:
→ We take $100 out of Lin's account but then there is a

power failure before we transfer it.

What should be the correct state of Lin's account
after both txns abort?

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #1: Logging
→ DBMS logs all actions so that it can undo the actions of

aborted transactions.
→ Maintain undo records both in memory and on disk.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to

those copies. Only when the txn commits is the page
made visible to others.

→ Originally from System R.

Few systems do this:
→ CouchDB
→ LMDB (OpenLDAP)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to

those copies. Only when the txn commits is the page
made visible to others.

→ Originally from System R.

Few systems do this:
→ CouchDB
→ LMDB (OpenLDAP)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The "world" represented by the database is
logically correct. All questions asked about the data
are given logically correct answers.

Database Consistency

Transaction Consistency

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The database accurately models the real world and
follows integrity constraints.

Transactions in the future see the effects of
transactions committed in the past inside of the
database.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

If the database is consistent before the transaction
starts (running alone), it will also be consistent
after.

Transaction consistency is the application's
responsibility. DBMS cannot control this.
→ We won't discuss this issue further…

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Users submit txns, and each txn executes as if it
was running by itself.
→ Easier programming model to reason about.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Users submit txns, and each txn executes as if it
was running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A concurrency control protocol is how the
DBMS decides the proper interleaving of
operations from multiple transactions.

Two categories of protocols:
→ Pessimistic: Don't let problems arise in the first place.
→ Optimistic: Assume conflicts are rare, deal with them

after they happen.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Assume at first A and B each have $1000.

T1 transfers $100 from A's account to B's

T2 credits both accounts with 6% interest.

28

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

29

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before
T2 or vice-versa, if both are submitted together.
But the net effect must be equivalent to these two
transactions running serially in some order.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

31

A+B=$2120
A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

32

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

32

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing
and make forward progress.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

34

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

A=954, B=1166

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

34

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

A=960, B=1160

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

34

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

A=960, B=1160

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

34

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

A=960, B=1160

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

35

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

A=954, B=1160

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

35

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

The bank is missing $6!

T1 T2

A=954, B=1160

A+B=$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2 T1 T2

A=954, B=1160

A+B=$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2 T1 T2

A=954, B=1160

A+B=$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

How do we judge whether a schedule is correct?

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

How do we judge whether a schedule is correct?

If the schedule is equivalent to some serial
execution.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Serial Schedule
→ A schedule that does not interleave the actions of

different transactions.

Equivalent Schedules
→ For any database state, the effect of executing the first

schedule is identical to the effect of executing the second
schedule.

→ Doesn't matter what the arithmetic operations are!

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Serializable Schedule
→ A schedule that is equivalent to some serial execution of

the transactions.

If each transaction preserves consistency, every
serializable schedule preserves consistency.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Serializability is a less intuitive notion of
correctness compared to txn initiation time or
commit order, but it provides the DBMS with
additional flexibility in scheduling operations.

More flexibility means better parallelism.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We need a formal notion of equivalence that can
be implemented efficiently based on the notion of
"conflicting" operations

Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and at least one of them is a

write.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Read-Write Conflicts (R-W)

Write-Read Conflicts (W-R)

Write-Write Conflicts (W-W)

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Unrepeatable Reads

43

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Unrepeatable Reads

43

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Unrepeatable Reads

43

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Unrepeatable Reads

43

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Unrepeatable Reads

43

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Reading Uncommitted Data ("Dirty Reads")

44

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Reading Uncommitted Data ("Dirty Reads")

44

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Reading Uncommitted Data ("Dirty Reads")

44

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Reading Uncommitted Data ("Dirty Reads")

44

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Reading Uncommitted Data ("Dirty Reads")

44

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Reading Uncommitted Data ("Dirty Reads")

44

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Reading Uncommitted Data ("Dirty Reads")

44

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Overwriting Uncommitted Data

45

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Overwriting Uncommitted Data

45

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Lin
$19

T1 T2

$10

Andrew

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Overwriting Uncommitted Data

45

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Lin
$19

T1 T2

$10

Andrew

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Given these conflicts, we now can understand
what it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability
→ View Serializability

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Given these conflicts, we now can understand
what it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability
→ View Serializability

46

Most DBMSs try to support this.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Given these conflicts, we now can understand
what it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability
→ View Serializability

46

Most DBMSs try to support this.

No DBMS can do this.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions,

and
→ Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Schedule S is conflict serializable if you can
transform S into a serial schedule by swapping
consecutive non-conflicting operations of different
transactions.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(B)

R(A)
W(A)

W(B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(B)

R(A)
W(A)

W(B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)

R(A)
R(B)

W(B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)

R(A)
R(B)

W(B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)
R(A)

R(B)

W(B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)
R(A)

R(B)

W(B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(A)
R(B)

W(B)
W(A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(A)
R(B)

W(B)
W(A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(B)

W(A)
R(A)

W(B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

49

≡

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)

W(A)
R(A)

W(B)

T1 T2 T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

50

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

50

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2 T1 T2

50

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMIT

BEGIN
R(A)
W(A)
COMMIT BEGIN

R(A)
W(A)
COMMIT

≢

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Swapping operations is easy when there are only
two txns in the schedule. It's cumbersome when
there are many txns.

Are there any faster algorithms to figure this out
other than transposing operations?

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

One node per txn.

Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an

operation Oj of Tj and
→ Oi appears earlier in the schedule than Oj.

Also known as a precedence graph.

A schedule is conflict serializable iff its
dependency graph is acyclic.

52

Ti Tj

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

53

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

53

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

53

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

AT1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

53

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

AT1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

53

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

53

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

The cycle in the graph
reveals the problem.

The output of T1 depends on
T2, and vice-versa.

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

55

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

55

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

55

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

55

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

55

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

55

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

55

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2 A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2 A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

T1 T2 A

B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a "correct" result but is still
not conflict serializable?

T1 T2 A

B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

56

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a "correct" result but is still
not conflict serializable?

T1 T2 A

Bif(A≥0): cnt++

if(B≥0): cnt++
ECHO cnt

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Alternative (weaker) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial

value of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also

reads value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final

value of A in S2.

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

58

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

T1 T2

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

58

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A
T1 T2

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

58

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

T1 T2

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

58

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A

T1 T2

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

58

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A
A

T1 T2

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

58

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

AA
A

T1 T2

T3

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

T1 T2 T3 T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

T1 T2 T3 T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

59

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

T1 T2 T3

Allows all conflict
serializable schedules +

"blind writes"

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

View Serializability allows for (slightly) more
schedules than Conflict Serializability does.
→ But is difficult to enforce efficiently.

Neither definition allows all schedules that you
would consider "serializable".
→ This is because they don't understand the meanings of

the operations or the data (recall example #3)

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases get
handled separately at the application level.

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

62

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

62

Conflict Serializable

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

62

View Serializable

Conflict Serializable

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All the changes of committed transactions should
be persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

63

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

Durability: If a txn commits, its effects persist.

64

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to

executing the txns one after the other in some order.

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to

executing the txns one after the other in some order.

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

15-445/645 (Fall 2021)

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to

executing the txns one after the other in some order.

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

15-445/645 (Fall 2021)

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to

executing the txns one after the other in some order.

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Two-Phase Locking

Isolation Levels

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

