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ADMINISTRIVIA

Homework #4 will be released on Wednesday.
It is due Sun Nov 7® @ 11:59pm.

Project #3 is due Sun Nov 14th @ 11:59pm

Project #2 practice submission available on
Gradescope
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UPCOMING DATABASE TALK

An Overview of the Starburst Trino Query
Optimizer
— Today Oct 25" @ 4:30pm ET
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COURSE STATUS

A DBMS's concurrency control and Query Planning
recovery components permeate
throughout the design of its entire

architecture. Access Methods

Operator Execution

Buffer Pool Manager

Disk Manager
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COURSE STATUS

Query Planning

A DBMS's concurrency control and Concurrency Control

recovery components permeate
throughout the design of its entire
architecture.

Operator Execution

Access Methods
Recovery

Buffer Pool Manager

)\
Disk Manager m
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MOTIVATION

We both change the same record in a

table at the same time.
How to avoid race condition?

You transfer $100 between bank
accounts but there is a power failure.
W hat is the correct database state?
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MOTIVATION

We both change the same record in a « Lost Updates
table at the same time. Concurrency Control

How to avoid race condition?

- Durability

You transfer $100 between bank Recovery

accounts but there is a power failure.
W hat is the correct database state?
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CONCURRENCY CONTROL & RECOVERY

Valuable properties of DBMSs.

Based on concept of transactions with ACID
properties.

Let's talk about transactions...
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TRANSACTIONS

A transaction is the execution of a sequence of

one or more operations (e.g., SQL queries) on a
database to perform some higher-level function.

[t is the basic unit of change in a DBMS:
— Partial transactions are not allowed!
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TRANSACTION EXAMPLE

Move $100 from Lin' bank account to his
promotor's account.

Transaction:

— Check whether Lin has $100.

— Deduct $100 from his account.

— Add $100 to his promotor account.
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STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.

— One and only one txn can be running at the same time in
the DBMS.

Before a txn starts, copy the entire database to a

new file and make all changes to that file.

— If the txn completes successfully, overwrite the original
file with the new one.

— If the txn fails, just remove the dirty copy.
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PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?
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PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.
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PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:
— Correctness
— Fairness
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PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving is valid.
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DEFINITIONS

A txn may carry out many operations on the data
retrieved from the database

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the "outside world" are beyond the scope of
the DBMS.
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FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g.,
A B,C,...).

— We do not need to define what these objects are now.

Transaction: A sequence of read and write
operations ( R(A), W(B),...)

— DBMS's abstract view of a user program
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TRANSACTIONS IN SQL

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:

— [f commit, the DBMS either saves all the txn's changes
or aborts it.

— If abort, all changes are undone so that it's like as if the
txn never executed at all.

Abort can be either self-inflicted or caused by the
DBMS.
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CORRECTNESS CRITERIA: ACID

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

L MUDE Durability: If a txn commits, its effects persist.
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CORRECTNESS CRITERIA: ACID

Atomicity: “all or nothing”
Consistency: “it looks correct to me”
Isolation: “as if alone”

Durability: “survive failures”
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TODAY'S AGENDA

Atomicity
Consistency
[solation

Durability
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ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:

— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From user's point of view: txn always either executes all
its actions or executes no actions at all.
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ATOMICITY OF TRANSACTIONS

Scenario #1:

— We take $100 out of Lin’s account but then the DBMS
aborts the txn before we transfer it.

Scenario #2:

— We take $100 out of Lin's account but then there is a
power failure before we transfer it.

W hat should be the correct state of Lin's account

after both txns abort?
£ CMU-DB
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$CMU-DB

MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.

— Audit Trail
— Efficiency Reasons

15-445/645 (Fall 2021)
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MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page
made visible to others.

— Originally from System R.

Few systems do this:
— CouchDB
— LMDB (OpenLDAP)

15-445/645 (Fall 2021)
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$CMU-DB

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page
made visible to others.

— Originally from System R.

Few systems do this:
— CouchDB
— LMDB (OpenLDAP)
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CONSISTENCY

The "world" represented by the database is
logically correct. All questions asked about the data
are given logically correct answers.

Database Consistency

Transaction Consistency
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DATABASE CONSISTENCY

The database accurately models the real world and
follows integrity constraints.

Transactions in the future see the effects of
transactions committed in the past inside of the
database.
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TRANSACTION CONSISTENCY

If the database is consistent before the transaction
starts (running alone), it will also be consistent
after.

Transaction consistency is the application's

responsibility. DBMS cannot control this.
— We won't discuss this issue further...
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ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

was running by itself.
— Easier programming model to reason about.

26


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

was running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it

L CMUDE appear as if they ran one-at-a-time.
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MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of
operations from multiple transactions.

Two categories of protocols:

— Pessimistic: Don't let problems arise in the first place.

— Optimistic: Assume conflicts are rare, deal with them
after they happen.

$CMU-DB

15-445/645 (Fall 2021)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Assume at first A and B each have $1000.

T, transfers $100 from A's account to B's

T, credits both accounts with 6% interest.

T,

T,

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*x1.06
B=B*1.06
COMMIT

$CMU-DB
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EXAMPLE

Assume at first A and B each have $1000.

W hat are the possible outcomes of running T, and T.,?

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT
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EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T.,?

Many! But A+B should be:
— $2000%1.06=$2120

There is no guarantee that T, will execute before
T, or vice-versa, if both are submitted together.
But the net effect must be equivalent to these two
transactions running serially in some order.
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EXAMPLE

Legal outcomes:
— A=954,B=1166
— A=960,B=1160

The outcome depends on whether T, executes
before T, or vice versa.
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EXAMPLE

Legal outcomes:
— A=954,B=1166 * A+B=$2120
s A=960, B=1160 * A*B=$2120

The outcome depends on whether T, executes
before T, or vice versa.
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SERIAL EXECUTION EXAMPLE

A=954, B=1166 A=960, B=1160

Schedule Schedule
l’ -------------- N l’ --------------
| T1 T2 | | T1 T2
| | BEGIN : ! BEGIN
1| A=A-100 i i A=A%1.06
| | B=B+100 : ! B=B*1.06
1 | COMMIT 1 o | COMMIT
: BEGIN : — : BEGIN
" A=A%1.06 | | 1 | A=A-100
: B=Bx*1.06 : : B=B+100
I COMMIT : 1 | COMMIT
| | |
| | |
| | |
I i I
\ / \

$CMU-DB
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SERIAL EXECUTION EXAMPLE

Schedule Schedule
l’ -------------- N l’ -------------- N
| T1 T2 | | T1 TZ
| | BEGIN : ! BEGIN
1| A=A-100 i i A=A%1.06
| | B=B+100 : ! B=B*1.06
1 | COMMIT 1 o | COMMIT
: BEGIN : — : BEGIN
" A=A%1.06 | | 1 | A=A-100
: B=Bx*1.06 : : B=B+100
I COMMIT : 1 | COMMIT
| | |
| | |
| | 1
I i ]
\ / \

( A=954, B=1166 ;

AN N BN S BN BN BN BN B S .

»( A=960, B=1160 )

AN N BN S BN BN BN BN BN S S .

S2CMU-DB A+B=$2120
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INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.

— Slow disk/network I/O.
— Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing
and make forward progress.
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INTERLEAVING EXAMPLE (GOOD)

Schedule
l’ -------------- N
i T, T, I
| | BEGIN :
1| A=A-100 I
! BEGIN :
I A=A%1.06 | I
| | B=B+100 :
1 | COMMIT ]
: B=B*1.06 :
I COMMIT I
| 1
| 1
| 1
I I
\ J
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INTERLEAVING EXAMPLE (GOOD)

A=960, B=1160

Schedule Schedule

l’ -------------- ™, l’ -------------- ™,
i T, T, : i T T, :
I | BEGIN . | | BEGIN |
| | A=A-100 ! 1| A=A-100 :
I iEﬁi';' o |1 1 | B=B+100 |
i =A%1. - |

: B=B+100 : — : COMMIT BEGIN :
1 | COMMIT i I A=A%1.06 | I
: B=Bx1.06 : : B=Bx1.06 :
I COMMIT - " COMMIT :
i i i i
i i i i
i i i i
I i I i
\ J \ V4

$CMU-DB

15-445/645 (Fall 2021)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (GOOD)

Schedule Schedule
l’ -------------- ™, l’ -------------- ™,
i T, T, : i T T, :
I | BEGIN . | | BEGIN |
| | A=A-100 ! 1| A=A-100 :
I iEﬁi';' o |1 1 | B=B+100 |
i =A*1. - |
K:B=B+1@@> : — : COMMIT BEGIN :
1/ C i I A=A%1.06 | |
: (:B=B*1.®6> : : B=Bx1.06 :
i co i I COMMIT I
i i i i
i i i i
: A=954, B=1166 : : A=960, B=1160 :
J \ J
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INTERLEAVING EXAMPLE (GOOD)

Schedule Schedule

l’ -------------- ™, l’ -------------- ™,
i T, T, : i T T, :
I | BEGIN . | | BEGIN |
| | A=A-100 ! 1| A=A-100 :
I iE/fi';' o |1 1 | B=B+100 |

i =Ax1. - |
K:B=B+1@@> : — : COMMIT BEGIN :
1/ C i I A=A%1.06 | I
: (:B=B*1.®6> : : B=Bx1.06 :
o) : COMMIT :

| |
i i i i
i i i i
| | 1 |
I 1 I i
/ \ /

»( A=960, B=1160 )

AN N BN S BN BN BN BN BN S S .

( A=954, B=1166 )_1

\— ------------- -

S2CMU-DB A+B=$2120
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INTERLEAVING EXAMPLE (BAD)

A=954, B=1160

Schedule
lf ; \\
| 1 Tz |
| | BEGIN :
I | A=A-100 |
: BEGIN l A=954, B=1166
[ e
: COMMIT || or
| | B=B+100 ! A=960, B=1160
| commrT .
1 1
1 1
1 1
| |
\ /

AN N BN SN BN SN BN BN BN S S .
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INTERLEAVING EXAMPLE (BAD)

A=954, B=1160

Schedule
lf ; \\
| 1 Tz |
| | BEGIN :
I | A=A-100 |
: BEGIN l A=954, B=1166
[ e
: COMMIT || or
| | B=B+100 ! A=960, B=1160
| commrT .
1 1
1 1
1 1
| |
\ /

AN N BN SN BN SN BN BN BN S S .

A The bank is missing $6!

SCMU-DB A+B=%$2114
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INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
e e e ~ o n
|l T1 T2 } |l T1 Tz
| | BEGIN : || BEGIN
1| A=A-100 i 1| R(A)
! BEGIN : | W(A)
I A=AX1.06 | I : BEGIN
! B=B*1.06 | | i R(A)
- COMMIT i : W(A)
1 | B=B+100 : i R(B)
I | commIT " ! W(B)
| : | COMMIT
_ _ R(B)
: A=954, B=1160 : : WCB)
| -/ | | commT

L F r F F Fr F F F F F F F F §F F

$CMU-DB A+B=%$2114 S ——————— -
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INTERLEAVING EXAMPLE (BAD)

NN I N N BN BN BN BN BN SN BN BN BN BN B e e e

Schedule DBMS View
O S O e e S
|l T1 T2 } |l T1 Tz
| | BEGIN : || BEGIN
1 | ASA-100 e ——— : :—I R(A)

: BEGIN 1 =% W(A)

i A=A%1.06 - BEGIN

! B=B*1 .06 ~~ul R(A)

- COMMIT i W(A)

1 | B=B+100 : i R(B)

| | COMMIT \ I ' W(B)

|

: :'{:::::::i:I COMMIT
_ _ R(B)

: A=954, B=1160 : N w(e)

Ve ———— -/ | | commT

$CMU-DB A+B=%$2114 S ——————— -
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CORRECTNESS

How do we judge whether a schedule is correct?
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CORRECTNESS

How do we judge whether a schedule is correct?

If the schedule is equivalent to some serial
execution.
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FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

— A schedule that does not interleave the actions of
different transactions.

Equivalent Schedules

— For any database state, the effect of executing the first
schedule is identical to the effect of executing the second
schedule.

— Doesn't matter what the arithmetic operations are!
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FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

[f each transaction preserves consistency, every
serializable schedule preserves consistency.
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FORMAL PROPERTIES OF SCHEDULES

Serializability is a less intuitive notion of

correctness compared to txn initiation time or
commit order, but it provides the DBMS with
additional flexibility in scheduling operations.

More flexibility means better parallelism.
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CONFLICTING OPERATIONS

We need a formal notion of equivalence that can
be implemented efficiently based on the notion of
"conflicting" operations

Two operations conflict if:

— They are by different transactions,
— They are on the same object and at least one of them is a
write.
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INTERLEAVED EXECUTION ANOMALIES

Read-Write Conflicts (R-W)
Write-Read Conflicts (W-R)
Write-Write Conflicts (W-W)
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READ-WRITE CONFLICTS

Unrepeatable Reads
R e e e e e e e e e ~
' 1
i T1 Tz |
1 [ BEGIN :
LI R(A) |
I BEGIN :
| R(A) I
. HeA) :
I COMMIT | |
e |
I | COMMIT I
| |
T 5

$CMU-DB
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READ-WRITE CONFLICTS

Unrepeatable Reads

R e e e e e e e e e ~
'
i T1 Tz }
1 [ BEGIN :

$1e<:|| R(A) :
! BEGIN ,
| R(A) I
. WCA) :
I COMMIT | |
| reo :
I | COMMIT I
| |
T 5

$CMU-DB
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READ-WRITE CONFLICTS

Unrepeatable Reads
R e e e e e e e e e ~
f
I T, T, }
1 [ BEGIN :
$1e<:|| R(A) :
. BEGIN ,
| R(A) $10
i W(A) $19
I COMMIT | i
| reo :
I | COMMIT I
| |
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WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")
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Reading Uncommitted Data ("Dirty Reads")
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WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")
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Overwriting Uncommitted Data
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Overwriting Uncommitted Data
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FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand

what it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:
— Conflict Serializability
— View Serializability
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FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand

what it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:

— Conflict Serializabilityﬁ Most DBMSs try to support this.

— View Serializability
Iy |

No DBMS can do this.
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CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions,

and
— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
— S is conflict equivalent to some serial schedule.
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CONFLICT SERIALIZABILITY INTUITION

Schedule S is conflict serializable if you can
transform S into a serial schedule by swapping
consecutive non-conflicting operations of different
transactions.
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CONFLICT SERIALIZABILITY INTUITION
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CONFLICT SERIALIZABILITY INTUITION
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Schedule Serial Schedule
" -------------- \\ " -------------- N
: T, P I I T T, !
I | BEGIN BEGIN : 1 | BEGIN !
|| R(A) ! I R(A) ]
1| W(A) : | WA !
1| R(B) | o ! |R(B) I
G | a1 y(B) l
| R(A) I | | COMMIT | BEGIN :
: WA ! ! R(A) I
1 | COMMIT ] I W(A) :
: R(B) ! ! R(B) ]
i W(B) i i W(B) :
- COMMIT I i COMMIT i
\ ! \ !



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION
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CONFLICT SERIALIZABILITY INTUITION

Schedule Serial Schedule
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BEGIN BEGIN
RCA)

BEGIN
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SERIALIZABILITY

Swapping operations is easy when there are only
two txns in the schedule. It's cumbersome when
there are many txns.

Are there any faster algorithms to figure this out
other than transposing operations?
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DEPENDENCY GRAPHS

One node per txn.
Edge from T; to T if:

— An operation 0; of T, conflicts with an
operation O; of T, and
—> 0; appears earlier in the schedule than O;.

Also known as a precedence graph.

A schedule is conflict serializable iff its
dependency graph is acyclic.
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Dependency Graph
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EXAMPLE #1
Schedule Dependency Graph
ST T N (- oot T T \
: T, T, i i :
I | BEGIN BEGIN : : ]
1| RCA) ' ! I
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EXAMPLE #1
Schedule Dependency Graph

o I T I S ——————— ~  pemmmmmEmEmmmmEmmmmm—— N
i T T, : A |
I | BEGIN BEGIN : : :
{E OO}
1| WCA
T SO : :
I Q W(A) : : B i
l oW | R(B) I \._______ b ;
: W(B) !
i COMMIT I
1| R(B) !
1| W(B) i
\ [ COMMIT i

l
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EXAMPLE #1
Schedule Dependency Graph

ommmm__—_—_—_——_—————— .~  j mmmmEmEmsmEmmmm—mm—_————— N
i T T, : A |
I | BEGIN BEGIN : : :
(& S OB o!
1| WCA
T SO : :
I Q W(A) : : B i
l oWe | R(B) | ‘. B -
: W(B) ! S
: o (B COMMIT : The cycle in the graph
: WEB% i reveals the problem.
| | comprT : The output of T,depends on

S oo oo= ! T, andvice-versa.
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EXAMPLE #2 — THREESOME

Schedule Dependency Graph
l’ """""""" \‘ (o~ =" \
e 1@ ()]
I | BEGIN : | !
1| R(A) I I I
Llwa) BEGIN | | : :
i R(A) i I I
| o i |
" BEGIN | COMMIT | , “- J
I R(B) I
: W(B) :
1|R(B) | COMMIT I
! nee) |
1 | COMMIT I
‘e _____ 7
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EXAMPLE #2 — THREESOME

Schedule Dependency Graph
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T W W)
I | BEGIN : | !
1| R(A) I I I
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! R(B) |
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1| 1B I
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EXAMPLE #2 — THREESOME

Schedule Dependency Graph
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1| R(A) i ! I
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Schedule Dependency Graph
{’ ---------------- \\ { ----------------- \|
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! R(A) ! : I
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EXAMPLE #2 — THREESOME

Schedule Dependency Graph
{’ ---------------- \\ { \|
I T, T, Ts I 1 i
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! R(A) ! : I
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: \R(A) : : :
I W(A) ! : i
: BEGIN | COMMIT | “__ = i
e |
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: R(B)’V COMMIT :
' W) |
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EXAMPLE #2 — THREESOME

Schedule Dependency Graph
l’ """""""" \‘ ( \
i T, T, Ts i I :
I | BEGIN : | !
! R(A) ! : I
W(A) BEGIN I
T || ! I
I W(A) ! : i
: BEGIN | COMMIT | | “__ = i
I R(B) I . . . .
! VB \ Is this equivalent to a serial execution?
1| R(BYT | coMMIT I
| nce) :
I | COMMIT I
) R4
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EXAMPLE #2 — THREESOME

Schedule Dependency Graph

l’ """""""" \‘ ( \
T T, T, . :
| | BEGIN : : !
! R(A) ! : I

W(A) BEGIN I
T || : I
i W(A) : : i
: BEGIN | COMMIT | - = -
! R(B) ' : : : :
! VB \ Is this equivalent to a serial execution?
1| R(B)YT | COMMIT I
| [COMMIT }— Notice that T; should go after T,,

although it starts before it!
£2CMU-DB

15-445/645 (Fall 2021)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I - I
: () ()}
| Wea) | ] :
. R(A) : : l
: sum = A I b )
i R(B) :

I sum += B I
: ECHO sum :
1| R(B) COMMIT I
1B =B+10 i
|| W(B) l
I | COMMIT i
! ]
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EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph

T1 T2
BEGIN BEGIN

A = A-10)

o
O

‘-------A---N

R(A)
sum = A A G
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT

-----------’
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EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I - I
[t : () ()}
S | : ‘
I |
| Gl S j
: sum += B :

: ECHO sum :
1| R(B) COMMIT I
1B =B+10 i
|| W(B) l
I | COMMIT i
! ]

=2CMU-DB N —————— -

15-445/645 (Fall 2021)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I - I
1| A=A-10 : : l
Ll wea) i i :
. R(A) : : l
: sum = A I b )
i R(B) :

I $= I
: CECHO sum :
1| R(B) "
1B =B+10 i
1| W(B) l
I | COMMIT i
\ l
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VIEW SERIALIZABILITY

Alternative (weaker) notion of serializability.

Schedules S, and S, are view equivalent if:

— If T, reads initial value of A in S,, then T, also reads initial
value of Ain S..

— If T, reads value of A written by T, in S,, then T, also
reads value of A written by T, in S,

— If T, writes final value of A in S, then T, also writes final
value of Ain S,
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VIEW SERIALIZABILITY
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VIEW SERIALIZABILITY
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serializable schedules +

"blind writes"

Schedule Schedule
________________ g
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SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But is difficult to enforce efficiently.

Neither definition allows all schedules that you

would consider "serializable".
— This is because they don't understand the meanings of
the operations or the data (recall example #3)
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SERIALIZABILITY

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases get
handled separately at the application level.
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TRANSACTION DURABILITY

All the changes of committed transactions should

be persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.
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ACID PROPERTIES

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

L MUDE Durability: If a txn commits, its effects persist.
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CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to
executing the txns one after the other in some order.
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Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It j;
the first system to distribute data ar global scale and sup-
port externally-consistent distributed transactions, This
paper describes how Spanneris structured, its feature set,
the rationale underlying various design decisions, and g

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it js a database that shards dara
across many sets of Paxos state machines in data-
centers spread all over the world, Replication is used for
global availability and geographic locality; clients auto.
matically failover between replicas. Spanner automai.
cally reshards data across machines as the amouny of data
or the number of servers changes, and it automatically

dreds of datacenters and trillions of database rows,
Applications can use Spanner for high availability,
even in the face of wide-area nafural disasters, by repli-
cating their data within Or even across continents. Our
initial customer was F (33). a rewrite of Google's ad-
vertising backend. F1 uses five replicas spread across
the United States. Most other applications wilf probabiy
replicate their data across 3 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That is, mosi applications will choose lower Ja-

Published jn the le'eﬂl:‘ng: af OSDI 2012

tency over higher availability, us Jong as they can survive
1 or 2 datacenter failures.

Spanner's main focus is managing cross-datacenter
replicated data, bur we have akso spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable ). we
have also consistently received complaints from users
that Bigtable can be difficult 1o use for some kinds of ap-
plications: those thar have complex, evolving schemas,
or those that want strong consistency in the Ppresence of
wide-area replication. (Simi lar claims have been made
by other authors Many applications at Google
have chosen 1o use Megasiore (51 because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput, As g
comsequence, Spanuer has evolyed from a Bigiable.like
versioned key-value store into 2 temporal multi-version
database. Dara is stored in schematized semi-relational
tables; data is versioned, and each version js automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps,
Spanner supports general-purpose transactions, and pro-
vides a SQL-hased query language.

As a globally-distributed database, Spanner provides
several ineresting features First, the replication con-
figurations for data can be dynamically controlied at a
fine grain by applications, Applications can specify con-
SIRINLS (o control whi datacenters contain which data,

tency), and how many replicas are maintained (to con-
trol durability, availability, and reqd performance). Data
can also he dynamically and iransparently moved be-
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CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to
executing the txns one after the other in some order.
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NEXT CLASS

Two-Phase Locking

Isolation Levels
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