Lin Ma
Computer Science
Carnegie Mellon University

» 15-445/15-645
@ Fall 2021 '

f

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
https://www.cs.cmu.edu/~malin199/
https://www.cs.cmu.edu/~malin199/

ADMINISTRIVIA

Homework #4 will be released on Wednesday.
It is due Sun Nov 7® @ 11:59pm.

Project #3 is due Sun Nov 14th @ 11:59pm

Project #2 practice submission available on
Gradescope

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

UPCOMING DATABASE TALK

An Overview of the Starburst Trino Query
Optimizer
— Today Oct 25" @ 4:30pm ET

£CMU-DB
5 (

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://db.cs.cmu.edu/events/vaccination-2021-an-overview-of-the-starburst-trino-query-optimizer-karol-sobczak/

COURSE STATUS

A DBMS's concurrency control and Query Planning
recovery components permeate
throughout the design of its entire

architecture. Access Methods

Operator Execution

Buffer Pool Manager

Disk Manager

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

COURSE STATUS

Query Planning

A DBMS's concurrency control and Concurrency Control

recovery components permeate
throughout the design of its entire
architecture.

Operator Execution

Access Methods
Recovery

Buffer Pool Manager

)\
Disk Manager m

$2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

MOTIVATION

We both change the same record in a

table at the same time.
How to avoid race condition?

You transfer $100 between bank
accounts but there is a power failure.
W hat is the correct database state?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

MOTIVATION

We both change the same record in a « Lost Updates
table at the same time. Concurrency Control

How to avoid race condition?

- Durability

You transfer $100 between bank Recovery

accounts but there is a power failure.
W hat is the correct database state?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONCURRENCY CONTROL & RECOVERY

Valuable properties of DBMSs.

Based on concept of transactions with ACID
properties.

Let's talk about transactions...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TRANSACTIONS

A transaction is the execution of a sequence of

one or more operations (e.g., SQL queries) on a
database to perform some higher-level function.

[t is the basic unit of change in a DBMS:
— Partial transactions are not allowed!

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TRANSACTION EXAMPLE

Move $100 from Lin' bank account to his
promotor's account.

Transaction:

— Check whether Lin has $100.

— Deduct $100 from his account.

— Add $100 to his promotor account.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.

— One and only one txn can be running at the same time in
the DBMS.

Before a txn starts, copy the entire database to a

new file and make all changes to that file.

— If the txn completes successfully, overwrite the original
file with the new one.

— If the txn fails, just remove the dirty copy.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:
— Correctness
— Fairness

£2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving is valid.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DEFINITIONS

A txn may carry out many operations on the data
retrieved from the database

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the "outside world" are beyond the scope of
the DBMS.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g.,
A B,C,...).

— We do not need to define what these objects are now.

Transaction: A sequence of read and write
operations (R(A), W(B),...)

— DBMS's abstract view of a user program

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TRANSACTIONS IN SQL

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:

— [f commit, the DBMS either saves all the txn's changes
or aborts it.

— If abort, all changes are undone so that it's like as if the
txn never executed at all.

Abort can be either self-inflicted or caused by the
DBMS.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

16

CORRECTNESS CRITERIA: ACID

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

L MUDE Durability: If a txn commits, its effects persist.

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CORRECTNESS CRITERIA: ACID

Atomicity: “all or nothing”
Consistency: “it looks correct to me”
Isolation: “as if alone”

Durability: “survive failures”

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TODAY'S AGENDA

Atomicity
Consistency
[solation

Durability

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:

— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From user's point of view: txn always either executes all
its actions or executes no actions at all.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ATOMICITY OF TRANSACTIONS

Scenario #1:

— We take $100 out of Lin’s account but then the DBMS
aborts the txn before we transfer it.

Scenario #2:

— We take $100 out of Lin's account but then there is a
power failure before we transfer it.

W hat should be the correct state of Lin's account

after both txns abort?
£ CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.

— Audit Trail
— Efficiency Reasons

15-445/645 (Fall 2021)

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page
made visible to others.

— Originally from System R.

Few systems do this:
— CouchDB
— LMDB (OpenLDAP)

15-445/645 (Fall 2021)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page
made visible to others.

— Originally from System R.

Few systems do this:
— CouchDB
— LMDB (OpenLDAP)

15-445/645 (Fall 2021)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONSISTENCY

The "world" represented by the database is
logically correct. All questions asked about the data
are given logically correct answers.

Database Consistency

Transaction Consistency

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

15-445/645 (Fall 2021)

DATABASE CONSISTENCY

The database accurately models the real world and
follows integrity constraints.

Transactions in the future see the effects of
transactions committed in the past inside of the
database.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

TRANSACTION CONSISTENCY

If the database is consistent before the transaction
starts (running alone), it will also be consistent
after.

Transaction consistency is the application's

responsibility. DBMS cannot control this.
— We won't discuss this issue further...

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

15-445/645 (Fall 2021)

ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

was running by itself.
— Easier programming model to reason about.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

was running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it

L CMUDE appear as if they ran one-at-a-time.

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of
operations from multiple transactions.

Two categories of protocols:

— Pessimistic: Don't let problems arise in the first place.

— Optimistic: Assume conflicts are rare, deal with them
after they happen.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Assume at first A and B each have $1000.

T, transfers $100 from A's account to B's

T, credits both accounts with 6% interest.

T,

T,

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*x1.06
B=B*1.06
COMMIT

$CMU-DB

15-445/645 (Fall 2021)

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Assume at first A and B each have $1000.

W hat are the possible outcomes of running T, and T.,?

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T.,?

Many! But A+B should be:
— $2000%1.06=$2120

There is no guarantee that T, will execute before
T, or vice-versa, if both are submitted together.
But the net effect must be equivalent to these two
transactions running serially in some order.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Legal outcomes:
— A=954,B=1166
— A=960,B=1160

The outcome depends on whether T, executes
before T, or vice versa.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE

Legal outcomes:
— A=954,B=1166 * A+B=$2120
s A=960, B=1160 * A*B=$2120

The outcome depends on whether T, executes
before T, or vice versa.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SERIAL EXECUTION EXAMPLE

A=954, B=1166 A=960, B=1160

Schedule Schedule
l’ -------------- N l’ --------------
| T1 T2 | | T1 T2
| | BEGIN : ! BEGIN
1| A=A-100 i i A=A%1.06
| | B=B+100 : ! B=B*1.06
1 | COMMIT 1 o | COMMIT
: BEGIN : — : BEGIN
" A=A%1.06 | | 1 | A=A-100
: B=Bx*1.06 : : B=B+100
I COMMIT : 1 | COMMIT
I i I
\ / \

$CMU-DB

15-445/645 (Fall 2021)

\---------’

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SERIAL EXECUTION EXAMPLE

Schedule Schedule
l’ -------------- N l’ -------------- N
| T1 T2 | | T1 TZ
| | BEGIN : ! BEGIN
1| A=A-100 i i A=A%1.06
| | B=B+100 : ! B=B*1.06
1 | COMMIT 1 o | COMMIT
: BEGIN : — : BEGIN
" A=A%1.06 | | 1 | A=A-100
: B=Bx*1.06 : : B=B+100
I COMMIT : 1 | COMMIT
| | |
| | |
| | 1
I i]
\ / \

(A=954, B=1166 ;

AN N BN S BN BN BN BN B S .

»(A=960, B=1160)

AN N BN S BN BN BN BN BN S S .

S2CMU-DB A+B=$2120

15-445/645 (Fall 2021)

\---------’

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

" 33

INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.

— Slow disk/network I/O.
— Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing
and make forward progress.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (GOOD)

Schedule
l’ -------------- N
i T, T, I
| | BEGIN :
1| A=A-100 I
! BEGIN :
I A=A%1.06 | I
| | B=B+100 :
1 | COMMIT]
: B=B*1.06 :
I COMMIT I
| 1
| 1
| 1
I I
\ J

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (GOOD)

A=960, B=1160

Schedule Schedule

l’ -------------- ™, l’ -------------- ™,
i T, T, : i T T, :
I | BEGIN . | | BEGIN |
| | A=A-100 ! 1| A=A-100 :
I iEﬁi';' o |1 1 | B=B+100 |
i =A%1. - |

: B=B+100 : — : COMMIT BEGIN :
1 | COMMIT i I A=A%1.06 | I
: B=Bx1.06 : : B=Bx1.06 :
I COMMIT - " COMMIT :
i i i i
i i i i
i i i i
I i I i
\ J \ V4

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (GOOD)

Schedule Schedule
l’ -------------- ™, l’ -------------- ™,
i T, T, : i T T, :
I | BEGIN . | | BEGIN |
| | A=A-100 ! 1| A=A-100 :
I iEﬁi';' o |1 1 | B=B+100 |
i =A*1. - |
K:B=B+1@@> : — : COMMIT BEGIN :
1/ C i I A=A%1.06 | |
: (:B=B*1.®6> : : B=Bx1.06 :
i co i I COMMIT I
i i i i
i i i i
: A=954, B=1166 : : A=960, B=1160 :
J \ J

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (GOOD)

Schedule Schedule

l’ -------------- ™, l’ -------------- ™,
i T, T, : i T T, :
I | BEGIN . | | BEGIN |
| | A=A-100 ! 1| A=A-100 :
I iE/fi';' o |1 1 | B=B+100 |

i =Ax1. - |
K:B=B+1@@> : — : COMMIT BEGIN :
1/ C i I A=A%1.06 | I
: (:B=B*1.®6> : : B=Bx1.06 :
o) : COMMIT :

| |
i i i i
i i i i
| | 1 |
I 1 I i
/ \ /

»(A=960, B=1160)

AN N BN S BN BN BN BN BN S S .

(A=954, B=1166)_1

\— ------------- -

S2CMU-DB A+B=$2120

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (BAD)

A=954, B=1160

Schedule
lf ; \\
| 1 Tz |
| | BEGIN :
I | A=A-100 |
: BEGIN l A=954, B=1166
[e
: COMMIT || or
| | B=B+100 ! A=960, B=1160
| commrT .
1 1
1 1
1 1
| |
\ /

AN N BN SN BN SN BN BN BN S S .

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (BAD)

A=954, B=1160

Schedule
lf ; \\
| 1 Tz |
| | BEGIN :
I | A=A-100 |
: BEGIN l A=954, B=1166
[e
: COMMIT || or
| | B=B+100 ! A=960, B=1160
| commrT .
1 1
1 1
1 1
| |
\ /

AN N BN SN BN SN BN BN BN S S .

A The bank is missing $6!

SCMU-DB A+B=%$2114

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
e e e ~ o n
|l T1 T2 } |l T1 Tz
| | BEGIN : || BEGIN
1| A=A-100 i 1| R(A)
! BEGIN : | W(A)
I A=AX1.06 | I : BEGIN
! B=B*1.06 | | i R(A)
- COMMIT i : W(A)
1 | B=B+100 : i R(B)
I | commIT " ! W(B)
| : | COMMIT
_ _ R(B)
: A=954, B=1160 : : WCB)
| -/ | | commT

L F r F F Fr F F F F F F F F §F F

$CMU-DB A+B=%$2114 S ——————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

INTERLEAVING EXAMPLE (BAD)

NN I N N BN BN BN BN BN SN BN BN BN BN B e e e

Schedule DBMS View
O S O e e S
|l T1 T2 } |l T1 Tz
| | BEGIN : || BEGIN
1 | ASA-100 e ——— : :—I R(A)

: BEGIN 1 =% W(A)

i A=A%1.06 - BEGIN

! B=B*1 .06 ~~ul R(A)

- COMMIT i W(A)

1 | B=B+100 : i R(B)

| | COMMIT \ I ' W(B)

|

: :'{:::::::i:I COMMIT
_ _ R(B)

: A=954, B=1160 : N w(e)

Ve ———— -/ | | commT

$CMU-DB A+B=%$2114 S ——————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CORRECTNESS

How do we judge whether a schedule is correct?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CORRECTNESS

How do we judge whether a schedule is correct?

If the schedule is equivalent to some serial
execution.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

— A schedule that does not interleave the actions of
different transactions.

Equivalent Schedules

— For any database state, the effect of executing the first
schedule is identical to the effect of executing the second
schedule.

— Doesn't matter what the arithmetic operations are!

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

15-445/645 (Fall 2021)

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

[f each transaction preserves consistency, every
serializable schedule preserves consistency.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

'l 40

FORMAL PROPERTIES OF SCHEDULES

Serializability is a less intuitive notion of

correctness compared to txn initiation time or
commit order, but it provides the DBMS with
additional flexibility in scheduling operations.

More flexibility means better parallelism.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

'l 41

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can
be implemented efficiently based on the notion of
"conflicting" operations

Two operations conflict if:

— They are by different transactions,
— They are on the same object and at least one of them is a
write.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

15-445/645 (Fall 2021)

INTERLEAVED EXECUTION ANOMALIES

Read-Write Conflicts (R-W)
Write-Read Conflicts (W-R)
Write-Write Conflicts (W-W)

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

READ-WRITE CONFLICTS

Unrepeatable Reads
R e e e e e e e e e ~
' 1
i T1 Tz |
1 [BEGIN :
LI R(A) |
I BEGIN :
| R(A) I
. HeA) :
I COMMIT | |
e |
I | COMMIT I
| |
T 5

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

READ-WRITE CONFLICTS

Unrepeatable Reads

R e e e e e e e e e ~
'
i T1 Tz }
1 [BEGIN :

$1e<:|| R(A) :
! BEGIN ,
| R(A) I
. WCA) :
I COMMIT | |
| reo :
I | COMMIT I
| |
T 5

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

READ-WRITE CONFLICTS

Unrepeatable Reads
R e e e e e e e e e ~
f
I T, T, }
1 [BEGIN :
$1e<:|| R(A) :
. BEGIN ,
| R(A) $10
i W(A) $19
I COMMIT | i
| reo :
I | COMMIT I
| |
T 5

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

READ-WRITE CONFLICTS

Unrepeatable Reads

R e e e e e e e e e ~
1 T, T, H
1 [BEGIN :

$10 <j:|| R(A) :
: BEGIN ,
| R(A) $10
I W(A) $19
I COMMIT I

$19 I R(A) !
1 | coMMIT |
1 1
T 5

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

READ-WRITE CONFLICTS

Unrepeatable Reads
e e e e N
P T T,
1 [BEGIN :
$10<j—_;-| R(A) i
.. I BEGIN :
I RCA) $10
.Q.I I WCA) $19
I COMMIT | |
$19 I R(A) !
| | COMMIT I
| |
L ¥

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

[P N
1 T1 Tz |
1 [BEGIN :
| R(A) |
1WA BEGIN :
i R(A) i
: WCA) :
i COMMIT i
| | ABORT '

1
1 1
1 1
. 5

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

P)
| T1 Tz |
1 [BEGIN :
$1 e<::|| R(A) i
1WA BEGIN :
: R(A) i
. WCA) :
i COMMIT i
| | ABORT !
1

1 1
1 1
L __ 1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

PSS ™,

i T1 Tz |

1 [BEGIN :
$10<=3R(A) :
$12 =t W(A) BEGIN !
I R(A) |

: WCA) :

I COMMIT I

| | ABORT '

i

i 1

i i
N __ 9

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

PSS ™,

| T1 Tz |

1 [BEGIN :

$10<=3R(A) :

$12 =t W(A) BEGIN !
' R(A) =) $12

: WCA) :

i COMMIT i

| | ABORT '

|

| |

| |

_ 9

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

PSS ™,
i T1 Tz |
1 [BEGIN :
$10<=3R(A) :
$12 =t W(A) BEGIN !
: RCA) $12
. W(A) $14
I COMMIT I
| | ABORT '
i
i 1
i i
N __ 9

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

Rttty N

1 T1 Tz |

1 [BEGIN :
$1@<;| R(A) I
$120=p} W(A) BEGIN !

: RCA) $12

i W(A) $14

I COMMIT I

(ABORT) !

| 1

| 1

S —— ¥

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-READ CONFLICTS

Reading Uncommitted Data ("Dirty Reads")

Rttty N
| T1 Tz |
1 [BEGIN :
$10<=3R(A) i
$12=pt W(A) - BEGIN !
| ’Q’ R(A) <I'?“:':> $12
W(A) $14
PERALIE i
(ABORT) !
1 1
1 1
S —— ¥

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-WRITE CONFLICTS

Overwriting Uncommitted Data

P N
1 T1 Tz |
1 [BEGIN :
L wea) I
I BEGIN :
| W(A) i
. W(B) :
i COMMIT i
e :
1 | COMMIT i
| 1
. 5

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-WRITE CONFLICTS

Overwriting Uncommitted Data

I N
1 T1 Tz |
1 [BEGIN :
$100—p W(A) :
i BEGIN ,

: WCA) $19

1 w(B) Lin
i COMMIT i
AndrewlI:)’ W(B) :
1 | COMMIT i
1 1
N __ 1

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

WRITE-WRITE CONFLICTS

Overwriting Uncommitted Data

[P N

| T1 Tz |

| [BEGIN :
$10= () \ !
BEGIN ,

1
1
! W(A) $19
: OQ/W(B) %Lin
|

COMMIT
AndrewC—p} W(B)
1 | COMMIT

L T L F

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand

what it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:
— Conflict Serializability
— View Serializability

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand

what it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:

— Conflict Serializabilityﬁ Most DBMSs try to support this.

— View Serializability

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand

what it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:

— Conflict Serializabilityﬁ Most DBMSs try to support this.

— View Serializability
Iy |

No DBMS can do this.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions,

and
— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
— S is conflict equivalent to some serial schedule.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

15-445/645 (Fall 2021)

CONFLICT SERIALIZABILITY INTUITION

Schedule S is conflict serializable if you can
transform S into a serial schedule by swapping
consecutive non-conflicting operations of different
transactions.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
e ™,
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
I R(A) I
: W(A) !
1| R(B) i
: W(B) I
1 | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
: HASE

W(A
Ry e |
: W(B) I
I | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
I R(A) I
| | R(®) !
1 W(A) |
: W(B) I
I | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
" i |}

R i
: R(B) / :
1 W(A) |
: W(B) I
I | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
1| R(B) i
: R(A) !
1 W(A) |
: W(B) I
I | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
e ™,
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
1| R(B) I
: R(A) !
i W(A)
| W(B)/ |
1 | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
D [o e e e e e e[s T -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
e ™,
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
1 | R(B) i
: R(A) !
1| W(B) i
: W(A) I
1 | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
: R(B) :

R(A)
oy e |
: W(A) I
I | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
A N
: T, T, I
I | BEGIN BEGIN :
: R(A) I
1| W(A) :
1| R(B) i
|| W) !
1 RCA) |
: W(A) I
I | COMMIT :
: R(B) !
I W(B) i
: COMMIT i
!]
NS O -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

$CMU-DB

15-445/645 (Fall 2021)

Schedule Serial Schedule
" -------------- \\ " -------------- N
: T, P I I T T, !
I | BEGIN BEGIN : 1 | BEGIN !
|| R(A) ! I R(A)]
1| W(A) : | WA !
1| R(B) | o ! |R(B) I
G | a1 y(B) l
| R(A) I | | COMMIT | BEGIN :
: WA ! ! R(A) I
1 | COMMIT] I W(A) :
: R(B) ! ! R(B)]
i W(B) i i W(B) :
- COMMIT I i COMMIT i
\ ! \ !

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
o5 I - N
T1 T2
BEGIN BEGIN
R(A)
R(A)
W(A)
W(A)

COMMIT COMMIT

—---------
_________________’

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule
o5 I - N
T1 T2
BEGIN BEGIN
R(A)
R(A)
W(A)
WA ®

COMMIT P\ COMMIT

—---------
_________________’

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

CONFLICT SERIALIZABILITY INTUITION

Schedule Serial Schedule

T, T,

BEGIN BEGIN
RCA)

BEGIN
R(A)
W(A)
COMMIT BEGIN
R(A)
W(A)
COMMIT

R(A)
W(A)
WA
COMMIT g COMMLT

—---------
_________________’
—---------

_________________’

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SERIALIZABILITY

Swapping operations is easy when there are only
two txns in the schedule. It's cumbersome when
there are many txns.

Are there any faster algorithms to figure this out
other than transposing operations?

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

DEPENDENCY GRAPHS

One node per txn.
Edge from T; to T if:

— An operation 0; of T, conflicts with an
operation O; of T, and
—> 0; appears earlier in the schedule than O;.

Also known as a precedence graph.

A schedule is conflict serializable iff its
dependency graph is acyclic.

$CMU-DB

15-445/645 (Fall 2021)

Dependency Graph

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1
Schedule Dependency Graph
ST T N (- oot T T \
: T, T, i i :
I | BEGIN BEGIN : :]
1| RCA) ' ! I
1| W(A) : I :
I R(A) i ! I
: W(A) : :]
: R(B) I e e e -
I W(B) :
I COMMIT I
1| R(B) !
1| W(B) i
| coMmIT i
\ !
I e S e e e e e e e e e e e -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1
Schedule Dependency Graph

ST T N (- oot T T \
: T T, [[:
I | BEGIN BEGIN : :]
N B N (GO
1 | W(A
I ‘\“R(A) : : !
I W(A) ! ! I
: R(B) I e e e -
I W(B) :
I COMMIT I
1| R(B) !
1| W(B) i
{ COMMIT i

l
I e S e e e e e e e e e e e -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1
Schedule Dependency Graph

ST T N (- oTTT T \
: T, T, i i A :
I | BEGIN BEGIN : :]
{8 O RN O
1 | W(A
I ‘\“R(A) : : !
I W(A) ! ! I
: R(B) I e e e -
I W(B) :
I COMMIT I
1| R(B) !
1| W(B) i
\ [COMMIT i

l
I e S e e e e e e e e e e e -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1
Schedule Dependency Graph

ST T N (- oTTT T \
: T, T, i i A :
I | BEGIN BEGIN : :]
{8 O RN O
1 | W(A
I ‘\“R(A) : : !
I W(A) ! ! I
: R(B) I e e e -
I W(B) :
I COMMIT I
1| R(B) !
1| W(B) i
\ [COMMIT i

l
I e S e e e e e e e e e e e -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1
Schedule Dependency Graph

o I T I S ——————— ~ pemmmmmEmEmmmmEmmmmm—— N
i T T, : A |
I | BEGIN BEGIN : : :
{E OO}
1| WCA
T SO : :
I Q W(A) : : B i
l oW | R(B) I \._______ b ;
: W(B) !
i COMMIT I
1| R(B) !
1| W(B) i
\ [COMMIT i

l
I e S e e e e e e e e e e e -

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #1
Schedule Dependency Graph

ommmm__—_—_—_——_—————— .~ j mmmmEmEmsmEmmmm—mm—_————— N
i T T, : A |
I | BEGIN BEGIN : : :
(& S OB o!
1| WCA
T SO : :
I Q W(A) : : B i
l oWe | R(B) | ‘. B -
: W(B) ! S
: o (B COMMIT : The cycle in the graph
: WEB% i reveals the problem.
| | comprT : The output of T,depends on

S oo oo= ! T, andvice-versa.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — THREESOME

Schedule Dependency Graph
l’ """""""" \‘ (o~ =" \
e 1@ ()]
I | BEGIN : | !
1| R(A) I I I
Llwa) BEGIN | | : :
i R(A) i I I
| o i |
" BEGIN | COMMIT | , “- J
I R(B) I
: W(B) :
1|R(B) | COMMIT I
! nee) |
1 | COMMIT I
‘e _____ 7

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — THREESOME

Schedule Dependency Graph
l’ """""""" \‘ (o~ =" \
T W W)
I | BEGIN : | !
1| R(A) I I I
Llwa) BEGIN | | : :
i R(A) I I I
- o b ()
: BEGIN | COMMIT | “__ = J
! R(B) |

W(B)
: R(B)H COMMIT :
1| 1B I
1 | COMMIT I
N ___ 7

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — THREESOME

Schedule Dependency Graph
{’ ---------------- \\ { ----------------- \|
I T, T, T, I : @4 @ I
I | BEGIN : I B !
1| R(A) i ! I
Llwa) BEGIN | | : :
| R(A) I | I
- o b ()
: BEGIN | COMMIT | “__ = i
e :

W(B)
: R(B)H COMMIT :
I wes) :
1 | COMMIT I
N _ 7

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — THREESOME

Schedule Dependency Graph
{’ ---------------- \\ { ----------------- \|
I T, T, T, I I @4 @ I
| | BEGIN : : B 2/
! R(A) ! : I
W(A) BEGIN i
T~ || : I
I W(A) ! : I
: BEGIN | COMMIT | “__ = J
e :
W(B)
: R(B)H COMMIT :
I wes) :
1 | COMMIT I
N\ _____ _/

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #2 — THREESOME

Schedule Dependency Graph
{’ ---------------- \\ { \|
I T, T, Ts I 1 i
I | BEGIN : | !
! R(A) ! : I
W(A) BEGIN !
: \R(A) : : :
I W(A) ! : i
: BEGIN | COMMIT | “__ = i
e |
W(B)
: R(B)’V COMMIT :
' W) |
1 | COMMIT I
N\ _____ _/

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

" 55

EXAMPLE #2 — THREESOME

Schedule Dependency Graph
l’ """""""" \‘ (\
i T, T, Ts i I :
I | BEGIN : | !
! R(A) ! : I
W(A) BEGIN I
T || ! I
I W(A) ! : i
: BEGIN | COMMIT | | “__ = i
I R(B) I
! VB \ Is this equivalent to a serial execution?
1| R(BYT | coMMIT I
| nce) :
I | COMMIT I
) R4

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

" 55

EXAMPLE #2 — THREESOME

Schedule Dependency Graph

l’ """""""" \‘ (\
T T, T, . :
| | BEGIN : : !
! R(A) ! : I

W(A) BEGIN I
T || : I
i W(A) : : i
: BEGIN | COMMIT | - = -
! R(B) ' : : : :
! VB \ Is this equivalent to a serial execution?
1| R(B)YT | COMMIT I
| [COMMIT }— Notice that T; should go after T,,

although it starts before it!
£2CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I - I
: () ()}
| Wea) |] :
. R(A) : : l
: sum = A I b)
i R(B) :

I sum += B I
: ECHO sum :
1| R(B) COMMIT I
1B =B+10 i
|| W(B) l
I | COMMIT i
!]

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph

T1 T2
BEGIN BEGIN

A = A-10)

o
O

‘-------A---N

R(A)
sum = A A G
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT

-----------’

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I - I
[t : () ()}
S | : ‘
I |
| Gl S j
: sum += B :

: ECHO sum :
1| R(B) COMMIT I
1B =B+10 i
|| W(B) l
I | COMMIT i
!]

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I - I
1| A=A-10 : : l
Ll wea) i i :
. R(A) : : l
: sum = A I b)
i R(B) :

I $= I
: CECHO sum :
1| R(B) "
1B =B+10 i
1| W(B) l
I | COMMIT i
\ l

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) I - I
: () ()}
| Wea) |] :
. R(A) : : l
: sum = A I b)
i R(B) :

I sum += B I
: ECHO sum :
1| R(B) COMMIT I
1B =B+10 i
|| W(B) l
I | COMMIT i
!]

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- oot T \
: T T, I I :
I | BEGIN BEGIN : : |
1| RCA) l ' I
I[A=A-10 : : |
I w(A) I I -
:) : !]
: sum = A I b)
i R(B) :
| sum += B 1
: ECHO sum :
1| R(B) COMMIT I
1B =B+10 i
1| W(B) l
I | COMMIT i
!]

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- ot T T \
: T, P I I A :
I | BEGIN BEGIN : : |
1| RCA) l ' I
I[A=A-10 : : |
I w(A) I I -
:) : !]
: sum = A I b)
i R(B) :
| sum += B 1
: ECHO sum :
1| R(B) COMMIT I
1B =B+10 i
1| W(B) l
I | COMMIT i
! I

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
ST T N (- ot T T \
: T, P I I A :
I | BEGIN BEGIN : : |
1| RCA) l ' I
I[A=A-10 : : |
I w(A) I I -
:) : !]
: sum = A I b)
I R(B) :

I sum += B I
: ECHO sum :
1| R(B) COMMIT "
1B = pf10 i
1| W(B) l
I | COMMIT i
!]

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
O r, (b
: 1 2 i i A I
| | BEGIN BEGIN : : |
1| R : : i
1| A= A-10 | | |
Liwea) i i :
|
. ,‘T‘RM) : ! 2 |
: Q sum = A |1 \._______ 5 4
1| oWe R(B) :
| sum += B 1
: ECHO sum :
1| R(B) COMMIT I
1B =pf10 I
1| W(B) :
1| COMMIT i
' !

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
S T (" \
: 1 2 | : A 1
I | BEGIN BEGIN : : :
(= S O @B o)
1| A= A-T0 , , |

W(A |
")NF«A) i | I
: Q sum = A : \ ________B ________ ,'
| oW (RO | Isit possible to modif'y only the
: ECHO sum | I application logic so that schedule
! S(E) /. COMIT 11 produces a "correct” result but is still
Hwes) 1 not conflict serializable?
| | commrT [

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
O r, (" b
: 1 2 I I A I
| | BEGIN BEGIN : : |
: R(A) i i |
1| A= A-10 : : :
1WA I i |
I R(A) : : o I
: if(AZ@):cnt:+ _______ o)
I ?é?éze): Cn|t'++ Is it possible to modify only the
: ECHO cnt application logic so that schedule
L RE | T produces a "correct” result but is still
L wes) | not conflict serializable?
| | commrT [

=2CMU-DB N —————— -

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

" 57

VIEW SERIALIZABILITY

Alternative (weaker) notion of serializability.

Schedules S, and S, are view equivalent if:

— If T, reads initial value of A in S,, then T, also reads initial
value of Ain S..

— If T, reads value of A written by T, in S,, then T, also
reads value of A written by T, in S,

— If T, writes final value of A in S, then T, also writes final
value of Ain S,

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

COMMIT | COMMIT | COMMIT

Schedule Dependency Graph
P N O \
T, T, T, If :
© @]
R(A) | BEGIN : I
W(A) : !
BEGIN , -
W(A) I !
W(A) : i
| :
\ /

’---------
\---------—

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

COMMIT | COMMIT | COMMIT

Schedule Dependency Graph
P N O \
T, T, Ts I’ A :
BEGIN | G G :
R(A)wal BEGIN I
‘W(A) ; !
BEGIN : I
W(A) I !
W(A) : i
' :
\ /

’---------
\---------—

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

Schedule Dependency Graph
[T TS N r """""""" \
T T, T, |} : A !
| | BEGIN : i |
I | R(A) gl BEGIN | : |
: W(A) : i :
i BEGIN | | : -
I w(A) I I I
: WA | 1A !
| | COMMIT | COMMIT | COMMIT | I i G I
. - A /
I I AN N B N B N NS BN SN B BN BN B B -
| |
| |
i 1
\ 4

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

Schedule Dependency Graph
ST T S r """""""" \
I T T, Ts I I A :
E= oS cl
1| RC(A) | I 1
: :) A |
, BEGIN | | : :
1| W(A) | I I
I TOME LA :
| | COMMIT | COMMIT | COMMIT | I I G I
. . A /
I I AN N B N B N NS BN SN B BN BN B B -
| |
| |
i 1
\ 4

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

Schedule Dependency Graph

BEGIN
RCA)

BEGIN
W(A)
W(A)

COMMIT | COMMIT | COMMIT

’------q

’---------
\---------—

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

Schedule Dependency Graph

BEGIN
RCA)

BEGIN

W(A)
W(A)
COMMIT | COMMIT | COMMIT

’------q

’---------
\---------—

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

Schedule
T1 T2 T3
BEGIN
R(A) BEGIN
W(A)
BEGIN
W(A)
W(A)
COMMIT | COMMIT | COMMIT

<
m
=

’---------

$CMU-DB

15-445/645 (Fall 2021)

Schedule
T, T, T,
BEGIN
R(A)
W(A)
COMMIT
BEGIN
W(A)
COMMIT
BEGIN
W(A)
COMMIT

\---------—
’---------

\---------,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

$CMU-DB

15-445/645 (Fall 2021)

Schedule Schedule
pomm——_—_—_—_—_—_—_—_—_———— N\ pommmEEEEE—_—_——_—_———
|l T, T, : |l T, T,

I | BEGIN : ! | BEGIN
| R(A) | BEGIN | 1 | R(A)

W(A 1| W(A
:) [VIEW : C(()MI\)'IIT
'Y G S e
|
| | COMMIT | COMMIT ~COMMET”| ! : COMMIT
- - : _BEGEN~
I I I <
I I I
: .
\ 4 ‘

\J

\---------,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

VIEW SERIALIZABILITY

’---------

$2CMU-DB

15-445/645 (Fall 2021)

1

serializable schedules +

"blind writes"

Schedule Schedule
________________ g
T1 T2 T3 : ll T1 T2
BEGIN : ! | BEGIN
R(A) | BEGIN i 1| R(A)
W(A) : 1| W(A)
BEGIN | y| ZEW [} | commIT
W(A) = |! BEGIN
WA Di : W(A)
COMMIT | COMMIT [eoMMeT | | I COMMIT
WA o
Allows all conﬂictj

J___

\J

\---------,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

" :

SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But is difficult to enforce efficiently.

Neither definition allows all schedules that you

would consider "serializable".
— This is because they don't understand the meanings of
the operations or the data (recall example #3)

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

SERIALIZABILITY

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases get
handled separately at the application level.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

UNIVERSE OF SCHEDULES

(All Schedules

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

UNIVERSE OF SCHEDULES

(All Schedules

[seria |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

UNIVERSE OF SCHEDULES

(All Schedules

Conflict Serializable A

| seria |

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

UNIVERSE OF SCHEDULES

-
All Schedules

(View Serializable)

. . 1.)

Conflict Serializable
[Serial]

_ _J

_ y,
_

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ﬂ 63

TRANSACTION DURABILITY

All the changes of committed transactions should

be persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

64

ACID PROPERTIES

Atomicity: All actions in the txn happen, or none
happen.

Consistency: If each txn is consistent and the DB
starts consistent, then it ends up consistent.

Isolation: Execution of one txn is isolated from
that of other txns.

L MUDE Durability: If a txn commits, its effects persist.

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

65

CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to
executing the txns one after the other in some order.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

$CMU-DB

15-445/645 (Fall 2021)

CONCLUS

Concurrency control and reco
most important functions pro

Concurrency control is auto
— System automatically inserts loc
schedules actions of different tx

— Ensures that resulting executio
executing the txns one after the

Spanner: Google’s Globally-Distributed Database

James C, Corben, Jeffrey Dean, Michael Epstein, Andrew Fikes, C] hristopher Frast, J} Furman,
Sanjay Ghemeawar, Andrey Gubaren, Christopher Heiser, Petey Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Ko, yan, Hongyi Li, Alexander Lioyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Ine.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It j;
the first system to distribute data ar global scale and sup-
port externally-consistent distributed transactions, This
paper describes how Spanneris structured, its feature set,
the rationale underlying various design decisions, and g

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it js a database that shards dara
across many sets of Paxos state machines in data-
centers spread all over the world, Replication is used for
global availability and geographic locality; clients auto.
matically failover between replicas. Spanner automai.
cally reshards data across machines as the amouny of data
or the number of servers changes, and it automatically

dreds of datacenters and trillions of database rows,
Applications can use Spanner for high availability,
even in the face of wide-area nafural disasters, by repli-
cating their data within Or even across continents. Our
initial customer was F (33). a rewrite of Google's ad-
vertising backend. F1 uses five replicas spread across
the United States. Most other applications wilf probabiy
replicate their data across 3 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That is, mosi applications will choose lower Ja-

Published jn the le'eﬂl:‘ng: af OSDI 2012

tency over higher availability, us Jong as they can survive
1 or 2 datacenter failures.

Spanner's main focus is managing cross-datacenter
replicated data, bur we have akso spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable). we
have also consistently received complaints from users
that Bigtable can be difficult 1o use for some kinds of ap-
plications: those thar have complex, evolving schemas,
or those that want strong consistency in the Ppresence of
wide-area replication. (Simi lar claims have been made
by other authors Many applications at Google
have chosen 1o use Megasiore (51 because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput, As g
comsequence, Spanuer has evolyed from a Bigiable.like
versioned key-value store into 2 temporal multi-version
database. Dara is stored in schematized semi-relational
tables; data is versioned, and each version js automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps,
Spanner supports general-purpose transactions, and pro-
vides a SQL-hased query language.

As a globally-distributed database, Spanner provides
several ineresting features First, the replication con-
figurations for data can be dynamically controlied at a
fine grain by applications, Applications can specify con-
SIRINLS (o control whi datacenters contain which data,

tency), and how many replicas are maintained (to con-
trol durability, availability, and reqd performance). Data
can also he dynamically and iransparently moved be-

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

CONCLUS

Concurrency control and reco
most important functions pro

Concurrency control is auto
— System automatically inserts loc

Spanner; Google’s Clobally-l)istributed Database

James C. Corber, Jeffrey Dean, Michael Epstein, Andrew Fikes, (] hristopher Frosi, JJ Furman,
Sanjay Ghemawar, Andrey Gubarey, ¢ hristopher Heiser. Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lioyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniat,

Christopher Ta vlor, Ruth

Wang, Dale Woodford

Gaogle, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchmnmv-.ly-n‘plu.ucd database. It j;
the first system to distribute data ar global scale and sup-
port externally-consistent distributed transactions, This
paper describes how Spanner is structured, its feature ser,
the rationale underlying various design decisions, and g
novel time AP} that exposes clock uncertainty. This AP
and its implementation are critical {o supporting exfer-
nal consistency and a variety of powerful features: nop-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, actoss all of Spanner,

1 Introduction

tency over higher availability, us Jong as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have akso spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable). we
have also consistently received complaints from users
that Bigtable can be difficult 1o use for some kinds of ap-
plications: those thar have complex, evolving schemas,
or those that want strong consistency in the Ppresence of
wide-area replication (Similar claims have been made
by other authors (37)) Many applications al Google
have chosen 1o use Megastore {5) because of its senmi-
relational data model and support for synchronous repli-
ile its relatively poor write throughput, As &

panier has evolved from a Bigtable.like
fey-value store info 5 temporal multi-version

of transactions.

We believe it

L h ber
1s better to have application programmers dee'll with Eot_
formance problems due to overuse of transactions lilsl -

' C
tlenecks arise, rather than always coding around the la

STEOTOT T

it is stored in schemarized semi-relational
is versioned, and each version is automati-
pmped with its commit time; old versions of
ject to configurabje garbage-colfection poli-
pplications can read data a1 old timestamps,
[Ports general-purpose transactions, and pro-
based query Janguage.

ally-distributed database, Spanner provides
esting features. First, the replication con-
Pr data can be dynamically controlied at a
applications Applications can specify con-
fitrol which datacenters contajn which data,
is from its users (to control read latency),
s are from each other (to controf write fa.
W many replicas are maintained (1o con-
availability, and read performance}. Data
fynamically and iransparently moved be-
fiews by the system to balance resource us-
centers. Second, Spanner has two features
o implement in a distributed database: it

£CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

65

CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to
executing the txns one after the other in some order.

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

NEXT CLASS

Two-Phase Locking

Isolation Levels

$CMU-DB

15-445/645 (Fall 2021)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

