
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
https://www.cs.cmu.edu/~malin199/
https://www.cs.cmu.edu/~malin199/

15-445/645 (Fall 2021)

Project #3 is due Sun Nov 14th @ 11:59pm.

Recitation is on Thu Oct 28th @ 5:00pm over
Zoom.

Homework #4 will be release today. It is due Sun
Nov 7th @ 11:59pm.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The Pinecone Vector Database System
→ Mon Nov 1st @ 4:30pm ET

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://db.cs.cmu.edu/events/vaccination-2021-the-pinecone-vector-database-system-edo-liberty/

15-445/645 (Fall 2021)

Conflict Serializable
→ Verify using either the "swapping" method or

dependency graphs.
→ Any DBMS that says that they support "serializable"

isolation does this.

View Serializable
→ No efficient way to verify.
→ Lin doesn't know of any DBMS that supports this.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

5

BEGIN
R(A)

W(A)

R(A)
COMMIT

BEGIN
R(A)

W(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

5

BEGIN
R(A)

W(A)

R(A)
COMMIT

BEGIN
R(A)

W(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We need a way to guarantee that all execution
schedules are correct (i.e., serializable) without
knowing the entire schedule ahead of time.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

We need a way to guarantee that all execution
schedules are correct (i.e., serializable) without
knowing the entire schedule ahead of time.

Solution: Use locks to protect database objects.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Granted (T1→A)
BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Granted (T1→A)

Denied!

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Granted (T1→A)

Denied!

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Granted (T1→A)

Denied!

Released (T1→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

7

Granted (T1→A)

Denied!

Granted (T2→A)

Released (T1→A)

Released (T2→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Lock Types

Two-Phase Locking

Deadlock Detection + Prevention

Hierarchical Locking

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

9

Locks Latches

Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

15-445/645 (Fall 2021)

9

Locks Latches

Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

15-445/645 (Fall 2021)

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.

10

✔

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Transactions request locks (or upgrades).

Lock manager grants or blocks requests.

Transactions release locks.

Lock manager updates its internal lock-table.
→ It keeps track of what transactions hold what locks and

what transactions are waiting to acquire any locks.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

12

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

12

Granted (T1→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

12

Granted (T1→A)

Released (T1→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

12

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

12

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

12

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Two-phase locking (2PL) is a concurrency control
protocol that determines whether a txn can access
an object in the database on the fly.

The protocol does not need to know all the queries
that a txn will execute ahead of time.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Phase #1: Growing
→ Each txn requests the locks that it needs from the DBMS’s

lock manager.
→ The lock manager grants/denies lock requests.

Phase #2: Shrinking
→ The txn is allowed to only release locks that it previously

acquired. It cannot acquire new locks.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

15

o

f
L

o
ck

s

Growing Phase Shrinking Phase

Transaction Lifetime

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

16

Transaction Lifetime

o

f
L

o
ck

s

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

16

Transaction Lifetime

o

f
L

o
ck

s

2PL Violation!

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

17

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

17

Granted (T1→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

17

Granted (T1→A)

Denied!

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

17

Granted (T1→A)

Denied!

Released (T1→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

17

Granted (T1→A)

Denied!

Released (T2→A)

Released (T1→A)

Granted (T2→A)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

2PL on its own is sufficient to guarantee conflict
serializability.
→ It generates schedules whose precedence graph is acyclic.

But it is subject to cascading aborts.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

19

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
ABORT

BEGIN

X-LOCK(A)
R(A)
W(A)

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

19

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
ABORT

BEGIN

X-LOCK(A)
R(A)
W(A)

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

19

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
ABORT

BEGIN

X-LOCK(A)
R(A)
W(A)

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

19

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.
→ Any information about T1 cannot

be "leaked" to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
ABORT

BEGIN

X-LOCK(A)
R(A)
W(A)

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

19

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.
→ Any information about T1 cannot

be "leaked" to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
ABORT

BEGIN

X-LOCK(A)
R(A)
W(A)

⋮
This is all wasted work!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

There are potential schedules that are serializable
but would not be allowed by 2PL.
→ Locking limits concurrency.

May still have "dirty reads".
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

There are potential schedules that are serializable
but would not be allowed by 2PL.
→ Locking limits concurrency.

May still have "dirty reads".
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The txn is only allowed to release locks after is has
ended, i.e., committed or aborted.

Allows only conflict serializable schedules, but it is
often stronger than needed for some apps.

21

o

f
L

o
ck

s

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The txn is only allowed to release locks after is has
ended, i.e., committed or aborted.

Allows only conflict serializable schedules, but it is
often stronger than needed for some apps.

21

o

f
L

o
ck

s

Release all locks at
end of txn.

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A schedule is strict if a value written by a txn is
not read or overwritten by other txns until that
txn finishes.

Advantages:
→ Does not incur cascading aborts.
→ Aborted txns can be undone by just restoring original

values of modified tuples.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 – Move $100 from Lin’s account (A) to his
promoter’s account (B).

T2 – Compute the total amount in all accounts and
return it to the application.

23

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
ECHO A+B
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 – Move $100 from Lin’s account (A) to his
promoter’s account (B).

T2 – Compute the total amount in all accounts and
return it to the application.

23

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
ECHO A+B
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

24

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

24

A=1000, B=1000
BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

24

A=1000, B=1000
BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

24

A=1000, B=1000
BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2

24

A=1000, B=1000

A+B=1900

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

25

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

T1 T2 A=1000, B=1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

25

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

T1 T2 A=1000, B=1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

25

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

T1 T2 A=1000, B=1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

25

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

T1 T2 A=1000, B=1000

A+B=2000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

26

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

T1 T2 A=1000, B=1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

26

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

T1 T2 A=1000, B=1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

26

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

T1 T2 A=1000, B=1000

A+B=2000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

27

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

27

Conflict Serializable

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

27

View Serializable

Conflict Serializable

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

27

View Serializable

Conflict Serializable

No Cascading
Aborts

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All Schedules

27

View Serializable

Conflict Serializable

No Cascading
Aborts

Strong Strict 2PL

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

There are potential schedules that are serializable
but would not be allowed by 2PL.
→ Locking limits concurrency.

May still have "dirty reads".
→ Solution: Strong Strict 2PL (Rigorous)

May lead to deadlocks.
→ Solution: Detection or Prevention

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2
BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2
BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

29

Granted (T1→A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2
BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

29

Granted (T1→A)

Granted (T2→B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2
BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

29

Granted (T1→A)

Denied!

Granted (T2→B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2
BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

29

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 T2
BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

29

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

A deadlock is a cycle of transactions waiting for
locks to be released by each other.

Two ways of dealing with deadlocks:
→ Approach #1: Deadlock Detection
→ Approach #2: Deadlock Prevention

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

The DBMS creates a waits-for graph to keep
track of what locks each txn is waiting to acquire:
→ Nodes are transactions
→ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

The system periodically checks for cycles in waits-
for graph and then decides how to break it.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

32

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

32

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

32

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

32

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

T1 T2 T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

When the DBMS detects a deadlock, it will select a
"victim" txn to rollback to break the cycle.

The victim txn will either restart or abort(more
common) depending on how it was invoked.

There is a trade-off between the frequency of
checking for deadlocks and how long txns have to
wait before deadlocks are broken.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Selecting the proper victim depends on a lot of
different variables….

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Selecting the proper victim depends on a lot of
different variables….
→ By age (lowest timestamp)

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Selecting the proper victim depends on a lot of
different variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Selecting the proper victim depends on a lot of
different variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Selecting the proper victim depends on a lot of
different variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Selecting the proper victim depends on a lot of
different variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

We also should consider the # of times a txn has
been restarted in the past to prevent starvation.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

After selecting a victim txn to abort, the DBMS
can also decide on how far to rollback the txn's
changes.

Approach #1: Completely

Approach #2: Minimally

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

When a txn tries to acquire a lock that is held by
another txn, the DBMS kills one of them to
prevent a deadlock.

This approach does not require a waits-for graph
or detection algorithm.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Assign priorities based on timestamps:
→ Older Timestamp = Higher Priority (e.g., T1 > T2)

Wait-Die ("Old Waits for Young")
→ If requesting txn has higher priority than holding txn, then

requesting txn waits for holding txn.
→ Otherwise requesting txn aborts.

Wound-Wait ("Young Waits for Old")
→ If requesting txn has higher priority than holding txn, then

holding txn aborts and releases lock.
→ Otherwise requesting txn waits.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38

BEGIN

X-LOCK(A)
⋮

BEGIN
X-LOCK(A)

⋮

BEGIN
X-LOCK(A)

⋮ BEGIN
X-LOCK(A)

⋮

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38

BEGIN

X-LOCK(A)
⋮

BEGIN
X-LOCK(A)

⋮

BEGIN
X-LOCK(A)

⋮ BEGIN
X-LOCK(A)

⋮

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38

BEGIN

X-LOCK(A)
⋮

BEGIN
X-LOCK(A)

⋮

BEGIN
X-LOCK(A)

⋮ BEGIN
X-LOCK(A)

⋮

T1 T2

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38

BEGIN

X-LOCK(A)
⋮

BEGIN
X-LOCK(A)

⋮

BEGIN
X-LOCK(A)

⋮ BEGIN
X-LOCK(A)

⋮

T1 T2

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

38

BEGIN

X-LOCK(A)
⋮

BEGIN
X-LOCK(A)

⋮

BEGIN
X-LOCK(A)

⋮ BEGIN
X-LOCK(A)

⋮

T1 T2

T2 T2

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Why do these schemes guarantee no deadlocks?

When a txn restarts, what is its (new) priority?

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Why do these schemes guarantee no deadlocks?

Only one "type" of direction allowed when waiting
for a lock.

When a txn restarts, what is its (new) priority?

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Why do these schemes guarantee no deadlocks?

Only one "type" of direction allowed when waiting
for a lock.

When a txn restarts, what is its (new) priority?

Its original timestamp. Why?

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

All these examples have a one-to-one mapping
from database objects to locks.

If a txn wants to update one billion tuples, then it
must acquire one billion locks.

Acquiring locks is a more expensive operation
than acquiring a latch even if that lock is available.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

When a txn wants to acquire a "lock", the DBMS
can decide the granularity (i.e., scope) of that lock.
→ Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of
locks that a txn needs.

Trade-off between parallelism versus overhead.
→ Fewer Locks, Larger Granularity vs. More Locks, Smaller

Granularity.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

42

T1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

42

T1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

42

T1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

An intention lock allows a higher-level node to
be locked in shared or exclusive mode without
having to check all descendent nodes.

If a node is locked in an intention mode, then
some txn is doing explicit locking at a lower level
in the tree.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Intention-Shared (IS)
→ Indicates explicit locking at lower level with shared locks.

Intention-Exclusive (IX)
→ Indicates explicit locking at lower level with exclusive locks.

Shared+Intention-Exclusive (SIX)
→ The subtree rooted by that node is locked explicitly in

shared mode and explicit locking is being done at a lower
level with exclusive-mode locks.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

45

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×

IX ✔ ✔ × × ×

S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

T
1

H
ol

ds
T2 Wants

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Each txn obtains appropriate lock at highest level
of the database hierarchy.

To get S or IS lock on a node, the txn must hold at
least IS on parent node.

To get X, IX, or SIX on a node, must hold at least
IX on parent node.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 – Get the balance of Lin's shady off-shore bank
account.

T2 – Increase Andrew's bank account balance by
1%.

What locks should these txns obtain?

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

T1 – Get the balance of Lin's shady off-shore bank
account.

T2 – Increase Andrew's bank account balance by
1%.

What locks should these txns obtain?
→ Exclusive + Shared for leaf nodes of lock tree.
→ Special Intention locks for higher levels.

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

T1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

T1

Read

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

T1

Read

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

T1

IS
T1

Read

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

T1

S
T1

IS
T1

Read

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

T1

S
T1

IS
T1

T2

Write

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

48

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Assume three txns execute at same time:
→ T1 – Scan R and update a few tuples.
→ T2 – Read a single tuple in R.
→ T3 – Scan all tuples in R.

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

Read Read+WriteRead

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

SIX
T1

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

SIX
T1

X
T1

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

SIX
T1

T2

X
T1

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

SIX
T1

T2

X
T1

Read

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

SIX
T1

T2

X
T1IS

T2

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

S
T2

SIX
T1

T2

X
T1IS

T2

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Read

T3

Read Read

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

R

S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

T1

SIX
T1

X
T1

T3

R

S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

50

X
T1

T3

R

S

S
T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Hierarchical locks are useful in practice as each txn
only needs a few locks.

Intention locks help improve concurrency:
→ Intention-Shared (IS): Intent to get S lock(s) at finer

granularity.
→ Intention-Exclusive (IX): Intent to get X lock(s) at finer

granularity.
→ Shared+Intention-Exclusive (SIX): Like S and IX at

the same time.

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Lock escalation dynamically asks for coarser-
grained locks when too many low-level locks
acquired.

This reduces the number of requests that the lock
manager must process.

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

You typically don't set locks manually in txns.

Sometimes you will need to provide the DBMS
with hints to help it to improve concurrency.

Explicit locks are also useful when doing major
changes to the database.

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Explicitly locks a table.

Not part of the SQL standard.
→ Postgres/DB2/Oracle Modes: SHARE, EXCLUSIVE
→ MySQL Modes: READ, WRITE

54

LOCK TABLE <table> IN <mode> MODE;

LOCK TABLE <table> <mode>;

SELECT 1 FROM <table> WITH (TABLOCK, <mode>);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Perform a select and then sets an exclusive lock on
the matching tuples.

Can also set shared locks:
→ Postgres: FOR SHARE
→ MySQL: LOCK IN SHARE MODE

55

SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

2PL is used in almost DBMS.

Automatically generates correct interleaving:
→ Locks + protocol (2PL, SS2PL ...)
→ Deadlock detection + handling
→ Deadlock prevention

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Timestamp Ordering Concurrency Control

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

