
Intro to Database Systems

15-445/15-645

Fall 2021

Lin Ma
Computer Science Carnegie
Mellon UniversityLM

232
Distributed OLAP
Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://15445.courses.cs.cmu.edu/fall2021
https://www.cs.cmu.edu/~malin199/
https://www.cs.cmu.edu/~malin199/

15-445/645 (Fall 2021)

A D M I NI STR IV IA

Homework #5: Will be released today. It is due
Thursday Dec 2nd @ 11:59pm.

Project #4: Due Sunday Dec 5th @ 11:59pm.

Guest Lecture from Google BigQuery: Monday
Nov 29th @ 3:05pm. Attendance required.

Final Exam: Friday Dec 10th @ 8:30am at
Doherty Hall 2210. Bring pencil and rubber.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

UPCO M I NG DATA BAS E TA LK

Query Optimization and
Acceleration at Dremio
→ Mon Nov 22ed @ 4:30pm ET

Research Talk on Google
BigQuery
→ Tue Nov 30th @ 12:00pm ET

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://db.cs.cmu.edu/events/vaccination-2021-query-optimization-and-acceleration-at-dremio-steven-phillips/
https://db.cs.cmu.edu/events/google-bigquery-justin-levandoski/

15-445/645 (Fall 2021)

LA ST C LA S S

Atomic Commit Protocols

Replication

Consistency Issues (CAP)

Federated Databases

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BI F URC ATE D E NVI RO NM E NT

5

OLAP DatabaseOLTP Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BI F URC ATE D E NVI RO NM E NT

5

Extract
Transform

Load

OLAP DatabaseOLTP Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

BI F URC ATE D E NVI RO NM E NT

5

Extract
Transform

Load

OLAP DatabaseOLTP Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

D EC I S I O N S UPPO RT SYST E M S

Applications that serve the management,
operations, and planning levels of an
organization to help people make decisions
about future issues and problems by analyzing
historical data.

Star Schema vs. Snowflake Schema

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

STA R S C HE M A

7

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

STA R S C HE M A

7

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

STA R S C HE M A

7

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S N OW F L A K E S C H E M A

8

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP
MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S N OW F L A K E S C H E M A

8

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP
MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

STA R VS . S NOWF LA K E S C HE M A

Issue #1: Normalization
→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and

consistency violations.

Issue #2: Query Complexity
→ Snowflake schemas require more joins to get the data

needed for a query.
→ Queries on star schemas will (usually) be faster.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

P3 P4

P1 P2

PRO BLE M S E T UP

10

Application
Server

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

P3 P4

P1 P2

PRO BLE M S E T UP

10

Application
Server

PartitionsSELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

P3 P4

P1 P2

PRO BLE M S E T UP

10

Application
Server

PartitionsSELECT * FROM R JOIN S
ON R.id = S.id

P2
P4
P3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

TO DAY' S AG E NDA

Execution Models

Query Planning

Distributed Join Algorithms

Cloud Systems

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

PUS H VS . PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that

contains the data.
→ Perform as much filtering and processing as possible

where data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query

that needs it for processing.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

PUS H QUE RY TO DATA

13

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

PUS H QUE RY TO DATA

13

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

PUS H QUE RY TO DATA

13

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

R ⨝ S
IDs [101,200]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

PUS H QUE RY TO DATA

13

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

R ⨝ S
IDs [101,200] Result: R ⨝ S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

PULL DATA TO QUE RY

14

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

PULL DATA TO QUE RY

14

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

PULL DATA TO QUE RY

14

Node

Application
Server Node

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

PULL DATA TO QUE RY

14

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

PULL DATA TO QUE RY

14

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

PULL DATA TO QUE RY

14

Node

Application
Server Node

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R ⨝ S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

O BS E RVAT I ON

The data that a node receives from remote
sources are cached in the buffer pool.
→ This allows the DBMS to support intermediate results

that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Q UE RY FAULT TO LE R A NC E

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail
during query execution.
→ If one node fails during query execution, then the

whole query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution
to allow it to recover if nodes fail.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

Q UE RY FAULT TO LE R A NC E

17

Node

Application
Server Node

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

Q UE RY FAULT TO LE R A NC E

17

Node

Application
Server Node

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

Q UE RY FAULT TO LE R A NC E

17

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

Q UE RY FAULT TO LE R A NC E

17

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R ⨝ S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

Q UE RY FAULT TO LE R A NC E

17

Node

Application
Server Node

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Storage

Q UE RY FAULT TO LE R A NC E

17

Node

Application
Server Node

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R ⨝ S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

QUE RY PLA NNI NG

All the optimizations that we talked about before
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Early Projections
→ Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Q UE RY PLA N F R AG M E NTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into

partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems that I knows

about that uses this approach.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://www.singlestore.com/
https://vitess.io/

15-445/645 (Fall 2021)

Q UE RY PLA N F R AG M E NTS

20

SELECT * FROM R JOIN S
ON R.id = S.id

Id:1-100 Id:101-200 Id:201-300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Q UE RY PLA N F R AG M E NTS

20

SELECT * FROM R JOIN S
ON R.id = S.id

Id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 1 AND 100

Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 101 AND 200

Id:201-300

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 201 AND 300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

Q UE RY PLA N F R AG M E NTS

20

SELECT * FROM R JOIN S
ON R.id = S.id

Id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 1 AND 100

Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 101 AND 200

Id:201-300

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 201 AND 300

Union the output of
each join to produce

the final result.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

O BS E RVAT I ON

The efficiency of a distributed join depends on
the target tables' partitioning schemes.

One approach is to put entire tables on a single
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

D I ST R IBUT E D JO I N A LG O R I THM S

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we
discussed earlier in the semester.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #1

One table is replicated at every
node.
Each node joins its local data in
parallel and then sends their results
to a coordinating node.

23

R{Id}

S

R{Id}

S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #1

One table is replicated at every
node.
Each node joins its local data in
parallel and then sends their results
to a coordinating node.

23

R{Id}

S

Id:1-100

Replicated

R{Id}

S

Id:101-200

Replicated

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #1

One table is replicated at every
node.
Each node joins its local data in
parallel and then sends their results
to a coordinating node.

23

R{Id}

S

Id:1-100

Replicated

R{Id}

S

Id:101-200

Replicated

SELECT * FROM R JOIN S
ON R.id = S.id

P1:R⨝S P2:R⨝S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #1

One table is replicated at every
node.
Each node joins its local data in
parallel and then sends their results
to a coordinating node.

23

R{Id}

S

Id:1-100

Replicated

R{Id}

S

Id:101-200

Replicated

SELECT * FROM R JOIN S
ON R.id = S.id

P1:R⨝S

P2:R⨝S
R⨝S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #2

Tables are partitioned on the join
attribute. Each node performs the
join on local data and then sends to
a node for coalescing.

24

R{Id}

S{Id}

Id:1-100 R{Id}

S{Id}

Id:101-200

Id:1-100 Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #2

Tables are partitioned on the join
attribute. Each node performs the
join on local data and then sends to
a node for coalescing.

24

R{Id}

S{Id}

Id:1-100 R{Id}

S{Id}

Id:101-200

Id:1-100 Id:101-200

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #2

Tables are partitioned on the join
attribute. Each node performs the
join on local data and then sends to
a node for coalescing.

24

R{Id}

S{Id}

Id:1-100 R{Id}

S{Id}

Id:101-200

Id:1-100 Id:101-200

P1:R⨝S

P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S S

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

25

R{Id}

S{Val}

Id:1-100 R{Id}

S{Val}

Id:101-200

Val:1-50 Val:51-100

S S

P1:R⨝S

P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:101-200S{Id}

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:1-100 S{Id} Id:101-200S{Id}

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:1-100 S{Id} Id:101-200S{Id}

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:1-100 S{Id} Id:101-200S{Id}

P1:R⨝S P2:R⨝S

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S C E NA R I O #4

Both tables are not partitioned on
the join key. The DBMS copies the
tables by "shuffling" them across
nodes.

26

R{Name}

S{Val}

Name:A-M R{Name}

S{Val}

Name:N-Z

Val:1-50 Val:51-100

Id:1-100 S{Id} Id:101-200S{Id}

P1:R⨝S

P2:R⨝S
R⨝S

R{Id}Id:1-100 R{Id} Id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

R.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

R.id
R.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E M I - JO I N

Join operator where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL
syntax. Otherwise you fake it with
EXISTS.

27

SELECT R.id FROM
R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

R.id

R.id

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

C LO UD SYST E M S

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3

before copying data to compute nodes.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

C LO UD SYST E M S

Approach #1: Managed DBMSs
→ No significant modification to the DBMS to be "aware"

that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS
→ The system is designed explicitly to run in a cloud

environment.
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery, Amazon

Redshift, Microsoft SQL Azure

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

Storage
Buffer Pool
Page Table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

Storage

Buffer Pool
Page Table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

S E RVE R LES S DATABAS ES

Rather than always maintaining compute
resources for each customer, a "serverless"
DBMS evicts tenants when they become idle.

31

Application
Server

Node

Storage

Buffer Pool
Page Table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

D I SAG G R EG ATE D CO M PO NE NTS

System Catalogs
→ HCatalog, Google Data Catalog, Amazon Glue Data

Catalog

Node Management
→ Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
→ Greenplum Orca, Apache Calcite

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/greenplum-db/gporca
https://calcite.apache.org/

15-445/645 (Fall 2021)

UN I V E RSA L FO R M ATS

Most DBMSs use a proprietary on-disk binary file
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats
that make it easier to access data across systems.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

15-445/645 (Fall 2021)

UN I V E RSA L FO R M ATS

Apache Parquet
→ Compressed columnar storage from

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from

Apache Hive.

Apache CarbonData
→ Compressed columnar storage with

indexes from Huawei.

34

Apache Iceberg
→ Flexible data format that supports

schema evolution from Netflix.

HDF5
→ Multi-dimensional arrays for

scientific workloads.

Apache Arrow
→ In-memory compressed columnar

storage from Pandas/Dremio.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://www.hdfgroup.org/
https://arrow.apache.org/

15-445/645 (Fall 2021)

CO NC LUS I O N

More money, more data, more problems…

Cloud OLAP Vendors:

On-Premise OLAP Systems:

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2021)

NE X T C LA S S

Google Guest Speaker

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

