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A D M I NI STR IV IA

Homework #5: Will be released today. It is due 
Thursday Dec 2nd @ 11:59pm.

Project #4: Due Sunday Dec 5th @ 11:59pm.

Guest Lecture from Google BigQuery: Monday 
Nov 29th @ 3:05pm. Attendance required.

Final Exam: Friday Dec 10th @ 8:30am at 
Doherty Hall 2210. Bring pencil and rubber.
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UPCO M I NG DATA BAS E  TA LK

Query Optimization and 
Acceleration at Dremio
→ Mon Nov 22ed @ 4:30pm ET

Research Talk on Google 
BigQuery
→ Tue Nov 30th @ 12:00pm ET
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LA ST  C LA S S

Atomic Commit Protocols

Replication

Consistency Issues (CAP)

Federated Databases
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BI F URC ATE D  E NVI RO NM E NT
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D EC I S I O N S UPPO RT  SYST E M S

Applications that serve the management, 
operations, and planning levels of an 
organization to help people make decisions 
about future issues and problems by analyzing 
historical data.

Star Schema vs. Snowflake Schema
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STA R  S C HE M A
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S N OW F L A K E  S C H E M A
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STA R  VS .  S NOWF LA K E  S C HE M A

Issue #1: Normalization
→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and 

consistency violations.

Issue #2: Query Complexity
→ Snowflake schemas require more joins to get the data 

needed for a query.
→ Queries on star schemas will (usually) be faster.
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TO DAY' S  AG E NDA

Execution Models

Query Planning

Distributed Join Algorithms

Cloud Systems
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PUS H VS .  PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that 

contains the data.
→ Perform as much filtering and processing as possible 

where data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query 

that needs it for processing.
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PUS H QUE RY  TO  DATA

13
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Storage

PULL  DATA  TO  QUE RY
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O BS E RVAT I ON

The data that a node receives from remote 
sources are cached in the buffer pool.
→ This allows the DBMS to support intermediate results 

that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a 
node crashes during execution?
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Q UE RY  FAULT  TO LE R A NC E

Most shared-nothing distributed OLAP DBMSs 
are designed to assume that nodes do not fail 
during query execution. 
→ If one node fails during query execution, then the 

whole query fails.

The DBMS could take a snapshot of the 
intermediate results for a query during execution 
to allow it to recover if nodes fail.
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QUE RY  PLA NNI NG

All the optimizations that we talked about before 
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Early Projections
→ Optimal Join Orderings

Distributed query optimization is even harder 
because it must consider the physical location of 
data and network transfer costs.
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Q UE RY  PLA N F R AG M E NTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into 

partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems that I knows 

about that uses this approach.
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Q UE RY  PLA N F R AG M E NTS

20
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O BS E RVAT I ON

The efficiency of a distributed join depends on 
the target tables' partitioning schemes.

One approach is to put entire tables on a single 
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.
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D I ST R IBUT E D JO I N  A LG O R I THM S

To join tables R and S, the DBMS needs to get the 
proper tuples on the same node.

Once the data is at the node, the DBMS then 
executes the same join algorithms that we 
discussed earlier in the semester.
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S C E NA R I O  #1

One table is replicated at every 
node.
Each node joins its local data in 
parallel and then sends their results 
to a coordinating node.
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S C E NA R I O  #2

Tables are partitioned on the join 
attribute. Each node performs the 
join on local data and then sends to 
a node for coalescing.
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S C E NA R I O  #3

Both tables are partitioned on 
different keys. If one of the tables is 
small, then the DBMS "broadcasts" 
that table to all nodes.
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S C E NA R I O  #4
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S E M I - JO I N

Join operator where the result only 
contains columns from the left table.

Distributed DBMSs use semi-join to 
minimize the amount of data sent 
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN SQL 
syntax. Otherwise you fake it with 
EXISTS.

27
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R JOIN S
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C LO UD  SYST E M S

Vendors provide database-as-a-service (DBaaS) 
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines 
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 

before copying data to compute nodes.
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C LO UD  SYST E M S

Approach #1: Managed DBMSs
→ No significant modification to the DBMS to be "aware" 

that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS
→ The system is designed explicitly to run in a cloud 

environment. 
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery, Amazon 

Redshift, Microsoft SQL Azure

30
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S E RVE R LES S  DATABAS ES

Rather than always maintaining compute 
resources for each customer, a "serverless" 
DBMS evicts tenants when they become idle.
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D I SAG G R EG ATE D  CO M PO NE NTS

System Catalogs
→ HCatalog, Google Data Catalog, Amazon Glue Data 

Catalog

Node Management
→ Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
→ Greenplum Orca, Apache Calcite
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UN I V E RSA L  FO R M ATS

Most DBMSs use a proprietary on-disk binary file 
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to 
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats 
that make it easier to access data across systems.
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UN I V E RSA L  FO R M ATS

Apache Parquet
→ Compressed columnar storage from 

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from 

Apache Hive.

Apache CarbonData
→ Compressed columnar storage with 

indexes from Huawei.

34

Apache Iceberg
→ Flexible data format that supports 

schema evolution from Netflix.

HDF5
→ Multi-dimensional arrays for 

scientific workloads.

Apache Arrow
→ In-memory compressed columnar 

storage from Pandas/Dremio.
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CO NC LUS I O N

More money, more data, more problems…

Cloud OLAP Vendors:

On-Premise OLAP Systems:
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NE X T  C LA S S

Google Guest Speaker
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