Carnegie Mellon University
 Computer Science Department
 15-445/645 - Database Systems (Fall 2022)
 Prof. Andy Pavlo
 Homework \#2 (by Mike Xu)

 Due: Sunday September 25, 2022 @ 11:59pm

 Due: Sunday September 25, 2022 @ 11:59pm}

IMPORTANT:

- Enter all of your answers into Gradescope by 11:59pm on Sunday September 25, 2022.
- Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
For your information:
- Graded out of $\mathbf{1 0 0}$ points; $\mathbf{4}$ questions total
- Rough time estimate: $\approx 1-4$ hours ($0.5-1$ hours for each question)

Revision : 2022/09/22 22:11

Question	Points	Score
Storage Models	16	
Cuckoo Hashing	20	
Extendible Hashing	28	
B+Tree	36	
Total:	100	

Question 1: Storage Models

Consider a database with a single table R (q_id, txns , total, failed), where $\mathrm{q}_{-} \mathrm{id}$ is the primary key, and all attributes are the same fixed width. Suppose R has 20,000 tuples that fit into 100 pages, Ignore any additional storage overhead for the table (e.g., page headers, tuple headers). Additionally, you should make the following assumptions:

- The DBMS does not have any additional meta-data (e.g., sort order, zone maps).
- R does not have any indexes (including for primary key q_id)
- None of R's pages are already in the buffer pool.

Consider the following query:

```
SELECT total - failed FROM R
    WHERE q_id = 96 AND txns > 420;
```

(a) Suppose the DBMS uses the decomposition storage model (DSM) with implicit offsets
i. [4 points] What is the minimum number of pages that the DBMS will potentially have to read from disk to answer this query?2-1011-5051-100
≥ 101
\square Not possible to determine
ii. [4 points] What is the maximum number of pages that the DBMS will potentially have to read from disk to answer this query?$1 \square 2-10$11-50
51-100
≥ 101Not possible to determine
(b) Suppose the DBMS uses the N-ary storage model (NSM)
i. [4 points] What is the minimum number of pages that the DBMS will potentially have to read from disk to answer this query?$1 \quad \square$ 2-10 \square 11-5051-100 ≥ 101Not possible to determine
ii. [4 points] What is the maximum number of pages that the DBMS will potentially have to read from disk to answer this query?2-1011-50
51-100
$\square \geq 101$Not possible to determine

Question 2: Cuckoo Hashing

[20 points]

Consider the following cuckoo hashing schema:

1. Both tables have a size of 4 .
2. The hashing function of the first table returns the fourth and third least significant bits: $h_{1}(\mathrm{x})=(\mathrm{x} \gg 2) \& 0 \mathrm{~b} 11$.
3. The hashing function of the second table returns the least significant two bits:
$h_{2}(\mathrm{x})=\mathrm{x} \& 0 \mathrm{~b} 11$.
4. When inserting, try table 1 first.
5. When replacement is necessary, first select an element in the second table.
6. The original entries in the table are shown in the figure below.

Table 1

Table 2

Figure 1: Initial contents of the hash tables.
(a) [3 points] Select the sequence of insert operations that results in the initial state. Insert 9, insert 11Insert 11, insert 9None of the above
(b) [3 points] Insert key 16 and delete 11 . Select the resulting two tables.
\square A)

B)

Table 1	Table 2
16	
9	

\square D)

(c) [4 points] Then insert 17 followed by 10 . Select the resulting two tables.
\square A)

B)

Table 1	Table 2
17	
	16 9

\square D)

(d) [5 points] Finally, insert 33 and delete 16. Select the resulting two tables.

$\square \mathrm{A})$
Table 1 33 10

\square C)

D)

(e) [5 points] What is the smallest key that potentially causes an infinite loop given the tables in (d)?26910None of the above

Question 3: Extendible Hashing

Consider an extendible hashing structure such that:

- Each bucket can hold up to two records.
- The hashing function uses the lowest g bits, where g is the global depth.
(a) Starting from an empty table, insert keys $15,14,23,11,9$.
i. [4 points] What is the global depth of the resulting table?
0124None of the above
ii. [4 points] What is the local depth the bucket containing 15 ?01 234None of the above
iii. [4 points] What is the local depth of the bucket containing 14 ?
01234None of the above
(b) Starting from the result in (a), you insert keys $12,5,7,13,2$.
i. [4 points] Which key will first cause a split (without doubling the size of the table)?12 57132None of the above
ii. [4 points] Which key will first make the table double in size?12 5 57132None of the above
(c) Now consider the table below, along with the following deletion rules:

1. If two buckets satisfy the following:
(a) They have the same local depth d
(b) They share the first $d-1$ bits of their indexes (e.g. b010 and b110 share the first 2 bits)
(c) Their constituent elements fit in a single bucket.

Then they can be merged into a single bucket with local depth $d-1$.
2. If the global depth g becomes strictly greater than all local depths, then the table can be halved in size. The resulting global depth is $g-1$.

Figure 2: Extendible Hash Table along with the indexes of each bucket

Starting from the table above, delete keys 25, 18, 22, 27, 7.
i. [4 points] Which deletion first causes a reduction in a local depth.25 18 22 27 \square 7 None of the above
ii. [4 points] Which deletion first causes a reduction in global depth.
218
22
277 None of the above

Question 4: B+Tree

Consider the following B+tree.

Figure 3: B+ Tree of order $d=4$ and height $h=2$.

When answering the following questions, be sure to follow the procedures described in class and in your textbook. You can make the following assumptions:

- A left pointer in an internal node guides towards keys $<$ than its corresponding key, while a right pointer guides towards keys \geq.
- A leaf node underflows when the number of keys goes below $\left\lceil\frac{d-1}{2}\right\rceil$.
- An internal node underflows when the number of pointers goes below $\left\lceil\frac{d}{2}\right\rceil$.
(a) [2 points] How many pointers (parent-to-child and sibling-to-sibling) do you chase to find all keys between 9^{*} and 19*?2345 67
(b) [6 points] Insert 22^{*} into the $\mathrm{B}+$ tree, then delete 2^{*}. Select the resulting tree.
\square A)

\square B)

\square C)

$\square \mathrm{D})$

(c) [10 points] Then Insert 24^{*}. Select the resulting tree.
\square A)

B)

\square C)

\square D)

(d) [10 points] Finally, delete 23^{*}. Select the resulting tree.
\square A)

B)

\square C)

\square D)

Figure 4: B+tree with violations

The B+Tree shown in Figure 4 is invalid. That is, its nodes violate the correctness properties of $\mathrm{B}+$ Trees that we discussed in class. If the tree is invalid, select all the properties that are violated for each node. If the node is valid, then select 'None'. There will be no partial credit for missing violations.
Note: If a node's subtrees are not the same height, the balance property is violated at that node only.
i. [2 points] Which properties are violated by Leaf 1?

$$
\text { Key order property } \quad \square \text { Half-full property } \quad \square \text { Balance property }
$$Separator keys None

ii. [2 points] Which properties are violated by Leaf 2?Key order property Half-full property Balance propertySeparator keys
iii. [2 points] Which properties are violated by Internal Node?

Key order propertyHalf-full property Balance property Separator keys None
iv. [2 points] Which properties are violated by Root?

Key order property
Half-full property
Balance propertySeparator keys None

