
CARNEGIE MELLON UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

15-445/645 – DATABASE SYSTEMS (FALL 2022)
PROF. ANDY PAVLO

Homework #5 (by Chi Zhang, Tim Lee) – Solutions
Due: Thursday Dec 4, 2022 @ 11:59pm

IMPORTANT:
• Upload this PDF with your answers to Gradescope by 11:59pm on Thursday Dec 4, 2022.
• Plagiarism: Homework may be discussed with other students, but all homework is to be

completed individually.
• You have to use this PDF for all of your answers.

For your information:
• Graded out of 100 points; 4 questions total
Revision : 2022/12/08 15:59

Question Points Score

Write-Ahead Logging 25

Replication 20

Two-Phase Commit 25

Distributed Query Plan 30

Total: 100

1

http://15445.courses.cs.cmu.edu/fall2022/
https://www.cs.cmu.edu/~pavlo

15-445/645 (Fall 2022) Homework #5 Page 2 of 18

Question 1: Write-Ahead Logging . [25 points]
Consider a DBMS using write-ahead logging with physical log records with the STEAL and
NO-FORCE buffer pool management policy. Assume the DBMS executes a non-fuzzy check-
point where all dirty pages are written to disk.

Its transaction recovery log contains log records of the following form:

<txnId, objectId, beforeValue, afterValue>

The log also contains checkpoint, transaction begin, and transaction commit records.

The database contains three objects (i.e., A, B, and C).

The DBMS sees records as in Figure 1 in the WAL on disk after a crash.

Assume the DBMS uses ARIES as described in class to recover from failures.

LSN WAL Record
1 <T1 BEGIN>
2 <T1, B, 6, 7>
3 <T1, C, 42, 43>
4 <T2 BEGIN>
5 <T2, A, 33, 71>
6 <T1 COMMIT>
7 <T2, C, 43, 100>
8 <T3 BEGIN>
9 <T3, B, 7, 20>

10 <T2, C, 100, 67>
11 <CHECKPOINT>
12 <T3, B, 20, 42>
13 <T2, A, 71, 13>
14 <T2 COMMIT>
15 <T3, B, 42, 66>

Figure 1: WAL

(a) [6 points] What are the values of A, B, and C in the database stored on disk before the
DBMS recovers the state of the database?

2 A=71, B=6, C=100
2 A=13, B=66, C=67
2 A=43, B:7, C=Not possible to determine
2 A=71, B=42, C=42
2 A=Not possible to determine, B:20, C=43
2 A=43, B:20, C=Not possible to determine
■ A:Not possible to determine, B=Not possible to determine, C:67
2 A=Not possible to determine, B=20, C:Not possible to determine
2 A:71, B=Not possible to determine C=42

Question 1 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 3 of 18

2 A,B,C:Not possible to determine

Solution: The checkpoint flushed everything to disk, but then the data objects A,B were
modified by transactions after the checkpoint.
Since we are using STEAL, any dirty page could be written to disk, so therefore we
don’t know the contents of the database on disk at the crash.

(b) [3 points] What should be the correct action on T1 when recovering the database from
WAL?

2 redo all of T1’s changes
2 undo all of T1’s changes
■ do nothing to T1

Solution: T1 committed before the checkpoint. All of its changes were written to disk.
There is nothing to redo or undo.

(c) [3 points] What should be the correct action on T2 when recovering the database from
WAL?

■ redo all of T2’s changes
2 undo all of T2’s changes
2 do nothing to T2

Solution: T2 committed after the checkpont, so that means the DBMS has to redo all
of its changes.

(d) [3 points] What should be the correct action on T3 when recovering the database from
WAL?

2 redo all of T3’s changes
■ undo all of T3’s changes
2 do nothing to T3

Solution: T3 never committed. All of its changes should only be undone.

(e) [10 points] Assume that the DBMS flushes all dirty pages when the recovery process
finishes. What are the values of A, B, and C after the DBMS recovers the state of the
database from the WAL in Figure 1?

2 A=33, B=6, C=42
2 A=13, B=66, C=67
2 A=13, B=6, C=100
■ A=13, B=7, C=67
2 A=71, B=20, C=42

Question 1 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 4 of 18

2 A=33, B=42, C=100
2 A=71, B=7, C=100
2 A=13, B=42, C=67
2 A=33, B=20, C=43
2 A=71, B=66, C=43
2 A=13, B=42, C=42
2 Not possible to determine

Solution: A = 13 (rollback to the afterValue made by T2)
B = 7 (committed by T1)
C = 67 (rollback to the afterValue made by T2)

Homework #5 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 5 of 18

Question 2: Replication . [20 points]
Consider a DBMS using active-passive, master-replica replication with multi-versioned con-
currency control. All read-write transactions go to the master node (NODE A), while read-only
transactions are routed to the replica (NODE B). You can assume that the DBMS has “instant”
fail-over and master elections. That is, there is no time gap between when the master goes
down and when the replica gets promoted as the new master. For example, if NODE A goes
down at timestamp 1⃝ then NODE B will be elected the new master at 2⃝.

The database has a single table foo(id,val) with the following tuples:

id val
1 xx
2 yy
3 zz

Table 1: foo(id,val)

For each questions listed below, assume that the following transactions shown in Figure 2 are
executing in the DBMS: (1) Transaction #1 on NODE A and (2) Transaction #2 on NODE B.
You can assume that the timestamps for each operation is the real physical time of when it was
invoked at the DBMS and that the clocks on both nodes are perfectly synchronized.

time operation
1⃝ BEGIN;
2⃝ UPDATE foo SET val = ‘x’;
3⃝ UPDATE foo SET val = ‘yyy’ WHERE id = 3;
4⃝ UPDATE foo SET val = ‘z’ WHERE id = 1;
5⃝ COMMIT;

(a) Transaction #1 – NODE A

time operation
2⃝ BEGIN READ ONLY;
3⃝ SELECT val FROM foo WHERE id = 3;
4⃝ SELECT val FROM foo WHERE id = 1;
5⃝ SELECT val FROM foo WHERE id = 1;
6⃝ COMMIT;

(b) Transaction #2 – NODE B

Figure 2: Transactions executing in the DBMS.

(a) Assume that the DBMS is using asynchronous replication with continuous log streaming
(i.e., the master node sends log records to the replica in the background after the trans-
action executes them). Suppose that NODE A crashes at timestamp 5⃝ before it executes
the COMMIT operation.

i. [6 points] If Transaction #2 is running under READ COMMITTED, what is the return
result of the val attribute for its SELECT query at timestamp 5⃝? Select all that are
possible.
2 zz
2 x
2 yy
2 yyy
2 z

Question 2 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 6 of 18

■ xx
2 None of the above

Solution: READ COMMITTED means that the transaction will only see the ver-
sions that were committed. That means at 5⃝, Transaction #1 has not committed yet
so therefore Transaction #2 cannot see any of its versions.

ii. [7 points] If Transaction #2 is running under the READ UNCOMMITTED isolation level,
what is the return result of the val attribute for its SELECT query at timestamp 5⃝?
Select all that are possible.
2 zz
■ x
2 yy
2 yyy
■ z
■ xx
2 None of the above

Solution: READ UNCOMMITTED means that it will read any version of the tuple
that exists in the database. But what version of tuple 1 that the transaction will read
depends on whether the master node shipped the log record over before the query
is executed. Since we are doing continuous log shipping, we have no idea. So it
could read the version of the tuple that existed before Transaction #1 started (i.e.,
“xx”) or after Transaction #1 executed the UPDATE query at 2⃝ (i.e., “x”), or after
Transaction #1 executed the UPDATE query at 4⃝ (i.e., “z”).

(b) [7 points] Assume that the DBMS is using synchronous replication with on commit
propagation. Suppose that both NODE A and NODE B crash at exactly the same time
at timestamp 6⃝ after executing Transaction #1’s COMMIT operation. You can assume that
the application was notified that the Transaction #1 was committed successfully.
After the crash, you find that NODE A had a major hardware failure and cannot boot.
NODE B is able to recover and is elected the new master.
What are the values of the tuples in the database when the system comes back online?
Select all that are possible.
2 { (1,xx), (2,yy), (3,zz) }
2 { (1,x), (2,x), (3,x) }
2 { (1,x), (2,x), (3,yyy) }
■ { (1,z), (2,x), (3,yyy) }
2 { (1,xx), (2,x), (3,zz) }
2 { (1,xx), (2,x), (3,x) }
2 None of the above

Solution: Synchronous replication with On Commit propagation means that the replica
received the log records from the master when Transaction #1 committed. The master
sent the notification to the client that the txn committed only when it was guaranteed to
be durable on disk on the master and the replica. When the system come back on-line,

Question 2 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 7 of 18

we know that the txn was also flushed to disk on the replica. Thus, the only correct state
of the database is if Transaction #1 did execute. There cannot be any partial updates to
the database.

Homework #5 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 8 of 18

Question 3: Two-Phase Commit . [25 points]
Consider a distributed transaction T operating under the two-phase commit protocol with the
early acknowledgement optimization. Let N0 be the coordinator node, and N1, N2, N3 be the
participant nodes.

The following messages have been sent:

time message
1 N0 to N2: “Phase1:PREPARE”
2 N2 to N0: “OK”
3 N0 to N1: “Phase1:PREPARE”
4 N0 to N3: “Phase1:PREPARE”

Figure 3: Two-Phase Commit messages for transaction T

(a) [7 points] Who should send a message next at time 5 in Figure 3? Select all the possible
answers.
2 N0

■ N1

2 N2

■ N3

2 It is not possible to determine

Solution: N1 has to send a response to N0 N3 has to send a response to N0

(b) [6 points] To whom? Again, select all the possible answers.
■ N0

2 N1

2 N2

2 N3

2 It is not possible to determine

Solution: N1 has to send a response to N0 N3 has to send a response to N0

(c) [6 points] Suppose that N0 received the “ABORT” response from N1 at time 5 in Figure 3.
What should happen under the two-phase commit protocol in this scenario?
2 N0 resends “Phase1:PREPARE” to N2

2 N1 resends “OK” to N0

2 N0 sends “Phase2:COMMIT” all of the participant nodes
■ N0 sends “ABORT” all of the participant nodes
2 N0 resends “Phase1:PREPARE” to all of the participant nodes
2 It is not possible to determine

Question 3 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 9 of 18

Solution: The coordinator (N0) will mark the transaction as aborted. 2PC requires that
all participants respond with “OK”.

(d) [6 points] Suppose that N0 successfully receives all of the “OK” messages from the par-
ticipants from the first phase. It then sends the “Phase2:COMMIT” message to all of the
participants but N1 and N3 crash before they receives this message. What is the status of
the transaction T when N1 comes back on-line?
2 T ’s status is aborted
■ T ’s status is committed
2 It is not possible to determine

Solution: Once the coordinator (N0) gets a “OK” message from all participants, then
the transaction is considered to be committed even though a node may crash during the
second phase. In this example, N1 and N3 would have restore T when it comes back
on-line.

Homework #5 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 10 of 18

Question 4: Distributed Query Plan . [30 points]
The CMUDB group is working on a brand new shared-nothing distributed database system
called BusTub*. They are developing the distributed query engine.

Given the following schema:

CREATE TABLE t1(PARTITION KEY v1 int, v2 int);
CREATE TABLE t2(PARTITION KEY v3 int, v4 int);
CREATE TABLE t3(PARTITION KEY v5 int, v6 int);
CREATE TABLE t4(PARTITION KEY v7 int, v8 int);

The database system partitions the tables by key range. That is to say, each node in the system
manages rows of the table within a non-overlapping range of keys.

Given the following query:

SELECT * FROM ((t1 INNER JOIN t2 ON v1 = v3)
INNER JOIN t3 ON v3 = v5)
INNER JOIN t4 ON v6 = v7;

(a) [5 points] Assume that the query optimizer doesn’t know the ranges of data stored on
each node and only knows the tables are sharded by some keys, what are the correct
distributed query plans for this query?
■ A)

2 B)

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 11 of 18

■ C)

2 D)

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 12 of 18

2 E)

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 13 of 18

Solution: For the query optimizer, its job is to generate a query plan that works given
any schedule and any parallelism (i.e., when the range of table data to be joined are dis-
tributed on different nodes, when each fragment has different parallelism, etc.) There-
fore, the optimizer should ensure within each fragment, the execution engine can access
all data they need by inserting correct shuffles.
B and D are obviously incorrect given the left side of HashJoin v6 = v7 should be
shuffled by v6, not v5. This ensures that the node executing fragment 7 can access data
of the same range from the left join side and the right join side. If we shuffle by v5, it is
possible that the row from the left side of the join and the row from the right side of the
join cannot be matched using the condition v6 = v7.
E is incorrect because the optimizer cannot put table scan t1 and table scan t2 within
the same fragment for a shared-nothing database system. If there is one node which
contains t1 of only t1.v1 within 0 - 1000 and t2 of only t2.v3 within 1000 - 2000, the
plan cannot be executed. There must be a shuffle on either side of HashJoin v1 = v3.
A and C are correct answers. For A the optimizer adds shuffles and splits as many frag-
ments as possible. For C the optimizer merges table scan t1 and hash join v1 = v3 into
a single fragment, which is also correct in any table data distribution – fragment 2 can
simply shuffle the data using t1.v1’s distribution and send the data to the corresponding
row. Within fragment 3 in option C, data are distributed by the original distribution of
table t1.

(b) [5 points] Assume there are 3 nodes in the system and the data ranges in each node are
as follows:

t1.v1 t2.v3 t3.v5 t4.v7
Node 1 0 - 999 0 - 999 1000 - 1999 0 - 999
Node 2 1000 - 1999 1000 - 1999 0 - 999 1000 - 1999
Node 3 2000 - 2999 2000 - 2999 2000 - 2999 2000 - 2999

Table 2: Data distribution for table t1 to t4

Assume the data are shuffled by range. Which is the best and correct schedule for the
query?

2 A)

1. HashJoin v1=v3: 0-999 on node 1, 1000-1999 on node 3,
2000-2999 on node 2

2. HashJoin v3=v5: 0-999 on node 1, 1000-1999 on node 2,
2000-2999 on node 3

3. HashJoin v6=v7: 0-999 on node 1, 1000-1999 on node 2,
2000-2999 on node 3

4. Union: on node 1

2 B)

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 14 of 18

1. HashJoin v1=v3: 0-999 on node 1, 1000-1999 on node 2,
2000-2999 on node 3

2. HashJoin v3=v5: 0-999 on node 3, 1000-1999 on node 2,
2000-2999 on node 1

3. HashJoin v6=v7: 0-999 on node 1, 1000-1999 on node 2,
2000-2999 on node 3

4. Union: on node 1, 2, 3

■ C)

1. HashJoin v1=v3: 0-999 on node 1, 1000-1999 on node 2,
2000-2999 on node 3

2. HashJoin v3=v5: 0-999 on node 1, 1000-1999 on node 2,
2000-2999 on node 3

3. HashJoin v6=v7: 0-999 on node 1, 1000-1999 on node 2,
2000-2999 on node 3

4. Union: on node 1

Solution: For HashJoin v1=v3, all three nodes can perform joins locally, so we can
schedule the query as in option C and won’t need to send any data over the network.
For HahsJoin v3=v5, Node 3 can perform join locally, but Node 2 should send v5(0-999)
to Node 1 and Node 1 should send v5(1000-1999) to Node 2 before joining locally.
For HashJoin v6=v7, Node 1, 2, 3 should shuffle rows by v6 so that v6(0-999) are on
Node 1, v6(1000-1999) are on Node 2, and v6(2000-2999) are on Node 3. Note that v6
is not a partition key and therefore we have to add a shuffle anyways before the left side
of the join.
For union, data should be gathered to a single node, and then be served to the client.

(c) [5 points] Given the following assumptions:
1. t1 contains 3000 rows and v1 has all values across (0-2999)
2. t2 contains 3000 rows and v3 has all values across (0-2999)
3. t3 contains 3000 rows, v5 has all values across (0-2999) and so as v6
4. t4 contains 300 rows and v7 values are uniformly distributed across 0-2999
5. All joins produce a number of rows equal to min{cardinality of left child, cardinality
of right child}.
Using the data distribution of Table 2, how much data is expected to be transferred over
the network when executing the plan with the best schedule in question (b)? (Hint: Calcu-
late the answer by summing up all the expected (rows * columns) that would be shuffled
before each HashJoin and Union.

2 0− 5000

2 5000− 10000

■ 15000− 22000

2 22000− 40000

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 15 of 18

2 ≥ 40000

Solution: The right side shuffle of HashJoin v3=v5 requires transferring 2000 rows * 2
columns for t3 (t3.v5 within 1000 - 1999 are sent from node 1 to node 2, and t3.v5 within
0 - 999 are sent from node 2 to node 1). The left side shuffle of HashJoin v6=v7 requires
shuffling 3000 rows * 6 columns * (2/3) probability (the v6 data are evenly distributed
across 3 nodes, the expected proportion of rows that will be transferred to different
nodes is 2/3). The gather requires shuffling 300 rows * 8 columns * (2/3) probability
(the gather puts all rows to one node, so only 2/3 of the total rows are transferred to the
destination node). So the total number of expected (rows * columns) transferred is 4000
+ 12000 + 1600 = 17600.

(d) [5 points] An engineer realized that t4 is very small so they configured the table to be
stored on all nodes. Which of the following plans is correct?

2 A)

2 B)

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 16 of 18

2 C)

■ D)

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 17 of 18

Solution: Now that every node has the full content of t4, we don’t need to shuffle t4.
Within fragment 7, the data is distributed by the join key v3 / v5. Given we have some
data of HashJoin v3=v5 and full data of t4, the execution engine will be able to execute
this fragment. Option A, B, C are incorrect because we have full data on every node and
we will get a copy of table t4 on every node. This means that we will have 3 copies for
each row after shuffling.
There are many ways of making A, B, C correct. For example, if we force table scan t4
fragment to become a ”singleton” (i.e., the fragment will be scheduled on a single node
instead of all nodes containing a copy of t4), then A will be correct. If we move table
scan t4 into HashJoin v6=v7, B, C can also be correct even if the left side is not being
shuffled by the join key.

(e) [4 points] In the correct case of question (d), how much data is expected to be trans-
ferred over the network, given the same assumptions in question (c)? (Hint: Calculate
the answer by summing up all the expected (rows * columns) that would be shuffled
before each HashJoin and Union.

2 0− 5000

■ 5000− 10000

2 15000− 22000

2 22000− 40000

2 ≥ 40000

Question 4 continues. . .

15-445/645 (Fall 2022) Homework #5 Page 18 of 18

Solution: The shuffle on the right side of HashJoin v3=v5 requires transferring 2000
rows * 2 columns. The union requires shuffling 300 rows * 8 columns * (2/3) probability.
So the total number of expected (rows * columns) transferred is 5600.

(f) [6 points] The BusTub* developers decide to replicate data using multiple groups of
Multi-Paxos to ensure high availability. Here is the latest setup of the database (Range =
the range of the partition key of a table):

Range / Table t1 t2 t3 t4
0 - 999 Paxos Group 1 Paxos Group 2 Paxos Group 3 Paxos Group 10
1000 - 1999 Paxos Group 4 Paxos Group 5 Paxos Group 6 Paxos Group 10
2000 - 2999 Paxos Group 7 Paxos Group 8 Paxos Group 9 Paxos Group 10

Table 3: Paxos Group IDs

Assuming the following status of the database (L = Leader, A = Acceptor):

Node / Paxos Group 1 2 3 4 5 6 7 8 9 10
Node 1 L A A L
Node 2 A L A A L
Node 3 A A L A A L
Node 4 A A L A A L
Node 5 A A L A A
Node 6 A A L A

Table 4: Current Leader / Acceptor nodes of Paxos groups

What’s the maximum number of nodes that can go down before this query cannot be
successfully executed? (Assume reads / writes all go through the leader).

2 1
■ 2
2 3
2 4
2 5

Solution: Paxos requires at least 2 nodes to achieve consensus in a 3-node setup. If
there is only one node left for a single Paxos group, it cannot reach concensus. Note
that for queries of pure reads (as in the query in this question) we still need at least 2
nodes for a single Paxos group because if there is only one left, it cannot know whether
itself is a real leader (there might be network partition) and might serve stale or wrong
data. Therefore, we can for example kick out node 1 and 4 while the query can still be
executed.

End of Homework #5

