\
5

N
N N 3 1A H

== Intro to Database Systems (15-445/645)

2 Modern SQL

%

Carnegi\e
Mellon
University

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

LAST CLASS

We introduced the Relational Model as the
superior data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and
modify a relational database.

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SQL HISTORY

In 1971, IBM created its first relational query
language called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM

System R prototype DBMS.
— Structured English Query Language

IBM releases commercial SQL-based DBMSs:
—> System/38 (1979), SQL/DS (1981), and DB2 (1983).

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R

£CMU-DB

15-445/645 (Fall 2022)

SQL

Mappings may be composed by applying one mapping
to the result of another, as illustrated by Q3.

In 1971, IBM created
language called SQU/

Q3. Find those items sold by departments on the second floor.

SALES ° LOC (2)
ITEM DEPT DEpT FLOOR

IBM then created "S

System R prototype !
— Structured English Q

The floor 27 is first mapped to the departments located
there, and then to the items which they sell. The range
of the inner mapping must be compatible with the
domain of the outer mapping, but they need not be
identical, as illustrated by Q4.

releases comme .
El\s/irstem/% (1979), SQL/DS (1981), and DB2 (1983)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R
https://dl.acm.org/doi/10.1145/361219.361221

SQL HISTORY

ANSI Standard in 1986. ISO in 1987

— Structured Query Language

Current standard is SQL:2016

— SQL:2016 — JSON, Polymorphic tables

— SQL:2011 » Temporal DBs, Pipelined DML

— SQL:2008 — Truncation, Fancy Sorting

— SQL:2003 —» XML, Windows, Sequences, Auto-Gen IDs.
— SQL:1999 — Regex, Triggers, OO

The minimum language syntax a system needs to
L. say that it supports SQL is SQL-92.

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/files/sql/sql1992.txt

£2CMU-DB

15-445/645 (Fall 2022)

sQL HIS

’lh‘l;e"‘Rise of SQL >Jt’s become the

second programming language everyone
needs to know

BY BINA DIANE casaLian 23 AUG 2022 | 3 MIN pEap (=}

ANSI Standard in 1986. IS(Q

— Structured Query Language

SHARE THIS stoRy

A # W § jn

Tats times employers said they wanted developers with SQL skills, albeit in addition toa
TOP PROGRANAING LAcuGES more general-purpose language, boosted it to No, 1

oL

Current standard is SQL:2(
— SQL:2016 — JSON, Polymoryj
— SQL:2011 —» Tempora.l DBs,
— SQL:2008 — Truncatlc?n, Fa
— SQL:2003 - XML, W%ndo
— SQL:1999 — Regex, Trigger

So what’s behind SQL’s soar to the top? The ever-increasing use of databases, for
one. SQL has become the primary query language for accessing and managing data
stored in such databases—speciﬁc&lly relational databases, which represent data in
table form with rows and columns, Databases serve as the foundation of many
enterprise applications and are increasingly found in other places as well, for
example taking the place of traditiona} file systems in Smartphones,

“This ubiguity means that every software developer will have to interact with
databases no matter the field, and SQL is the de facto standard for interacting with
databases,” says Andy Pavlo, a professor Specializing in database Management at
the Carnegie Mellon University (CM U) School of Computer Science and a member
of the CMU database group.

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/files/sql/sql1992.txt
https://spectrum.ieee.org/the-rise-of-sql

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:

— View definition

— Integrity & Referential Constraints
— Transactions

Important: SQL is based on bags (duplicates) not

sets (no duplicates).
£ CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

TODAY'S AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Nested Queries

Common Table Expressions

Window Functions

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE DATABASE

student(sid,name, login, gpa) enrolled(sid,cid, grade)

sid name login age gpa sid cid grade

53666 | Kanye kanye@cs 44 14.0 53666 15-445 C

53688 | Bieber jbieber@cs 27 3.9 53688 15-721 A

53655 | Tupac shakur@cs 25 3.5 53688 15-826 B

53655 15-445 B

course(cid, name) 53666 [15-721 ¢

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

AGGREGATES

Functions that return a single value from a bag of

tuples:

— AVG(col)— Return the average col value.
— MIN(col)— Return minimum col value.
— MAX(col)— Return maximum col value.
— SUM(col)— Return sum of values in col.
— COUNT(col)— Return # of values for col.

$2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(logln) AS cnt

[ST V_N PRSI T TV el olo

SELECT COUNT () AS cnt

oo PR R T TV J L= loio

SELECT COUNT(1) AS cnt

Eaoa NIET TV B o= lolio

SELECT COUNT(1+1+1) AS cnt
FROM student WHERE login LIKE '%@cs'

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

MULTIPLE AGGREGATES

Get the number of students and their average GPA that
have a ‘@cs” login.

AVG(gpa) COUNT(sid)

SELECT AVG(gpa), COUNT(sid) 3.8 3

FROM student WHERE login LIKE '%@cs'

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DISTINCT AGGREGATES

COUNT, SUM, AVG support DISTINCT

Get the number of unique students that have an “@cs”
login.

SELECT COUNT(DISTINCT login) 3

FROM student WHERE login LIKE '%@cs'

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

AVG(s.gpa) e.cid

e d
FROM enrolled ASXV student AS s

SELECT AVG(s.gpa), 3.86 27?
ON e.sid = s.sid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

13

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e JOIN student AS s

ON e.sid = s.sid
GROUP BY e.cid

AVG(s.gpa) e.cid

2.46 |15-721
| 3.39 |15-826

1.89 |15-445

53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e, stud*

WHERE e.sid = s.sid
GROUP BY e.cid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid, s.name

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9
GROUP BY e.cid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid
AND avg_gpa > 3.9
GROUP BY e.cid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

£CMU-DB

15-445/645 (Fall 2022)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9; x

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

AVG(s.gpa) e.cid
3.75 15-415 avg_gpa e.cid
3.950000 [15-721 # 3.950000 | 15-721

3.900000 |15-826

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

STRING OPERATIONS

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
MSSQL Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('KaNyE') SQL92

WHERE name = "KaNyE" MySQL

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

STRING OPERATIONS

LIKE is used for string matching.
String-matching operators

— '%"' Matches any substring (including
empty strings).

— ' _" Match any one character

£CMU-DB

15-445/645 (Fall 2022)

SELECT
WHERE

* FROM enrolled AS e
e.cid LIKE '15-%'

SELECT
WHERE

* FROM student AS s
s.login LIKE '%@c_'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

STRING OPERATIONS

SQL-92 defines string functions.
— Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'

£CMU-DB

15-445/645 (Fall 2022)

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

STRING OPERATIONS

SQL standard says to use | | operator to
concatenate two or more strings together.

SELECT name FROM student SQL-92
WHERE login = LOWER(name) || '@cs'
SELECT name FROM student MSSQL

WHERE login = LOWER(name) + '@cs'

SELECT name FROM student MySQL
WHERE login = CONCAT(LOWER(name), '@cs')

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.
Support/syntax varies wildly...

Demo: Get the # of days since the beginning of
the year.

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same
types as the input.

SELECT DISTINCT cid INTO Courselds SQL92
FROM enrolled;

CREATE TABLE Courselds (MySQL
SELECT DISTINCT cid FROM enrolled);

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same
types as the input.

SELECT DISTINCT cid INTO Courselds SQL92

FROM/SELECT DISTINCT cid Postgres
INTO TEMPORARY Courselds
CREATE| FROM enrolled;

SELECT DISTINCT cid FROM enrolled);

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OUTPUT REDIRECTION

Insert tuples from query into another table:

— Inner SELECT must generate the same columns as the
target table.

— DBMSs have different options/syntax on what to do with
integrity violations (e.g., invalid duplicates).

INSERT INTO Courselds SQL-92
(SELECT DISTINCT cid FROM enrolled);

£CMU-DB

15-445/645 (Fall 2022)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

£CMU-DB

15-445/645 (Fall 2022)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of

their columns.

SELECT sid, grade FROM enrolled
WHERE cid = "15-721'
ORDER BY grade

sid grade
53123 A
53334 A
53650 B
53666 D

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled

WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'

ORDER BY 1
SELECT sid FROM enrolled %_
WHERE cid = "15-721' 53650
ORDER BY grade DESC, sid ASC gigi

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled

WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'
ORDER BY 1

SELECT sid FROM enrolled

WHSELECT sid FROM enrolled
OF WHERE cid = '"15-721"
ORDER BY grade DESC, 1 ASC

£CMU-DB

15-445/645 (Fall 2022)

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OUTPUT CONTROL

LIMIT <count> [offset]

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 20 OFFSET 10

£CMU-DB

15-445/645 (Fall 2022)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OUTPUT CONTROL

LIMIT <count> [offset]

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '%@cs'

LIMIT 70 |SELECT TOP 10 sid, name FROM student MSSQL
WHERE login LIKE '%@cs'

SELECT sid,'rrome—rrorr—ocoucr
WHERE login LIKE '%@cs'
LIMIT 20 OFFSET 10

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

Outer Query ===p|SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

£CMU-DB

15-445/645 (Fall 2022)

Inner Query

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...

T

sid in the set of people that take 15-445

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Get the names of students in '15-445

SELECT nameﬂwstudent
WHERE| sid (
SELECT|sid |FR@M™ enrolled
WHERE cid = '15-445"

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

ALL— Must satisfy expression for all rows in the
sub-query.

ANY— Must satisfy expression for at least one row
in the sub-query.

IN— Equivalent to '=ANY()'.

EXISTS— At least one row is returned without
comparing it to an attribute in outer query.

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT MAX(e.sid), s.name

FROM enrolled AS e, student AS s x
WHERE e.sid = s.sid;

This won't work in SQL-92. It runs in SQLite, but
not Postgres or MySQL (v8 with strict mode).

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student
WHERE ...

"Is the highest enrolled sid"

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student
WHERE sid is the
SELECT MAX(sid) FROM enrolled

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student m
WHERE sid IN (53688 |Bieber

SELECT MAX(sid) FROM enrolled

)

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT _sid __name FROM ctiident

WHEISELECT sid, name FROM student
s| WHERE sid IN (

) SELECT sid FROM enrolled

ORDER BY sid DESC LIMIT 1

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

£CMU-DB

15-445/645 (Fall 2022)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT _sid __name FROM ctiident

WHEISELECT sid, name FROM student

) SISELECT student.sid, name
FROM student
) JOIN (SELECT MAX(sid) AS sid
FROM enrolled) AS max_e
ON student.sid = max_e.sid;

S WHETF cid TN ([

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE

“with no tuples in the enrolled table”

cid name

15-445 Database Systems

15-721 Advanced Database Systems
15-826 Data Mining

15-799 Special Topics in Databases

£CMU-DB

15-445/645 (Fall 2022)

sid cid grade
53666 |15-445 C
53688 |15-721 A
53688 |15-826 B
53655 |15-445 B
53666 |15-721 C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(

tuples in the enrolled table

)

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTA(
SELECT * FROJ enrolled
WHERE |course.cid|= enrolled.cid

‘15—799 ‘Special Topics in Databases \

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

WINDOW FUNCTIONS

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped

into a single output tuples.
How to “slice” up data

/ Can also sort

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableNake

Aggregation Functions

S2CMU-DB Special Functions

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

WINDOW FUNCTIONS

Aggregation functions: sid cid grade | row_num
— Anything that we discussed earlier 53666 | 15-445 C 1
S . 1 . d f . . 53688 1 5_721 A
pecial window functions: R T T
— ROW_NUMBER()— # of the current row 53655 | 15-445 B 4
— RANK()— Order position of the current 53666 | 15-721 C 5
TOW.

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

WINDOW FUNCTIONS

The OVER keyword specifies how to cid sid row_number
group together tuples when 15-445 | 53666 |1

computing the window function 157445 153655 12
PN : 15-721 | 53688 |1

: 15-721 | 53666 |2
Use PARTITION BY to specify group. Ts-826 53688 |1

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

SELECT =*,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS_rank

FROM enrolled) ﬁz—égﬂking,__——i
WHERE |ranking. rank

$2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

COMMON TABLE EXPRESSIONS

Provides a way to write auxiliary statements for

use in a larger query.
— Think of it like a temp table just for one query.

Alternative to nested queries and views.

WITH |cteName |AS (
SELECT 1

)
SELECT * FROM|cteName

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names
before the AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2
)

SELECT coll + col2 FROM cteName

WITH cteName [colXXX, colXXX)| AS (
SELECT 1, 2
)

SELECT colXXX + colXXX FROM cteName

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names
before the AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2
)

SELECT coll + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2
)

SELECT * FROM cteName

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled
in at least one course.

WITH cteSource (maxId) AS (

SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student,|cteSource
WHERE student.sid = cteSource.maxId

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CTE - RECURSION

Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (

(SELECT 1)
UNION ALL
(SELECT |counterf* 1 FROM cteSource

WHERE counter < 10)

)
SELECT * FROM cteSource

Demo: CTEs!

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CONCLUSION

SQL is not a dead language.

You should (almost) always strive to compute your
answer as a single SQL statement.

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HOMEWORK #1

Write SQL queries to perform basic data analysis.
— Write the queries locally using SQLite.

— Submit them to Gradescope

— You can submit multiple times and use your best score.

Due: Sunday Sept 11" @ 11:59pm

https://15445.courses.cs.cmu.edu/fall2022/homeworkl

$2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022/homework1

NEXT CLASS

Storage Management

£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

