
Intro to Database Systems (15-445/645)

FALL
2022

Andy
Pavlo

05 Storage Models &
Compression

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2022)

A D M I N I S T R I V I A

Homework #2 is due September 25th @ 11:59pm

Project #1 is due October 2nd @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

DATA B A S E W O R K LOA D S

On-Line Transaction Processing (OLTP)
→ Fast operations that only read/update a small amount of

data each time.

On-Line Analytical Processing (OLAP)
→ Complex queries that read a lot of data to compute

aggregates.

Hybrid Transaction + Analytical Processing
→ OLTP + OLAP together on the same database instance

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

DATA B A S E W O R K LOA D S

Writes Reads

Simple

Complex

Workload Focus

O
p

e
ra

ti
o

n
 C

o
m

p
le

x
it

y

OLTP

OLAP

HTAP

Source: Mike Stonebraker

Jim Gray

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://cacm.acm.org/magazines/2011/6/108651
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://www.nap.edu/read/12473/chapter/15#82

15-445/645 (Fall 2022)

W I K I P E D I A E X A M P L E

5

CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT,
updated DATETIME

);

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT
⮱REFERENCES revisions (revID),

);

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
⋮

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O B S E R VAT I O N

The relational model does not specify that the
DBMS must store all a tuple's attributes together
in a single page.

This may not actually be the best layout for some
workloads…

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O LT P

On-line Transaction Processing:
→ Simple queries that read/update a small

amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first.

7

UPDATE useracct
SET lastLogin = NOW(),

hostname = ?
WHERE userID = ?

INSERT INTO revisions VALUES
(?,?…,?)

SELECT P.*, R.*
FROM pages AS P
INNER JOIN revisions AS R

ON P.latest = R.revID
WHERE P.pageID = ?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O L A P

On-line Analytical Processing:
→ Complex queries that read large portions

of the database spanning multiple entities.

You execute these workloads on the
data you have collected from your
OLTP application(s).

8

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM

U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

DATA S TO R AG E M O D E L S

The DBMS can store tuples in different ways that
are better for either OLTP or OLAP workloads.

We have been assuming the n-ary storage model
(aka "row storage") so far this semester.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N -A R Y S TO R AG E M O D E L (N S M)

The DBMS stores all attributes for a single tuple
contiguously in a page.

Ideal for OLTP workloads where queries tend to
operate only on an individual entity and insert-
heavy workloads.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N -A R Y S TO R AG E M O D E L (N S M)

The DBMS stores all attributes for a single tuple
contiguously in a page.

11

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N -A R Y S TO R AG E M O D E L (N S M)

12

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

Index

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header

Lecture #8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#sep-18-2019

15-445/645 (Fall 2022)

N -A R Y S TO R AG E M O D E L (N S M)

12

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

Index
INSERT INTO useracct
VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header userID userName userPass lastLoginhostnameHeader

Lecture #8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2019/schedule.html#sep-18-2019

15-445/645 (Fall 2022)

N -A R Y S TO R AG E M O D E L (N S M)

13

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

Useless Data

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N -A R Y S TO R AG E M O D E L

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple.

Disadvantages
→ Not good for scanning large portions of the table and/or

a subset of the attributes.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I T I O N S TO R AG E M O D E L (D S M)

The DBMS stores the values of a single attribute
for all tuples contiguously in a page.
→ Also known as a "column store"

Ideal for OLAP workloads where read-only
queries perform large scans over a subset of the
table’s attributes.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I T I O N S TO R AG E M O D E L (D S M)

The DBMS stores the values of a single attribute
across multiple tuples contiguously in a page.
→ Also known as a "column store".

16

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I T I O N S TO R AG E M O D E L (D S M)

The DBMS stores the values of a single attribute
across multiple tuples contiguously in a page.
→ Also known as a "column store".

16

userID

userName

userPass

DSM Disk Page

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

lastLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

DSM Disk Page

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

D E C O M P O S I T I O N S TO R AG E M O D E L (D S M)

17

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

T U P L E I D E N T I F I C AT I O N

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

18

Offsets

0
1
2
3

A B C D

Embedded Ids

A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I T I O N S TO R AG E M O D E L (D S M)

Advantages
→ Reduces the amount wasted I/O because the DBMS only

reads the data that it needs.
→ Better query processing and data compression (more on

this later).

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D S M S Y S T E M H I S TO R Y

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaseIQ (in-memory only)

2000s: Vertica, VectorWise, MonetDB

2010s: Everyone

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://dl.acm.org/citation.cfm?id=655555

15-445/645 (Fall 2022)

O B S E R VAT I O N

I/O is the main bottleneck if the DBMS fetches
data from disk during query execution.

The DBMS can compress pages to increase the
utility of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
→ Compressing the database reduces DRAM requirements.
→ It may decrease CPU costs during query execution.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

R E A L-W O R L D DATA C H A R AC T E R I S T I C S

Data sets tend to have highly skewed distributions
for attribute values.
→ Example: Zipfian distribution of the Brown Corpus

Data sets tend to have high correlation between
attributes of the same tuple.
→ Example: Zip Code to City, Order Date to Ship Date

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://en.wikipedia.org/wiki/Brown_Corpus

15-445/645 (Fall 2022)

DATA B A S E C O M P R E S S I O N

Goal #1: Must produce fixed-length values.
→ Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as
possible during query execution.
→ Also known as late materialization.

Goal #3: Must be a lossless scheme.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

LO S S L E S S V S . LO S S Y C O M P R E S S I O N

When a DBMS uses compression, it is always
lossless because people don't like losing data.

Any kind of lossy compression must be performed
at the application level.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O M P R E S S I O N G R A N U L A R I T Y

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples (DSM-only).

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N A Ï V E C O M P R E S S I O N

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011),

Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

15-445/645 (Fall 2022)

M Y S Q L I N N O D B C O M P R E S S I O N

27

16 KB

[1,2,4,8] KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Uncompressed
Page0

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Updates

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

15-445/645 (Fall 2022)

N A Ï V E C O M P R E S S I O N

The DBMS must decompress data first before it
can be read and (potentially) modified.
→ This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O B S E R VAT I O N

Ideally, we want the DBMS to operate on
compressed data without decompressing it first.

29

SELECT * FROM users
WHERE name = 'Andy'

SELECT * FROM users
WHERE name = XX

NAME SALARY

Andy 99999

Matt 88888

NAME SALARY

XX AA
YY BB

Database Magic!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O M P R E S S I O N G R A N U L A R I T Y

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples (DSM-only).

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O L U M N A R C O M P R E S S I O N

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta Encoding

Incremental Encoding

Dictionary Encoding

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

RU N - L E N G T H E N C O D I N G

Compress runs of the same value in a single
column into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

RU N - L E N G T H E N C O D I N G

33

Compressed Data

id

2

1

4

3

7

6

9

8

sex

(F,3,1)

(M,0,3)

(F,5,1)

(M,4,1)

(M,6,2)

Original Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M
RLE Triplet
- Value
- Offset
- Length

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

RU N - L E N G T H E N C O D I N G

33

Compressed Data

id

2

1

4

3

7

6

9

8

sex

(F,3,1)

(M,0,3)

(F,5,1)

(M,4,1)

(M,6,2)

RLE Triplet
- Value
- Offset
- Length

SELECT sex, COUNT(*)
FROM users
GROUP BY sex

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

RU N - L E N G T H E N C O D I N G

33

Compressed Data

id

2

1

4

3

7

6

9

8

sex

(F,3,1)

(M,0,3)

(F,5,1)

(M,4,1)

(M,6,2)

Original Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M
RLE Triplet
- Value
- Offset
- Length

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

RU N - L E N G T H E N C O D I N G

33

Compressed DataSorted Data

id

2

1

6

3

9

8

7

4

sex

M

M

M

M

M

M

F

F

id

2

1

6

3

9

8

7

4

sex

(F,7,2)

(M,0,6)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B I T- PAC K I N G E N C O D I N G

When values for an attribute are always less than
the value's declared largest size, store them as
smaller data type.

34

Original Data

int64

4
2

6
45

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B I T- PAC K I N G E N C O D I N G

When values for an attribute are always less than
the value's declared largest size, store them as
smaller data type.

34

Original Data

int64

4
2

6
45

18

5 × 64-bits =
320 bits

(5 × 8-bits)
= 40 bits

int64

00000000000000000000000000000000
00000000000000000000000000000011

00000000000000000000000000000000
00000000000000000000000000000010

00000000000000000000000000000000
00000000000000000000000000000110

00000000000000000000000000000000
00000000000000000000000000011101

00000000000000000000000000000000
00000000000000000000000000010010

Compressed Data

packed-int8

00000011
00000010

00000110
00011101

00010010

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Original Data

5 × 64-bits =
320 bits

M O S T LY E N C O D I N G

Bit-packing variant that uses a special marker to
indicate when a value exceeds largest size and then
maintain a look-up table to store them.

35

Source: Redshift Documentation

int64

4
2

6
99999999

18

Compressed Data

mostly8

4
2

6
XXX

18

offset
3

value
99999999 (5 × 8-bits) +

16-bits + 64-bits
= 120 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

15-445/645 (Fall 2022)

B I T M A P E N C O D I N G

Store a separate bitmap for each unique value for
an attribute where an offset in the vector
corresponds to a tuple.
→ The ith position in the Bitmap corresponds to the ith tuple

in the table.
→ Typically segmented into chunks to avoid allocating large

blocks of contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dbdb.io/browse?indexes=bitmap

15-445/645 (Fall 2022)

B I T M A P E N C O D I N G

37

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M

id

2

1

4

3

7

6

9

8

M

1

1

0

1

0

1

1

1

F

0

0

1

0

1

0

0

0

sex

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B I T M A P E N C O D I N G

37

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M

id

2

1

4

3

7

6

9

8

M

1

1

0

1

0

1

1

1

F

0

0

1

0

1

0

0

0

sex

9 × 8-bits =
72 bits

9 × 2-bits =
18 bits

2 × 8-bits =
16 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B I T M A P E N C O D I N G : E X A M P L E

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ 10000000 × 32-bits = 40 MB
→ 10000000 × 43000 = 53.75 GB

Every time the application inserts a
new tuple, the DBMS must extend
43,000 different bitmaps.

38

CREATE TABLE customer_dim (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),
zip_code INT

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E LTA E N C O D I N G

Recording the difference between values that
follow each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

39

Original Data

time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E LTA E N C O D I N G

Recording the difference between values that
follow each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

39

Original Data

time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

32-bits + (4 × 16-bits)
= 96 bits

5 × 32-bits
= 160 bits

32-bits + (2 × 16-bits)
= 64 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N C R E M E N TA L E N C O D I N G

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

40

Original Data

rob

robbed

robbing

robot

Common Prefix

-

rob

robb

rob

Compressed Data

rob

bed

ing

ot

0

3

4

3

Prefix
Length

Suffix

3 × 8-bits = 24 bits

6 × 8-bits = 48 bits

7 × 8-bits = 56 bits

5 × 8-bits = 40 bits

= 168 bits

3 × 8-bits = 24 bits

3 × 8-bits = 24 bits

3 × 8-bits = 24 bits

2 × 8-bits = 16 bits

= 88 bits

4 × 8-bits = 32 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D I C T I O N A R Y C O M P R E S S I O N

Build a data structure that maps variable-length
values to a smaller integer identifier.

Replace those values with their corresponding
identifier in the dictionary data structure.
→ Need to support fast encoding and decoding.
→ Need to also support range queries.

Most widely used compression scheme in DBMSs.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D I C T I O N A R Y C O M P R E S S I O N

42

SELECT * FROM users
WHERE name = 'Andy'

Original Data

name

Andrea

Prashanth

Andy

Matt

Compressed Data

SELECT * FROM users
WHERE name = 30

Prashanth

code
10

20

30

40

value
Andrea

Prashanth

Andy

Matt

name
10

20

30

40

20

D
iction

ary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E N C O D I N G / D E C O D I N G

A dictionary needs to support two operations:
→ Encode/Locate: For a given uncompressed value,

convert it into its compressed form.
→ Decode/Extract: For a given compressed value, convert

it back into its original form.

No magic hash function will do this for us.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O R D E R - P R E S E R V I N G E N C O D I N G

The encoded values need to support the same
collation as the original values.

44

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data Compressed Data

SELECT * FROM users
WHERE name BETWEEN 10 AND 20

name

Andrea

Prashanth

Andy

Matt

Prashanth

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

40

Sorted
D

iction
ary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O R D E R - P R E S E R V I N G E N C O D I N G

45

SELECT name FROM users
WHERE name LIKE 'And%'

SELECT DISTINCT name
FROM users
WHERE name LIKE 'And%'

Still must perform scan on column

Only need to access dictionary

Original Data Compressed Data

name

Andrea

Prashanth

Andy

Matt

Prashanth

code
10

20

30

40

value
Andrea

Andy

Matt

Prashanth

name
10

40

20

30

40

Sorted
D

iction
ary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O N C L U S I O N

It is important to choose the right storage model
for the target workload:
→ OLTP = Row Store
→ OLAP = Column Store

DBMSs can combine different approaches for even
better compression.

Dictionary encoding is probably the most useful
scheme because it does not require pre-sorting.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

DATA B A S E S TO R AG E

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

47

←Next

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

