05 Storage Models & Compression #### **ADMINISTRIVIA** **Homework #2** is due September 25th @ 11:59pm **Project #1** is due October 2nd @ 11:59pm #### DATABASE WORKLOADS #### On-Line Transaction Processing (OLTP) → Fast operations that only read/update a small amount of data each time. #### On-Line Analytical Processing (OLAP) → Complex queries that read a lot of data to compute aggregates. #### **Hybrid Transaction + Analytical Processing** → OLTP + OLAP together on the same database instance # Complexity **Operation** #### **DATABASE WORKLOADS** Source: Mike Stonebraker #### WIKIPEDIA EXAMPLE ``` CREATE TABLE pages (CREATE TABLE useracct (userID INT PRIMARY KEY, pageID INT PRIMARY KEY, userName VARCHAR UNIQUE, title VARCHAR UNIQUE, latest INT ♥ REFERENCES revisions (revID), CREATE TABLE revisions (revID INT PRIMARY KEY, userID INT REFERENCES useracct (userID), pageID INT REFERENCES pages (pageID), content TEXT, updated DATETIME ``` #### **OBSERVATION** The relational model does <u>not</u> specify that the DBMS must store all a tuple's attributes together in a single page. This may <u>not</u> actually be the best layout for some workloads... #### OLTP #### On-line Transaction Processing: → Simple queries that read/update a small amount of data that is related to a single entity in the database. This is usually the kind of application that people build first. ``` SELECT P.*, R.* FROM pages AS P INNER JOIN revisions AS R ON P.latest = R.revID WHERE P.pageID = ? ``` ``` UPDATE useracct SET lastLogin = NOW(), hostname = ? WHERE userID = ? ``` ``` INSERT INTO revisions VALUES (?,?...,?) ``` #### OLAP #### On-line Analytical Processing: → Complex queries that read large portions of the database spanning multiple entities. You execute these workloads on the data you have collected from your OLTP application(s). ``` SELECT COUNT(U.lastLogin), EXTRACT(month FROM U.lastLogin) AS month FROM useracct AS U WHERE U.hostname LIKE '%.gov' GROUP BY EXTRACT(month FROM U.lastLogin) ``` #### DATA STORAGE MODELS The DBMS can store tuples in different ways that are better for either OLTP or OLAP workloads. We have been assuming the <u>n-ary storage model</u> (aka "row storage") so far this semester. The DBMS stores all attributes for a single tuple contiguously in a page. Ideal for OLTP workloads where queries tend to operate only on an individual entity and insertheavy workloads. The DBMS stores all attributes for a single tuple contiguously in a page. ``` SELECT COUNT(U.lastLogin), EXTRACT(month FROM U.lastLogin) AS month FROM useracct AS U WHERE U.hostname LIKE '%.gov' GROUP BY EXTRACT(month FROM U.lastLogin) ``` #### **N-ARY STORAGE MODEL** #### **Advantages** - → Fast inserts, updates, and deletes. - \rightarrow Good for queries that need the entire tuple. #### Disadvantages → Not good for scanning large portions of the table and/or a subset of the attributes. The DBMS stores the values of a single attribute for all tuples contiguously in a page. → Also known as a "column store" Ideal for OLAP workloads where read-only queries perform large scans over a subset of the table's attributes. The DBMS stores the values of a single attribute across multiple tuples contiguously in a page. → Also known as a "column store". | Header | userID | userName | userPass | hostname | lastLogin | |--------|--------|----------|----------|----------|-----------| | Header | userID | userName | userPass | hostname | lastLogin | | Header | userID | userName | userPass | hostname | lastLogin | | Header | userID | userName | userPass | hostname | lastLogin | The DBMS stores the values of a single attribute across multiple tuples contiguously in a page. → Also known as a "column store". ``` SELECT COUNT(U.lastLogin), EXTRACT(month FROM U.lastLogin) AS month FROM useracct AS U WHERE U.hostname LIKE '%.gov' GROUP BY EXTRACT(month FROM U.lastLogin) ``` #### **TUPLE IDENTIFICATION** #### Choice #1: Fixed-length Offsets \rightarrow Each value is the same length for an attribute. #### Choice #2: Embedded Tuple Ids \rightarrow Each value is stored with its tuple id in a column. #### Offsets #### Embedded Ids #### Advantages - → Reduces the amount wasted I/O because the DBMS only reads the data that it needs. - → Better query processing and data compression (more on this later). #### Disadvantages → Slow for point queries, inserts, updates, and deletes because of tuple splitting/stitching. #### **DSM SYSTEM HISTORY** 1970s: Cantor DBMS 1980s: DSM Proposal 1990s: SybaseIQ (in-memory only) 2000s: Vertica, VectorWise, MonetDB 2010s: Everyone Yellowbrick #### **OBSERVATION** I/O is the main bottleneck if the DBMS fetches data from disk during query execution. The DBMS can <u>compress</u> pages to increase the utility of the data moved per I/O operation. Key trade-off is speed vs. compression ratio - → Compressing the database reduces DRAM requirements. - → It may decrease CPU costs during query execution. #### **REAL-WORLD DATA CHARACTERISTICS** Data sets tend to have highly <u>skewed</u> distributions for attribute values. → Example: Zipfian distribution of the <u>Brown Corpus</u> Data sets tend to have high <u>correlation</u> between attributes of the same tuple. → Example: Zip Code to City, Order Date to Ship Date #### **DATABASE COMPRESSION** Goal #1: Must produce fixed-length values. → Only exception is var-length data stored in separate pool. **Goal #2:** Postpone decompression for as long as possible during query execution. → Also known as <u>late materialization</u>. Goal #3: Must be a lossless scheme. #### LOSSLESS VS. LOSSY COMPRESSION When a DBMS uses compression, it is always **lossless** because people don't like losing data. Any kind of <u>lossy</u> compression must be performed at the application level. #### **COMPRESSION GRANULARITY** #### Choice #1: Block-level \rightarrow Compress a block of tuples for the same table. #### Choice #2: Tuple-level → Compress the contents of the entire tuple (NSM-only). #### Choice #3: Attribute-level - \rightarrow Compress a single attribute within one tuple (overflow). - → Can target multiple attributes for the same tuple. #### Choice #4: Column-level → Compress multiple values for one or more attributes stored for multiple tuples (DSM-only). # NAÏVE COMPRESSION Compress data using a general-purpose algorithm. Scope of compression is only based on the data provided as input. → <u>LZO</u> (1996), <u>LZ4</u> (2011), <u>Snappy</u> (2011), <u>Oracle OZIP</u> (2014), <u>Zstd</u> (2015) #### Considerations - → Computational overhead - → Compress vs. decompress speed. # MYSQL INNODB COMPRESSION # NAÏVE COMPRESSION The DBMS must decompress data first before it can be read and (potentially) modified. \rightarrow This limits the "scope" of the compression scheme. These schemes also do not consider the high-level meaning or semantics of the data. #### **OBSERVATION** Ideally, we want the DBMS to operate on compressed data without decompressing it first. SELECT * FROM users WHERE name = 'Andy' SELECT * FROM users WHERE name = XX | NAME | SALARY | |------|--------| | Andy | 99999 | | Matt | 88888 | | NAME | SALARY | |------|--------| | XX | AA | | YY | BB | #### **COMPRESSION GRANULARITY** #### Choice #1: Block-level \rightarrow Compress a block of tuples for the same table. #### Choice #2: Tuple-level → Compress the contents of the entire tuple (NSM-only). #### Choice #3: Attribute-level - \rightarrow Compress a single attribute within one tuple (overflow). - → Can target multiple attributes for the same tuple. #### Choice #4: Column-level → Compress multiple values for one or more attributes stored for multiple tuples (DSM-only). #### **COLUMNAR COMPRESSION** Run-length Encoding Bit-Packing Encoding Bitmap Encoding Delta Encoding Incremental Encoding Dictionary Encoding #### **RUN-LENGTH ENCODING** Compress runs of the same value in a single column into triplets: - \rightarrow The value of the attribute. - \rightarrow The start position in the column segment. - \rightarrow The # of elements in the run. Requires the columns to be sorted intelligently to maximize compression opportunities. #### **RUN-LENGTH ENCODING** #### Original Data #### Compressed Data | id | sex | |----|-------------| | 1 | (M,0,3) | | 2 | (F,3,1) | | 3 | (M,4,1) | | 4 | (F,5,1) | | 6 | (M,6,2) | | 7 | RLE Triplet | | 8 | - Value | | 9 | - Offset | | | - Length | ### **RUN-LENGTH ENCODING** SELECT sex, COUNT(*) FROM users GROUP BY sex #### Compressed Data | id | sex | |----|-------------| | 1 | (M,0,3) | | 2 | (F,3,1) | | 3 | (M,4,1) | | 4 | (F,5,1) | | 6 | (M,6,2) | | 7 | RLE Triplet | | 8 | - Value | | 9 | - Offset | | | - Length | # **RUN-LENGTH ENCODING** ### Original Data # **RUN-LENGTH ENCODING** #### Sorted Data | id | sex | |----|---------| | 1 | (M,0,6) | | 2 | (F,7,2) | | 3 | | | 6 | | | 8 | | | 9 | | | 4 | | | 7 | | # **BIT-PACKING ENCODING** When values for an attribute are always less than the value's declared largest size, store them as smaller data type. #### Original Data ### **BIT-PACKING ENCODING** When values for an attribute are always less than the value's declared largest size, store them as smaller data type. #### Original Data 5 × 64-bits = 320 bits #### Compressed Data $(5 \times 8$ -bits) = 40 bits #### **MOSTLY ENCODING** Bit-packing variant that uses a special marker to indicate when a value exceeds largest size and then maintain a look-up table to store them. #### Compressed Data (5 × 8-bits) + 16-bits + 64-bits = 120 bits # **BITMAP ENCODING** Store a separate bitmap for each unique value for an attribute where an offset in the vector corresponds to a tuple. - \rightarrow The ith position in the Bitmap corresponds to the ith tuple in the table. - → Typically segmented into chunks to avoid allocating large blocks of contiguous memory. Only practical if the value cardinality is low. Some DBMSs provide <u>bitmap indexes</u>. # **BITMAP ENCODING** # Original Data | | se | ex | |----|----|----| | id | М | F | | 1 | 1 | 0 | | 2 | 1 | 0 | | 3 | 1 | 0 | | 4 | 0 | 1 | | 6 | 1 | 0 | | 7 | 0 | 1 | | 8 | 1 | 0 | | 9 | 1 | 0 | | | | | ### **BITMAP ENCODING** # Original Data ### BITMAP ENCODING: EXAMPLE Assume we have 10 million tuples. 43,000 zip codes in the US. - \rightarrow 10000000 × 32-bits = 40 MB - \rightarrow 10000000 × 43000 = 53.75 GB Every time the application inserts a new tuple, the DBMS must extend 43,000 different bitmaps. ``` CREATE TABLE customer_dim (id INT PRIMARY KEY, name VARCHAR(32), email VARCHAR(64), address VARCHAR(64), zip_code INT); ``` ## **DELTA ENCODING** Recording the difference between values that follow each other in the same column. - \rightarrow Store base value in-line or in a separate look-up table. - → Combine with RLE to get even better compression ratios. #### **DELTA ENCODING** Recording the difference between values that follow each other in the same column. - \rightarrow Store base value in-line or in a separate look-up table. - → Combine with RLE to get even better compression ratios. ### INCREMENTAL ENCODING Type of delta encoding that avoids duplicating common prefixes/suffixes between consecutive tuples. This works best with sorted data. ### DICTIONARY COMPRESSION Build a data structure that maps variable-length values to a smaller integer identifier. Replace those values with their corresponding identifier in the dictionary data structure. - → Need to support fast encoding and decoding. - → Need to also support range queries. Most widely used compression scheme in DBMSs. ### **DICTIONARY COMPRESSION** SELECT * FROM users WHERE name = 'Andy' SELECT * FROM users WHERE name = 30 #### Original Data #### Compressed Data | | name | |---|------| | | 10 | | | 20 | | | 30 | | | 40 | | I | 20 | | value | code | |-----------|------| | Andrea | 10 | | Prashanth | 20 | | Andy | 30 | | Matt | 40 | Dictionary # **ENCODING / DECODING** - A dictionary needs to support two operations: - → **Encode/Locate:** For a given uncompressed value, convert it into its compressed form. - → **Decode/Extract:** For a given compressed value, convert it back into its original form. No magic hash function will do this for us. ### ORDER-PRESERVING ENCODING The encoded values need to support the same collation as the original values. SELECT * FROM users WHERE name LIKE 'And%' SELECT * FROM users WHERE name BETWEEN 10 AND 20 #### Original Data | | name | |---|------| | | 10 | | L | 40 | | L | 20 | | L | 30 | | Γ | 40 | | value | code | 1 | |-----------|------|---| | Andrea | 10 | | | Andy | 20 | | | Matt | 30 | | | Prashanth | 40 | | ### ORDER-PRESERVING ENCODING SELECT name FROM users WHERE name LIKE 'And%' Still must perform scan on column SELECT DISTINCT name FROM users WHERE name LIKE 'And%' Only need to access dictionary #### Original Data | name | |------| | 10 | | 40 | | 20 | | 30 | | 40 | | value | code | | |-----------|------|--| | Andrea | 10 | | | Andy | 20 | | | Matt | 30 | | | Prashanth | 40 | | ### CONCLUSION It is important to choose the right storage model for the target workload: - \rightarrow OLTP = Row Store - \rightarrow OLAP = Column Store DBMSs can combine different approaches for even better compression. Dictionary encoding is probably the most useful scheme because it does not require pre-sorting. # **DATABASE STORAGE** **Problem #1:** How the DBMS represents the database in files on disk. **Problem #2:** How the DBMS manages its memory and move data back-and-forth from disk.