
Intro to Database Systems (15-445/645)

FALL
2022

Andy
Pavlo

08 B+Tree Index

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2022)

A D M I N I S T R I V I A

Homework #2 is due September 25th @ 11:59pm

Project #1 is due October 2nd @ 11:59pm
→ Q&A Session: TONIGHT @ 8:00pm
→ Special Office Hours: Saturday October 1st @ 3pm-5pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

DATA S T RU C T U R E S

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TA B L E I N D E X E S

A table index is a replica of a subset of a table's
attributes that are organized and/or sorted for
efficient access using those attributes.

The DBMS ensures that the contents of the table
and the index are logically synchronized.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TA B L E I N D E X E S

It is the DBMS's job to figure out the best
index(es) to use to execute each query.

There is a trade-off regarding the number of
indexes to create per database.
→ Storage Overhead
→ Maintenance Overhead

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO DAY ' S AG E N DA

B+Tree Overview

Use in a DBMS

Design Choices

Optimizations

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/citation.cfm?doid=356770.356776

15-445/645 (Fall 2022)

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/citation.cfm?id=319663

15-445/645 (Fall 2022)

B + T R E E

A B+Tree is a self-balancing tree data structure
that keeps data sorted and allows searches,
sequential access, insertions, and deletions always
in O(log n).
→ Generalization of a binary search tree, since a node can

have more than two children.
→ Optimized for systems that read and write large blocks of

data.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E P RO P E RT I E S

A B+Tree is an M-way search tree with the
following properties:
→ It is perfectly balanced (i.e., every leaf node is at the same

depth in the tree)
→ Every node other than the root is at least half-full

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E E X A M P L E

10

Leaf Nodes

<5 <9 ≥9

Inner Node

<value>|<key>

Sibling Pointers

6 7 9 131 3

5 9<node*>|<key>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N O D E S

Every B+Tree node is comprised of an array of
key/value pairs.
→ The keys are derived from the attribute(s) that the index

is based on.
→ The values will differ based on whether the node is

classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B+Tree Leaf Node

B + T R E E L E A F N O D E S

12

Key+ Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B+Tree Leaf Node

B + T R E E L E A F N O D E S

12

Key+ Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B+Tree Leaf Node

B + T R E E L E A F N O D E S

12

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values

¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

L E A F N O D E VA L U E S

Approach #1: Record IDs
→ A pointer to the location of the tuple to

which the index entry corresponds.

Approach #2: Tuple Data
→ The leaf nodes store the actual contents of

the tuple.
→ Secondary indexes must store the Record

ID as their values.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B -T R E E V S . B + T R E E

The original B-Tree from 1972 stored keys and
values in all nodes in the tree.
→ More space-efficient, since each key only appears once in

the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E – I N S E RT

Find correct leaf node L.
Insert data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

15

Source: Chris Re

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2022)

B + T R E E V I S UA L I Z AT I O N

https://cmudb.io/btree

Source: David Gales (Univ. of San Francisco)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://cmudb.io/btree
https://www.cs.usfca.edu/~galles/

15-445/645 (Fall 2022)

B + T R E E – D E L E T E

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

18

Source: Chris Re

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.

Example: Index on <a,b,c>
→ Supported (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Supported: (b=2), (c=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

20

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D D,A

A ≤ A
B ≤ C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

20

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D D,A

Find Key=(A,*) A ≤ A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

20

Find Key=(A,B)

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D D,A

Find Key=(A,*) A ≤ A

(A,*) ≤ (B,*)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

20

Find Key=(A,B)

Find Key=(*,A) A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D D,A

*,A < *,CFind Key=(A,*)

(A,A) ∅(A,A)
(B,A)

(D,A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

Example: Index on <col1,col2,col3>
→ Column Values: {A,B,C,D}
→ Supported: col2 = B

21

[AAA,ABA)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

Example: Index on <col1,col2,col3>
→ Column Values: {A,B,C,D}
→ Supported: col2 = B

21

[AAA,ABA)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

Example: Index on <col1,col2,col3>
→ Column Values: {A,B,C,D}
→ Supported: col2 = B

21

[ABA,ABD)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

Example: Index on <col1,col2,col3>
→ Column Values: {A,B,C,D}
→ Supported: col2 = B

21

[ABD,ACC)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

Example: Index on <col1,col2,col3>
→ Column Values: {A,B,C,D}
→ Supported: col2 = B

21

[ACC,ADB)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C O N D I T I O N S

Example: Index on <col1,col2,col3>
→ Column Values: {A,B,C,D}
→ Supported: col2 = B

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E – D U P L I C AT E K E Y S

Approach #1: Append Record ID
→ Add the tuple's unique Record ID as part of the key to

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain

the duplicate keys.
→ This is more complex to maintain and modify.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E – A P P E N D R E C O R D I D

23

<5 <9 ≥9

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E – A P P E N D R E C O R D I D

23

<5

6 7 8 9 131 3

5 9

<Key,RecordId>

Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E – OV E R F LO W L E A F N O D E S

24

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E – OV E R F LO W L E A F N O D E S

24

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E – OV E R F LO W L E A F N O D E S

24

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C L U S T E R E D I N D E X E S

The table is stored in the sort order specified by
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will

automatically make a hidden primary key.

Other DBMSs cannot use them at all.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C L U S T E R E D B + T R E E

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than sorting
data for each query.

26

Table Pages

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C L U S T E R E D B + T R E E

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than sorting
data for each query.

26

Table Pages

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N D E X S C A N PAG E S O RT I N G

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

27

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B + T R E E D E S I G N C H O I C E S

Node Size

Merge Threshold

Variable-Length Keys

Intra-Node Search

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/citation.cfm?id=2185842

15-445/645 (Fall 2022)

N O D E S I Z E

The slower the storage device, the larger the
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

M E RG E T H R E S H O L D

Some DBMSs do not always merge nodes when
they are half full.

Delaying a merge operation may reduce the
amount of reorganization.

It may also be better to just let smaller nodes exist
and then periodically rebuild entire tree.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

VA R I A B L E - L E N G T H K E Y S

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable-Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value

list within the node.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

32

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O P T I M I Z AT I O N S

Prefix Compression

Deduplication

Suffix Truncation

Pointer Swizzling

Bulk Insert

Buffer Updates

Many more…

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P R E F I X C O M P R E S S I O N

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

34

robbed robbing robot

bed bing ot

Prefix: rob

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E D U P L I C AT I O N

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed
for hash tables).

35

K1 V1 K1 V2 K1 V3 K2 V4

K1 V1 V2 V3 K2 V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S U F F I X T RU N C AT I O N

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

36

abcdefghijk lmnopqrstuv

… …… …

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S U F F I X T RU N C AT I O N

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

36

… …… …

abc lmn

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

37

6 9

6 71 3

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

37

6 9

6 71 3

Page #2

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Page #2 → <Page*>

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

37

6 9

6 71 3

Page #2

Page #3

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Page #2 → <Page*>
Page #3 → <Page*>

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

37

6 9

6 71 3

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Find Key>3

<Page*>

<Page*>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B U L K I N S E RT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

38

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E M O

B+Tree vs. Hash Indexes

Table Clustering

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O N C L U S I O N

The venerable B+Tree is (almost) always a good
choice for your DBMS.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N E X T C L A S S

Index Concurrency Control

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

