\
5

SN ey
Intro to Database Systems (15 445/645)

08 B+Tree Index

Carnegie
Mellon
University

%

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ADMINISTRIVIA

Homework #2 is due September 25® @ 11:59pm

Project #1 is due October 2™ @ 11:59pm
— Q&A Session: TONIGHT @ 8:00pm
— Special Office Hours: Saturday October 1°* @ 3pm-5pm

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DATA STRUCTURES

Internal Meta-data
Core Data Storage
Temporary Data Structures

Table Indexes

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

TABLE INDEXES

A table index is a replica of a subset of a table's
attributes that are organized and/or sorted for
efficient access using those attributes.

The DBMS ensures that the contents of the table
and the index are logically synchronized.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

TABLE INDEXES

[t is the DBMS's job to figure out the best
index(es) to use to execute each query.

There is a trade-off regarding the number of

indexes to create per database.
— Storage Overhead
— Maintenance Overhead

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

TODAY'S AGENDA

B+Tree Overview
Use in a DBMS
Design Choices
Optimizations

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)

— B+Tree (1973)

— B*Tree (1977?)

— Blink_-Tree (1981)

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

££CMU-DB

15-445/645 (Fall 2022)

B-TREE FAMIL

There is a specific data structure ca

People also use the term to general
class of balanced tree data structur

— B-Tree (1971)

— B+Tree (1973)

— B*Tree (1977?)
— Blink_Tree (1981)

The Ubiquitous B-Tree

DOUGLAS COMER
Computer Science Department, Purdye Unuwersity, West Lafayette, Indiana 47907

B-trees have become, de facto, & standard for file organization. File indexes of users,

dedicated database systems, and general.

and implemented using B-trees This paper reviews B-trees and shows why they have
been so successful It discusses the major variations of the B-tree, especially the B*-tree,
contrasting the relative merits and costs of each implementation, It illustrates a general
Ppurpose access method which uses 5 B-tree,

Keywords and Phrases: B-tree, B*-tree, B-tree, file organization, index

CR Categores: 3.73 374433434

INTRODUCTION

computer must retrieve an item and place
it in main memory before it cayn be pro-
cessed. In order to make good use of the

P re S, One must ize files
intelligently, making the retrieval process
efficient.

Sequential: “From our employee file, pre-
pare a list of all employees’
names and addresses,” and

Random: “From our employee file, ex-
tract the information about
employee J. Smith”.

We can imagine a filing cabinet with three

drawers of folders, one folder for each em.

ployee. The drawers might be labeled “A-

G,” “H-R,” and “8-Z," while the folders

might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item, Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file s large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmast
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

Permission to copy without fee all oy part of this material is granted provided that the Copies are not made or
distri for direct ial ad

date appear, and notice 1s given that <opying is by

ge, the ACM copyright notice and the title of the publication and its
i ission of the A r G g Machi

intion fo . To

copy otherwise, or to republish, requires a fee and/or specific permission,

© 1979 ACM 0010-4892,/79,/0600-0127 $00 5

Computing Surveys, Vol 11, No 2, June 1978

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/citation.cfm?doid=356770.356776

Efficient Locking for Concurrent Operations
on B-Trees

B-TREE FAMI
PHILIP L. LEHMAN
Carnegie-Melion University
and

S. BING YAO

Purdue University

“EB-!nelndiavlrilnhl.nvab&nfwndhbehkhlymﬁd(both‘hwmi‘aﬂylndinpl‘uﬁu)
fwwhnwhdmhmdmmwymwmnpdom. We examine the

There is a specific data structure c

Key Words and Phrases: database, data Structures, B-tree, ind, i Igorith,
concurrency controls, locking Protocols, correctness, consistency, multiway search trees
CR Categories: 373,3.74, 4.32, 4.33,4.34,5.24

People also use the term to gener
class of balanced tree data structu

— B-Tree (1971)

— B+Tree (1973)
—s B*Tree (1977?)
— Blink_Tree (1981)

1. INTRODUCTION

n, ially on Y storage
devices [7). The Buaranteed small (average) search, insertion, and deletion time
for these structures makes them quite g ling for datab, licati

ly and ly by several . In this
paper, we consider g simple variant of the B-tree (actually of the B*-tree,
Proposed by Wedekingd [15)) especially well suited for use in a concurrent database
system.

Methods for concurrent operations on B*-trees have been discussed by Bayer
and Schkolnick [3] and others [6, 12, 13). The solution given in the current paper

Pel"lm'-n'on!ompywiﬂ!wlfulﬂorpﬂnoﬂhilmw'-mhdpmvidedﬂulﬂhcopiulrenn(
made or distributed for direct commercial advantage, the ACM COPYTight notice and the title of the
publication and its date appear, and notice is given that copying s b permission of the Association
for Compulin‘ Machinery. To copy otherwise, or to Tepublish, requires g fee and/or specific
Ppermission,

This research was Supported by the National Science Foundation under Grant MCS76-16604,
Authors’ present P. L. Lel t of Computer , Carnegie-Mellon
University, Pittsburgh, pA 16213; 8. B. Yao, Department of Computer Science and College of Business
and 'gement, University of Maryland, College Park, MD 20742

©1981 ACM oesz-sexs/slllmm $00.75

ACM Transactions on Database Systems, Vol. 6, No, 4, December 1981, Pages 650-670,

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/citation.cfm?id=319663

B+TREE

A B+Tree is a self-balancing tree data structure
that keeps data sorted and allows searches,

sequential access, insertions, and deletions always

in O(log n).

— Generalization of a binary search tree, since a node can
have more than two children.

— Optimized for systems that read and write large blocks of
data.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE PROPERTIES

A B+Tree is an M-way search tree with the

following properties:

— It is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)

— Every node other than the root is at least half-full
M/2-1 < #keys < M-1

— Every inner node with k keys has k+1 non-null children

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE EXAMPLE

------------- Inner Node
<node*>|<key>| TS
;/ = R
X
"""" TH3 6 (|7 9 (|13
“““““““ A/ N

““““““““ Sibling Pointers Leaf Nodes
<va1ue>|<key>

£2CMU-DB

15-445/645 (Fall 2022)

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NODES

Every B+Tree node is comprised of an array of

key/value pairs.

— The keys are derived from the attribute(s) that the index
is based on.

— The values will differ based on whether the node is
classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

12

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
* t PagelD 4—| o | K7 | V7 |leeel kn | Vn | no I—bPageID
el o v
Key+Value

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

12

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
* t PagelD 4—| o | K7 | o |eee kn | u o I—bPageID
el o v
Key+Value

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev Next
| # # n o
:)
Sorted Keys
y ¥ y L K1l | K2 | K3 | K4 | K5 |*®° Kn
sy ¥ ¥ ¥ i
o o o o 0o |eee

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE VALUES

Microsoft®

Approach #1: Record IDs

— A pointer to the location of the tuple to
which the index entry corresponds.

Approach #2: Tuple Data —
— The leaf nodes store the actual contents of ?SQL e :ﬁ SQL Server

the tuple.

— Secondary indexes must store the Record RMH sQL ORACLE

ID as their values.

££CMU-DB

15-445/645 (Fall 2022)

@) PostgreSQL \lﬁ SQL Server

ORACLE

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys and

values in all nodes in the tree.
— More space-efficient, since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15

B+TREE - INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.

[f L has enough space, done!

Otherwise, split L keys into L and a new node L2
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

£ CMU-DB Source: Chris Re

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREE VISUALIZATION

https://cmudb.io/btree

Source: David Gales (Univ. of San Francisco)

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://cmudb.io/btree
https://www.cs.usfca.edu/~galles/

18

B+TREE - DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only M/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

£ CMU-DB Source: Chris Re

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

19

SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.
Example: Index on <a, b, c>

— Supported (a=1 AND b=2 AND c=3)

— Supported: (a=1 AND b=2)
— Supported: (b=2), (¢c=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Find Key=(A,B)

A <A
B=<C
A,C||B,B||C,C
A,Al (A,B A,C|[B,A B,B| (B,C

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

A,A

A,B

C,C

C,D

D,A

*

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)

_—

A,A

A,B

C,C

C,D

D,A

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Find Key=(A,B)
Find Key=(A,*)
Find Key=(*,A)

_—

*,A < %,C

AC

B,B

C,C

~ [

AA|[A,B A,C| [B,A B,B| [B,C c,c||c,D||p,A
(A,A) (A,A) 2 (D,A)
(B,A)

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

21

[AAA,ABA)

EN N —{ [oo] [oca] oo |

(Asn [aacaaD | [ABA [ABB[ABC| [ABD [AcA [ACB | [Acc]ACD[ADA| [ADB [ADC[BAB | [BAD |BBA[BBC| [BCA[BcB [Bec | [BCD[BDA[BDC| [BDD [cAB[cAD | [cBa [cBB [cac| [cmD [ccafocc| [ocp [coa[coB| [coc]pas [Dac) D4 [oB [oac | [Dca [DcB [poc] [Dop |ooc oo |

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

21

[AAA,ABA)

| L] [a0] Jacc] |

[4B SSSTAnD | [ABA [ABB [ABC| [ABD [ACA[AGB | [AcC[ACD [ADA| [ADB [ADC [BAB | [DAD[BBA[BBC | [BCA[BCB [BCC| [BCD[BDA|BDC| [BDD]CAB [CAD | [cBA[cB [cac | [caD [oca [ccc| [cco [coa]coB | [coc [DAB [Dac| |Dap [mBB [DBC| [Dca[DcB [Dec| [Dcp[poc oD |

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

21

[ABA, ABD)
S 1

Yo (i) [@hiTE) e [mw

B3C | [BCA[BcB [Bc | [BeD [BDABOC) [B0D [cAB [caD | [cBA [cmB [cae | [cmD[oca Joce | [oco [coa[coB| [coc s [DAc | [DaD DB [DBC | [DCA[DCB]DoC| [DCD [DOC [D0D |

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

21

[ABD, ACC)

Y gl

[

—{ [soa] [Jacc] | = = —{ [oo] [oca] oo |

P’_‘A_CB—‘ Acc [AD [ADA | [ADB [ADC [BAB | [BAD [BBA [BBC | [BCA [BcB [BC | [BCD [BDA[BC| [B0D [cAB [cap | [cBA [cmB [cac | [cn[ocaJocc | [oco [coalcoB) [coc|Das [pac | [Dap D83 [DBC | [DCA[DCB]DOC] [DCD | DOC |DDD |

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

[ACC,ADB)

¥y
D @ier gl g

[Acc S8 anA | [ADB [ADC [BAB | [BAD |BBA [BBC | [BCA[BcB [Bec | [BCD | BA[BDC| [BDD [cAB [cAD | [cB [ce [cac | [cmp [ccafocc| [ocp [coa[coB] [coc[pas [Dac| D4 [oB [oac | [Dca |DcB [poc] [Dop |ooc oo |

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SELECTION CONDITIONS

Example: Index on <col1,co0l2,co0l3>

— Column Values: {A,B,C,D}
— Supported: col2 = B

@» alE

i £
[| [N [|

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE - DUPLICATE KEYS

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE - APPEND RECORD ID

Insert <6, (Page,Slot)>

5|9
<5 <9/ >9
O\
““““ 11 3 6l 7|8 9 (|13
““““““ R

<Key, RecordId>

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE - APPEND RECORD ID

Insert <6, (Page,Slot)>

5 7 9
<5 <7/ \<9\\29
N\ N
““““ 113 6|6 7|8
““““““““ _J

<Key, RecordId>

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE - OVERFLOW LEAF NODES

Insert 6
5[] 9
<5 <7/ >9
O\ O\
1{|3 6(|7]|8 9 (|13
R

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE - OVERFLOW LEAF NODES

Insert 6
5([9
Insert 7 <5 <7/ >Q
I (X
1|3 6(|7]|8 9 (|13
"~/

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE - OVERFLOW LEAF NODES

Insert 6
5 9
Insert 7 <5 <7 >9
Insert 6 7N\ / "
1 3 6 7 8 91113
R

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
— [f a table does not contain a primary key, the DBMS will
automatically make a hidden primary key.

Other DBMSs cannot use them at all.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

26

CLUSTERED B+TREE

Index

Traverse to the left-most leaf page Rirecss oret) ‘ Data iries
. equence se

and then retrieve tuples from all leaf

pages. .

This will always be better than sorting
data for each query.

Table Pages

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than sorting
data for each query.

£2CMU-DB

15-445/645 (Fall 2022)

Table Pages

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

INDEX SCAN PAGE SORTING

Scan Direction

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

The DBMS can first figure out all the

. 102

tuples that it needs and then sort them 103
based on their Page ID. 104
o

102

101

103

104

103

£2CMU-DB

15-445/645 (Fall 2022)

—_—— e e e e L

SO0

AR DRWWWNNNN—=—

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search

££CMU-DB

15-445/645 (Fall 2022)

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://dl.acm.org/citation.cfm?id=2185842

NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

MERGE THRESHOLD

Some DBMSs do not always merge nodes when

they are half full.

Delaying a merge operation may reduce the
amount of reorganization.

[t may also be better to just let smaller nodes exist
and then periodically rebuild entire tree.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

VARIABLE-LENGTH KEYS

Approach #1: Pointers
— Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable-Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value

list within the node.
£CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

£2CMU-DB

15-445/645 (Fall 2022)

Find Key=8
a|[5||e||l7]| 8] 9]l
4|[5]|6]7 9 (|10

_E

Offset: (8-4)*7/(10-4)=4

4

5

6

7

9

10

_ B

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert

Buffter Updates
Many more...

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store

only unique suffix for each key.
— Many variations.

£2CMU-DB

15-445/645 (Fall 2022)

34

robbed ||robbing|| robot
Prefix: rob
bed [[bing|| ot

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a list of tuples with
that key (similar to what we discussed

for hash tables).

£2CMU-DB

15-445/645 (Fall 2022)

35

K1]Vl]| K1]|V2]K1]|V3]|K2]|V4
K1]Vl]|V2]V3]|K2]|V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

£2CMU-DB

15-445/645 (Fall 2022)

abcdefghijk

1mnopqrstuv|]

\\

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

£2CMU-DB

15-445/645 (Fall 2022)

abc

1mn|

5 Y4s

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

£CMU-DB

15-445/645 (Fall 2022)

Find Key>3

37

| ERIER

Buffer Pool

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

POINTER SWIZZLING
Find Key>3

Nodes use page ids to reference other
nodes in the index. The DBMS must S
get the memory location from the

page table during traversal.

[]
[]
L]
L]
L]
L)
-
-
.
’0
.
L] v,
*

Page #2 » <Page*>

[f a page is pinned in the buffer pool,
then we can store raw pointers

instead of page ids. This avoids
address lookups from the page table.

Buffer Pool<-""

£CMU-DB

15-445/645 (Fall 2022)

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

37

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

£CMU-DB

15-445/645 (Fall 2022)

Page #2

Find Key>3
6 (|9

Page #3

Page #2 » <Page*>
Page #3 » <Page*>

Buffer Pool«----.........

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

£CMU-DB

15-445/645 (Fall 2022)

<Page*>

<Page*>

IIIII-I‘IBII-I

Find Key>3

6

9

Buffer Pool

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first Keys: 3,7,9,13,6, 1
sort the keys and then build the index sorted Keys: 1, 3, 6, 7, 9, 13

from the bottom up.
6
/ %
6

"/

\

—_
w

(

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DEMO

B+Tree vs. Hash Indexes
Table Clustering

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NEXT CLASS

Index Concurrency Control

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

