\

g

\\\\\\.\ = | | f\l\ \
- &2 Intro to Database Systems (15-445/645)

09 Index Concurrency
Control

%

Carnegie
Mellon
University

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ADMINISTRIVIA

Project #1 is due October 2™ @ 11:59pm
— Special Office Hours: Saturday October 1°* @ 3pm-5pm

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OBSERVATION

We (mostly) assumed all the data structures that
we have discussed so far are single-threaded.

But a DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

They Don't Do This!

VOLTDB .
& redis Wotre

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://voltdb.com/
https://redis.io/

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching
Leaf Node Scans

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LOCKS VS. LATCHES

Locks

— Protect the database's logical contents from other txns.
— Held for txn duration.
— Need to be able to rollback changes.

Latches

— Protect the critical sections of the DBMS's internal data
structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LOCKS VS. LATCHES

m/‘ Locks

Latches

Separate... User Transactions
Protect... Database Contents
During... Entire Transactions

Modes... Shared, Exclusive, Update,
Intention

Deadlock Detection & Resolution
...by... Waits-for, Timeout, Aborts
Keptin... Lock Manager

£2CMU-DB

15-445/645 (Fall 2022)

Threads
In-Memory Data Structures

Critical Sections

Read, Write

Avoidance
Coding Discipline

Protected Data Structure

Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15445.courses.cs.cmu.edu/fall2021/schedule.html#oct-27-2021

LATCH MODES

Read Mode

— Multiple threads can read the same object
at the same time.

— A thread can acquire the read latch if
another thread has it in read mode.

Write Mode

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.

££CMU-DB

15-445/645 (Fall 2022)

-----R

Compatibility Matrix
Read Write

Read v X
Write X X

)

\-----‘

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex— pthread_mutex — futex

B OS Latch
std: :mutex m; B Userspace Latch

mllock();

// Do something special. .. ﬁ ﬂ

m.unlock();

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #2: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock

Latch

ﬁ
read wr1te

£i-0 £i-0
X =0 X =0

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #2: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock

Latch

ﬁ
read wr1te

£¥-1 £i-0
X =0 X =0

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #2: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock

Latch

£i-4—

read wr1te
ﬁ =
X =0 X =0

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #2: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock

Latch

66886

read wr1te

=2
X -0 §—1

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #2: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock

g a a Latch

ti-o6-a ﬂ—ﬁ

read wr1te

-2
X =1 §1

££CMU-DB

15-445/645 (Fall 2022)

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://man7.org/linux/man-pages/man7/futex.7.html

HASH TABLE LATCHING

Easy to support concurrent access due to the

limited ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE LATCHING

Approach #1: Page Latches

— Each page has its own reader-writer latch that protects its
entire contents.

— Threads acquire either a read or write latch before they
access a page.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D o
hash(D)
\ A | val
C|val
D|val
& CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D o B T,: Insert E
hash(D) : hash(E)
Alwval /
C|val
D|val
$=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D o B T,: Insert E
hash(D) hash(E)
Alwval /
»I C|val
D|val
$=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

[It’s safe to release the B|val

latch on Page #1.

g T,: Insert E

hash(D) = hash(E)
Alwval /
C|val

» D|val

££CMU-DB

15-445/645 (Fall 2022,)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D B T,: Insert E
hash(D) hash(E)
Alwval /
C|val
D|val
$=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D T,: Insert E
hash(D) hash(E)
Alval
C|val h
D|val
$=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D T,: Insert E
hash(D) hash(E)
Alval
C|val
D|val « g
$=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D

D|val h

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - PAGE LATCHES

B|val
T;:Find D T,: Insert E
hash(D) hash(E)
Alval
@a C|val
D|val
E|val I‘
& CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val
T;:Find D T,: Insert E
hash(D) @6 hash(E)
Alval
C|val
D|val
& CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val
T;:Find D T,: Insert E
hash(D) (R) hash(E)
A Alval /
C|val
D|val
£ CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val
T;:Find D
hash(D) u
yIZlqry
Clval ™8
D|val
£ CMU-DB

15-445/645 (Fall 2022)

T,: Insert E
hash(E)

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val
T;:Find D T,: Insert E
hay ts \safe to releasethe | R hash(E)
latch on A Al
W
Clva
D|val
£=CMU-DB

15-445/645 (Fall 2022,)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val
T;:Find D T,: Insert E
hash(D) hash(E)
Al
g C|lva
D|val
$=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val

T;:Find D T,: Insert E
hash(D) hash(E)

n Alval
' Y C|val
Dlgﬁ

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val
T;:Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

T o e

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val
T;:Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

E|va

55555555555555555555

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

HASH TABLE - SLOT LATCHES

B|val

T;:Find D T,: Insert E
hash(D) hash(E)

££CMU-DB

15-445/645 (Fall 2022,)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

16

B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

10 35 B

6 12 H{ Cks 44 ||D

J \I -l11-\1‘213—29/22-§331-3£36-§84 «

E F G H I

(08)
N
(@))
<o)
—
S

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

10 35 B

6 12 H{ Cks 44 ||D

bt T

1M12(13M20(22723(311135|3638(4 «g

E F G H

(08)
N
(@))
<o)
—
S

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

B+TREE MULTI-THREADED EXAMPLE
ol 1A « T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H{ Cks 44 ||D

J \l -l11-\1‘213—2{22-§331-3j536-\34 Rebala«ncdg

E F G H I

(08)
N
(@))
<o)
—
S

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

16

B+TREE MULTI-THREADED EXAMPLE
ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

VN

J \I l \ / S{ j \ Rebalance!
- H10(11 12|13 20|22H{23|31H35|36 H34{ 41} «

E F G H I

(08)
N
(@))
<o)
—
S

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

16

B+TREE MULTI-THREADED EXAMPLE

/

10

20

A

12

35

T,: Delete 44
T,: Find 41

w
N
(@)}
O

117

13

311

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

16

B+TREE MULTI-THREADED EXAMPLE
ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

w
N
(@))
(o)
—
S

1M1n12113M™20(22123|310435|3673 41

Y L

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to

access/modify B+Tree at the same time.

— Get latch for parent
— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.

— Not full (on insertion)
— More than half-full (on deletion)

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:

— Acquire R latch on child,
— Then unlatch parent.
— Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is

latched, check if it is safe:
— If child is safe, release all latches on ancestors

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #1 - FIND 38

i1n
X

10 35 B

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #1 - FIND 38

320 A

1/ - 35 B«

It is now safe to release
the latch on A.
6 2 73 C ||38]|44

(08)
N
(@))
<o)
—
S

1MR12(13/20(22723|31 38

|
w
ol
w
(@))]
|

LA LN LA LA N

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #1 - FIND 38

/

10 35 B

20 A

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #1 - FIND 38

/

10 35 B

20 A

6 12 H{ C}s 44 ||D

(08)
N
(@))
<o)
—
S

R RNAN RN

)
E F G H I

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #1 - FIND 38

/

10 35 B

20 A

w<\
N
o €
o)
5&
S/
|
N
)
r\)\
N
N e
w
Lﬂ&
w
o))
a
o0
y

111 13 311

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #2 - DELETE 38

o R
— :

1 35 B

6 12 H{ C ii38 44

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

20

EXAMPLE #2 - DELETE 38

5

A

/

10

W

35 B«

(We may need to coalesce B, so
we cant release the latch on A.

J

6 12

NN

23 C |(|38]||44|/D

(08)
N
(@)}
O

1101112113

20

22n123(3135(36038 4}14

£2CMU-DB

15-445/645 (Fall 2022)

F G H I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #2 - DELETE 38

5

A
/ w
10 35 B
6 12 23 38 || 44
J \l l W e know that D will not \
merge with C, so it is safe to
31416901011 release latcheson Aand B. |38

£2CMU-DB

15-445/645 (Fall 2022)

E

G

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23 38 || 44

(08)
N
(@))
<o)
—
S

j \l l W e know that D will not \
merge with C, so it is safe to
- i 41 H44

11 release latcheson Aand B. |38

E F G H

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #2 - DELETE 38

/

10 35 B

6 12 H{ Cks 44 ||D

20 A

(08)
N
(@))
<o)
—
S

AR W

E F G H

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

21

EXAMPLE #3 - INSERT 45

gze A
/ W
10 35 B «
We know that if D needs to

split, B has room so it is safe
to release the latch on A. C |l38!l44!||D

&

w

9n1o(11n12|13Mm2

N7 TN

123(31135(36038

£2CMU-DB

15-445/645 (Fall 2022)

F G H I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #3 - INSERT 45

20 A

G

10 35 B

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #3 - INSERT 45

20 A
/
10 35 B
6 12 23 C ||38]||44|D
VR AN T A
31406|9H10|11H12[1320]|22H23|31H35[36M38][41

£2CMU-DB

15-445/645 (Fall 2022)

[Node I will not split, so we

can release B+D.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #4 - INSERT 25

20 A

0
1/ - 35 B«

6 12 H{ Cks 44 ||D

LA LN LA LN

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

E F G H I

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #4 - INSERT 25

20 A

1/ - 35 B«

6 12 H{ Cks 44 ||D

LA LN LA LN

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

E F G H I

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

4}14

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

6 12 38 || 44
314n0619010[11712113M120[22{ 88 (314 6n38

We need to split F, so we need to
hold the latch on its parent node.

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

6 12 38 || 44
3140619010[171712]113M120[22{ 88 |2%7 6n38

We need to split F, so we need to
hold the latch on its parent node.
£2CMU-DB 31 J

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

££CMU-DB

15-445/645 (Fall 2022)

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

r

Delete 38

e

.

A

~N

r

Insert 45

s

J

.

A

~N

r

Insert 25

s

J

.

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

[f you guess wrong, repeat traversal
with the pessimistic algorithm.

£2CMU-DB

15-445/645 (Fall 2022)

Acta Informatica 9, 1~ 21 (1977)

© by Sprin

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-t an be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation {1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

* Permanent address: lostitut fle Informatik der Technischen Universitit Miinchen, Arcisstr. 21,
D-8000 Misnchen 2, Germany (Fed, Rep)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://link.springer.com/article/10.1007/BF00263762

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #2 - DELETE 38
Sl @
0

1 35 B

6 12 H{ C ii38 44

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #2 - DELETE 38

20 A

1/ : 35 B«

6 12 H{ Cks 44 ||D

LA LN LA AN

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

E F G H I

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

(08)
N
(@))
<o)
—
S

1M12(1320(22123(31135|36 38

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

26

EXAMPLE #2 - DELETE 38

/

10 35 B

o s R

Node H will not coalesce,
so were safe!

20 A

(08)
N
(@))
<o)
—
S

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

26

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23 C |(|38]||44|/D

(08)
N
(@))
<o)
—
S

1MR12(13/20(22R023(31035

Node H will not coalesce,
so were safe!

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EXAMPLE #4 - INSERT 25

/

10 35 B

H{ Cks 44 |D

20 A

6 12
We need to split F, so we ~
have to restart and re- G H
execute like before.

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf

node to another leaf node?

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #1

O T;: Find Keys < 4
h 3 A 4a
/ /\\,
1| 2 3 || 4
B ~— ¢

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 A
ﬂ._
1 (]| 2 34«
B —" C

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

3 f Do Inlot release latch on C]

until thread has latch on B
COFs,
1 2 1 3 4

B\/‘«c

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4
G% A /\\;
Y ERE 3 (| 4

B — C

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #2
O T;: Find Keys < 4
T,: Find Keys > 1
3 |, A«
/ /\\,
1| 2 3 || 4
B ~— ¢

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #2
O T;: Find Keys < 4
. P T,: Find Keys > 1

Rt
12\/34«

B C

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

P
1| 2 34«

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
| Both T,and T, now holc.ljzz i Keys =

this read latch.
1 3 || 4

B»\/‘«C

Both T, and T, now hold
this read latch.

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
[Only T, holds] (" Only T, holds]Tzi Find Keys > 1

this read latch. \ this read latch.
W T3]« 4n

B — C

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

NomX

/N

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1
13 ‘ A«
/ /\\,
1 || 2 3 || 4
B ~— ¢

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

%/2 -

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
vy T,: Find Keys > 1

3 T, cannot acquire]
the read latch on C

Q VAR O

2l e

T, does not know
what T, is doing...

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
ae T,: Find Keys > 1

3 T, cannot acquire
the read latch on C

T, does not know
what T, is doing...

££CMU-DB

15-445/645 (Fall 2022,)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NEXT CLASS

We are finally going to discuss how to execute
some queries...

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

