
Intro to Database Systems (15-445/645)

FALL
2022

Andy
Pavlo

10 Sorting &
Aggregations

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2022)

A D M I N I S T R I V I A

Project #1 is due Sunday October 2nd @ 11:59pm
→ Extra Office Hours: Saturday October 1st @ 3pm-5pm

Homework #3 is due Sunday Oct 9th @ 11:59pm

Mid-Term Exam is Wednesday Oct 13th

→ During regular class time from 11:50-1:10pm
→ More details next week…

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

C O U R S E S TAT U S

We are now going to talk about how
to execute queries using the DBMS
components we have discussed so far.

Next four lectures:
→ Operator Algorithms
→ Query Processing Models
→ Runtime Architectures

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Q U E R Y P L A N

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.
→ We will discuss the granularity of the data

movement next week.

The output of the root node is the
result of the query.

4

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D I S K- O R I E N T E D D B M S

Just like it cannot assume that a table fits entirely
in memory, a disk-oriented DBMS cannot assume
that query results fit in memory.

We will use the buffer pool to implement
algorithms that need to spill to disk.

We are also going to prefer algorithms that
maximize the amount of sequential I/O.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

W H Y D O W E N E E D TO S O RT ?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a
specific way (ORDER BY).

But even if a query does not specify an order, we
may still want to sort to do other things:
→ Trivial to support duplicate elimination (DISTINCT)
→ Bulk loading sorted tuples into a B+Tree index is faster
→ Aggregations (GROUP BY)

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N - M E M O R Y S O RT I N G

If data fits in memory, then we can use a standard
sorting algorithm like quicksort.

If data does not fit in memory, then we need to use
a technique that is aware of the cost of reading and
writing disk pages…

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO DAY ' S AG E N DA

Top-N Heap Sort

External Merge Sort

Aggregations

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - N H E A P S O RT

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

9

SELECT * FROM enrolled
ORDER BY sid
FETCH FIRST 4 ROWS
WITH TIES

Sorted Heap
346 29 8

3 4 6 2 9 1 4 4

Original Data
8

4 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2022)

E X T E R N A L M E RG E S O RT

Divide-and-conquer algorithm that splits data into
separate runs, sorts them individually, and then
combines them into longer sorted runs.

Phase #1 – Sorting
→ Sort chunks of data that fit in memory and then write

back the sorted chunks to a file on disk.

Phase #2 – Merging
→ Combine sorted runs into larger chunks.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S O RT E D RU N

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

11

Late Materialization

• • •K1 ¤ K2 ¤ ¤Kn

Record ID

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

2 -WAY E X T E R N A L M E RG E S O RT

We will start with a simple example of a 2-way
external merge sort.
→ “2” is the number of runs that we are going to merge into

a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool
pages to hold input and output data.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

2 -WAY E X T E R N A L M E RG E S O RT

Pass #0
→ Read all B pages of the table into memory
→ Sort pages into runs and write them back to disk

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Uses three buffer pages (2 for input pages, 1 for output)

13

Memory Memory Memory

Disk
Page #1 Page #2

Final Result

Sorted
Run

Sorted
Run

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

2 -WAY E X T E R N A L M E RG E S O RT

In each pass, we read and write
every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

14

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

4-Page
Runs

Pass #2

8-Page
Runs

Pass #3

3,4 2,6 4,9 7,8 5,6 1,3 2 ∅

6,2 9,4 8,7 5,6 3,1 2 ∅3,4

2,3

4,6

4,7

8,9

1,3

5,6

2

∅

4,4

6,7

8,9

2,3 1,2

3,5

6

∅

1,2

2,3

3,4

4,5

6,6

7,8

9

∅

EOF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

2 -WAY E X T E R N A L M E RG E S O RT

This algorithm only requires three buffer pool
pages to perform the sorting (B=3).
→ Two input pages, one output page

But even if we have more buffer space available
(B>3), it does not effectively utilize them if the
worker must block on disk I/O…

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D O U B L E B U F F E R I N G O P T I M I Z AT I O N

Prefetch the next run in the background and store
it in a second buffer while the system is processing
the current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

16

Memory

Disk
Page #1 Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

G E N E R A L E X T E R N A L M E RG E S O RT

Pass #0
→ Use B buffer pages
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., K-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X A M P L E

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each

(last run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each

(last run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 80

pages and second one has 28 pages.
→ Pass #3: Sorted file of 108 pages.

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉
= 4 passes

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O M PA R I S O N O P T I M I Z AT I O N S

Approach #1: Code Specialization
→ Instead of providing a comparison function as a pointer

to sorting algorithm, create a hardcoded version of sort
that is specific to a key type.

Approach #2: Suffix Truncation
→ First compare a binary prefix of long VARCHAR keys

instead of slower string comparison. Fallback to slower
version if prefixes are equal.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

U S I N G B + T R E E S F O R S O RT I N G

If the table that must be sorted already has a
B+Tree index on the sort attribute(s), then we can
use that to accelerate sorting.

Retrieve tuples in desired sort order by simply
traversing the leaf pages of the tree.

Cases to consider:
→ Clustered B+Tree
→ Unclustered B+Tree

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C A S E # 1 – C L U S T E R E D B + T R E E

Traverse to the left-most leaf page,
and then retrieve tuples from all leaf
pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

22

B+Tree Index

101 102 103 104

Tuple Pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C A S E # 2 – U N C L U S T E R E D B + T R E E

Chase each pointer to the page that
contains the data.

This is almost always a bad idea.
In general, one I/O per data record.

23

101 102 103 104

Tuple Pages

B+Tree Index

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

AG G R E G AT I O N S

Collapse values for a single attribute from multiple
tuples into a single scalar value.

The DBMS needs a way to quickly find tuples with
the same distinguishing attributes for grouping.

Two implementation choices:
→ Sorting
→ Hashing

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

cid

15-445
15-445
15-721
15-826

S O RT I N G AG G R E G AT I O N

25

Remove
Columns

Sort
Eliminate

Dupes

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

A LT E R N AT I V E S TO S O RT I N G

What if we do not need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
→ Only need to remove duplicates, no need for ordering.
→ Can be computationally cheaper than sorting.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

H A S H I N G AG G R E G AT E

Populate an ephemeral hash table as the DBMS
scans the table. For each record, check whether
there is already an entry in the hash table:
→ DISTINCT: Discard duplicate
→ GROUP BY: Perform aggregate computation

If everything fits in memory, then this is easy.

If the DBMS must spill data to disk, then we need
to be smarter…

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X T E R N A L H A S H I N G AG G R E G AT E

Phase #1 – Partition
→ Divide tuples into buckets based on hash key
→ Write them out to disk when they get full

Phase #2 – ReHash
→ Build in-memory hash table for each partition and

compute the aggregation

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P H A S E # 1 – PA RT I T I O N

Use a hash function h1 to split tuples into
partitions on disk.
→ A partition is one or more pages that contain the set of

keys with the same hash value.
→ Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1
buffer for the input data.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P H A S E # 1 – PA RT I T I O N

30

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

15-721

⋮

h1

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

⋮

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P H A S E # 2 – R E H A S H

For each partition on disk:
→ Read it into memory and build an in-memory hash table

based on a second hash function h2.
→ Then go through each bucket of this hash table to bring

together matching tuples.

This assumes that each partition fits in memory.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P H A S E # 2 – R E H A S H

32

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

h2

h2

Phase #1 Buckets

15-445

cid

15-445
15-826

Hash Table

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled(sid,cid,grade)

Final Result

B-1
Partitions

15-721

Hash Table
15-826

15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

H A S H I N G S U M M A R I Z AT I O N

During the ReHash phase, store pairs of the form
(GroupKey→RunningVal)

When we want to insert a new tuple into the hash
table:
→ If we find a matching GroupKey, just update the

RunningVal appropriately
→ Else insert a new GroupKey→RunningVal

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

H A S H I N G S U M M A R I Z AT I O N

34

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table
cid AVG(gpa)

15-445 3.66

15-826 3.33

15-721 2.89

Final Result

AVG(col) → (COUNT,SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O N C L U S I O N

Choice of sorting vs. hashing is subtle and depends
on optimizations done in each case.

We already discussed the optimizations for
sorting:
→ Chunk I/O into large blocks to amortize costs
→ Double-buffering to overlap CPU and I/O

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N E X T C L A S S

Nested Loop Join

Sort-Merge Join

Hash Join

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

