
Intro to Database Systems (15-445/645)

FALL
2022

Andy
Pavlo

13 Query Execution
Part 2

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2022)

A D M I N I S T R I V I A

Mid-Term Exam is Thursday Oct 13th

→ During regular class time @ 11:50-1:10pm

Project #2 is out now:
→ Checkpoint #1: Tuesday Oct 11th @ 11:59pm
→ Checkpoint #2: Wednesday Oct 26th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Q U E R Y E X E C U T I O N

We discussed in the last class how to
compose operators together into a
plan to execute an arbitrary query.

We assumed that the queries execute
with a single worker (e.g., a thread).

We will now discuss how to execute
queries using multiple workers.

3

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

W H Y C A R E A B O U T PA R A L L E L E X E C U T I O N ?

Increased performance for potentially the same
hardware resources.
→ Higher Throughput
→ Lower Latency

Increased responsiveness of the system.

Potentially lower total cost of ownership (TCO)
→ Fewer machines means less parts / physical footprint /

energy consumption.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

PA R A L L E L V S . D I S T R I B U T E D

Database is spread out across multiple resources
to improve different aspects of the DBMS.

Appears as a single logical database instance to the
application, regardless of physical organization.
→ SQL query for a single-resource DBMS should generate

same result on a parallel or distributed DBMS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

PA R A L L E L V S . D I S T R I B U T E D

Parallel DBMSs
→ Resources are physically close to each other.
→ Resources communicate over high-speed interconnect.
→ Communication is assumed to be cheap and reliable.

Distributed DBMSs
→ Resources can be far from each other.
→ Resources communicate using slow(er) interconnect.
→ Communication cost and problems cannot be ignored.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO DAY ' S AG E N DA

Process Models

Execution Parallelism

I/O Parallelism

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P RO C E S S M O D E L

A DBMS’s process model defines how the system
is architected to support concurrent requests from
a multi-user application.

A worker is the DBMS component that is
responsible for executing tasks on behalf of the
client and returning the results.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P RO C E S S M O D E L

Approach #1: Process per DBMS Worker

Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P RO C E S S P E R W O R K E R

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ A process crash does not take down entire system.
→ Examples: IBM DB2, Postgres, Oracle

10

Application Dispatcher Worker Processes

Connect

SQL Commands

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

T H R E A D P E R W O R K E R

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

Almost every DBMS created in the last 20 years!

11

Application Dispatcher Worker Threads

Connect

SQL Commands

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://docs.oracle.com/database/121/CNCPT/process.htm#CNCPT901

15-445/645 (Fall 2022)

S C H E D U L I N G

For each query plan, the DBMS decides where,
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Q L S E R V E R – S Q LO S

SQLOS is a user-level OS layer that runs inside of
the DBMS and manages provisioned hardware
resources.
→ Determines which tasks are scheduled onto which

threads.
→ Also manages I/O scheduling and higher-level concepts

like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Q L S E R V E R – S Q LO S

SQLOS is a user-level OS layer that runs inside of
the DBMS and manages provisioned hardware
resources.
→ Determines which tasks are scheduled onto which

threads.
→ Also manages I/O scheduling and higher-level concepts

like logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://techcrunch.com/2017/07/17/how-microsoft-brought-sql-server-to-linux/

15-445/645 (Fall 2022)

S Q L S E R V E R – S Q LO S

SQLOS quantum is 4 ms but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

16

SELECT * FROM R WHERE R.val = ?

for t in R:
if eval(predicate, tuple, params):
emit(tuple)

Approximate Planlast = now()
for tuple in R:

if now() – last > 4ms:
yield
last = now()

if eval(predicate, tuple, params):
emit(tuple)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E M B E D D E D D B M S

DBMS runs inside of the same address space as the
application. Application is (mostly) responsible for
threads and scheduling.

The application may support outside connections.
→ Examples: BerkeleyDB, SQLite, RocksDB, LevelDB

17

Application

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P RO C E S S M O D E L S

Advantages of a multi-threaded architecture:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

Andy is not aware of any new DBMS from last 15
years that doesn't use native OS threads unless
they are Redis or Postgres forks.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T E R - V S . I N T R A- Q U E R Y PA R A L L E L I S M

Inter-Query: Execute multiple disparate queries
simultaneously.
→ Increases throughput & reduces latency.

Intra-Query: Execute the operations of a single
query in parallel.
→ Decreases latency for long-running queries, especially for

OLAP queries.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T E R - Q U E R Y PA R A L L E L I S M

Improve overall performance by allowing multiple
queries to execute simultaneously.

If queries are read-only, then this requires almost
no explicit coordination between queries.
→ Buffer pool can handle most of the sharing if necessary

If multiple queries are updating the database at the
same time, then this is hard to do correctly…

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T R A- Q U E R Y PA R A L L E L I S M

Improve the performance of a single query by
executing its operators in parallel.

Think of organization of operators in terms of a
producer/consumer paradigm.

There are parallel versions of every operator.
→ Can either have multiple threads access centralized data

structures or use partitioning to divide work up.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

PA R A L L E L G R AC E H A S H J O I N

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

22

h1
⋮

HTR

h1
⋮

HTS
0
1
2

max

R(id,name) S(id,value,cdate)
1

2

3

n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T R A- Q U E R Y PA R A L L E L I S M

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T R A- O P E R ATO R PA R A L L E L I S M

Approach #1: Intra-Operator (Horizontal)
→ Decompose operators into independent fragments that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple
children/parent operators.
→ Postgres calls this "gather"

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T R A- O P E R ATO R PA R A L L E L I S M

25

SELECT * FROM A
WHERE A.val > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
ages

Fragment

Next

Next

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X C H A N G E O P E R ATO R

Exchange Type #1 – Gather
→ Combine the results from multiple

workers into a single output stream.

Exchange Type #2 – Distribute
→ Split a single input stream into multiple

output streams.

Exchange Type #3 – Repartition
→ Shuffle multiple input streams across

multiple output streams.

26

Source: Craig Freedman

Gather

Operator Operator Operator

Repartition

Operator Operator Operator

Operator Operator

Operator Operator Operator

Distribute

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

15-445/645 (Fall 2022)

I N T R A- O P E R ATO R PA R A L L E L I S M

27

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange
SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T E R - O P E R ATO R PA R A L L E L I S M

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from

one stage to the next without materialization.
→ Workers execute operators from different segments of a

query plan at the same time.
→ More common in streaming systems (continuous queries)

Also called pipeline parallelism.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I N T E R - O P E R ATO R PA R A L L E L I S M

1 ⨝
for r1 ∊ outer:
for r2 ∊ inner:
emit(r1⨝r2)

2 p for r ∊ incoming:
emit(pr)

A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B U S H Y PA R A L L E L I S M

Approach #3: Bushy Parallelism
→ Hybrid of intra- and inter-operator

parallelism where workers execute
multiple operators from different
segments of a query plan at the same time.

→ Still need exchange operators to combine
intermediate results from segments.

30

SELECT *
FROM A JOIN B JOIN C JOIN D A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝

3 4

1 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O B S E R VAT I O N

Using additional processes/threads to execute
queries in parallel won't help if the disk is always
the main bottleneck.

It can sometimes make the DBMS's performance
worse if worker is accessing different segments of
the disk at the same time.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

I /O PA R A L L E L I S M

Split the DBMS across multiple storage devices to
improve disk bandwidth latency.

Many different options that have trade-offs:
→ Multiple Disks per Database
→ One Database per Disk
→ One Relation per Disk
→ Split Relation across Multiple Disks

Some DBMSs support this natively. Others require
admin to configure outside of DBMS.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

RAID 0 (Striping)

M U LT I - D I S K PA R A L L E L I S M

Configure OS/hardware to store the
DBMS's files across multiple storage
devices.
→ Storage Appliances
→ RAID Configuration

This is transparent to the DBMS.

33

page1

page4

page2

page5

page3

page6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

RAID 1 (Mirroring)

M U LT I - D I S K PA R A L L E L I S M

Configure OS/hardware to store the
DBMS's files across multiple storage
devices.
→ Storage Appliances
→ RAID Configuration

This is transparent to the DBMS.

33

page2

page1

page2

page1

page2

page1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

DATA B A S E PA RT I T I O N I N G

Some DBMSs allow you to specify the disk
location of each individual database.
→ The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the
DBMS stores each database in a separate directory.
→ The DBMS recovery log file might still be shared if

transactions can update multiple databases.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

PA RT I T I O N I N G

Split single logical table into disjoint physical
segments that are stored/managed separately.

Partitioning should (ideally) be transparent to the
application.
→ The application should only access logical tables and not

have to worry about how things are physically stored.

We will cover this further when we talk about
distributed databases after the mid-term.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O N C L U S I O N

Parallel execution is important, which is why
(almost) every major DBMS supports it.

However, it is hard to get right.
→ Coordination Overhead
→ Scheduling
→ Concurrency Issues
→ Resource Contention

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N E X T C L A S S

Who: You

What: Midterm Exam

Where: Tepper 1403

When: Thursday Oct 13th @ 11:50am-1:10pm
Why: https://youtu.be/CLe-TtmNuug

Email Andy if you need special accommodations.

40

https://15445.courses.cs.cmu.edu/fall2022/midterm-guide.html

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://youtu.be/CLe-TtmNuug
https://15445.courses.cs.cmu.edu/fall2022/midterm-guide.html
https://15445.courses.cs.cmu.edu/fall2022/midterm-guide.html

