
Intro to Database Systems (15-445/645)

FALL
2022

Andy
Pavlo

14 Query Planning &
Optimization

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

15-445/645 (Fall 2022)

A D M I N I S T R I V I A

Mid-Term Exam is available for review with
solutions during in my office.
→ Bring your CMU ID card.
→ Use my calendar link if you need other times.

Project #2 - Checkpoint #2 is due Wednesday
Oct 26th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Q U E R Y O P T I M I Z AT I O N

For a given query, find a correct execution plan
that has the lowest "cost".

This is the part of a DBMS that is the hardest to
implement well (proven to be NP-Complete).
→ If you are good at this, you will get paid $$$.

No optimizer truly produces the "optimal" plan
→ Use estimation techniques to guess real plan cost.
→ Use heuristics to limit the search space.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

LO G I C A L V S . P H Y S I C A L P L A N S

The optimizer generates a mapping of a logical
algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution
strategy using an access path.
→ They can depend on the physical format of the data that

they process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

A RC H I T E C T U R E OV E R V I E W

5

Parser

System
Catalog

Tree Rewriter
(Optional / Common)

Cost
Model

SQL Rewriter
(Optional / Rare)

Binder

Optimizer
SQL Query1

SQL Query2

Abstract
Syntax
Tree

3

Logical
Plan

4

Logical
Plan

5

Physical
Plan

6

Application

Name→Internal ID

Schema Info

Schema Info

Estimates

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Q U E R Y O P T I M I Z AT I O N

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick

the one with the lowest cost.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO DAY ' S AG E N DA

Heuristic/Ruled-based Optimization

Query Cost Models

Cost-based Optimization

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

LO G I C A L P L A N O P T I M I Z AT I O N

Transform a logical plan into an equivalent logical
plan using pattern matching rules.

The goal is to increase the likelihood of
enumerating the optimal plan in the search.

Cannot compare plans because there is no cost
model but can "direct" a transformation to a
preferred side.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

LO G I C A L Q U E R Y O P T I M I Z AT I O N

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

9

Source: Thomas Neumann

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

15-445/645 (Fall 2022)

S P L I T C O N J U N C T I V E P R E D I C AT E S

10

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

ARTIST.NAMEp

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P R E D I C AT E P U S H D O W N

11

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
applicable point in the plan.

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

R E P L AC E C A RT E S I A N P RO D U C T S

12

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P RO J E C T I O N P U S H D O W N

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P RO J E C T I O N P U S H D O W N

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N E S T E D S U B - Q U E R I E S

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them
→ Decompose nested query and store result to temporary

table

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N E S T E D S U B - Q U E R I E S : R E W R I T E

16

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid

AND R.day = '2022-10-25'
)

SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2022-10-25'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I N G Q U E R I E S

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on one
block at a time.

Sub-queries are written to a temporary table that
are discarded after the query finishes.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I N G Q U E R I E S

18

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Nested Block

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I N G Q U E R I E S

18

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

D E C O M P O S I N G Q U E R I E S

18

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)
GROUP BY S.sid

HAVING COUNT(*) > 1

Outer Block

SELECT MAX(rating) FROM sailors

###

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X P R E S S I O N R E W R I T I N G

An optimizer transforms a query's expressions
(e.g., WHERE/ON clause predicates) into the minimal
set of expressions.

Implemented using if/then/else clauses or a
pattern-matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

22

SELECT * FROM A WHERE 1 = 0;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

22

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE NOW() IS NULL;

SELECT * FROM A WHERE false;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

22

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

22

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
WHERE val BETWEEN 1 AND 100

OR val BETWEEN 50 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

22

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
WHERE val BETWEEN 1 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Q U E R Y O P T I M I Z AT I O N

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick

the one with the lowest cost.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O S T E S T I M AT I O N

The DBMS uses a cost model to predict the
behavior of a query plan given a database state.
→ This is an internal cost that allows the DBMS to compare

one plan with another.

It is too expensive to run every possible plan to
determine this information, so the DBMS need a
way to derive this information.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O S T M O D E L C O M P O N E N T S

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM

consumption, network messages…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate output size per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

Choice #3: Algorithmic Costs
→ Complexity of the operator algorithm implementation.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P O S TG R E S C O S T M O D E L

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

P O S TG R E S C O S T M O D E L

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading

a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://www.postgresql.org/docs/current/static/runtime-config-query.html

15-445/645 (Fall 2022)

S TAT I S T I C S

The DBMS stores internal statistics about tables,
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C A R D I N A L I T Y

Formula depends on type of predicate:
→ Equality
→ Range
→ Negation
→ Conjunction
→ Disjunction

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

age

S E L E C T I O N C A R D I N A L I T Y

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

36

SC(age=9)=4

SELECT * FROM people
WHERE age = 9

4/45

Distinct values
of attribute

of occurrences

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S E L E C T I O N C A R D I N A L I T Y

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the

inner relation will also exist in the outer table.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O R R E L AT E D AT T R I B U T E S

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

And the following query:
→ (make="Honda" AND model="Accord")

With the independence and uniformity
assumptions, the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real
selectivity is 1/100 = 0.01

38

Source: Guy Lohman

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
http://wp.sigmod.org/?p=1075

15-445/645 (Fall 2022)

S TAT I S T I C S

Choice #1: Histograms
→ Maintain an occurrence count per value (or range of

values) in a column.

Choice #2: Sketches
→ Probabilistic data structure that gives an approximate

count for a given value.

Choice #3: Sampling
→ DBMS maintains a small subset of each table that it then

uses to evaluate expressions to compute selectivity.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

H I S TO G R A M S

Our formulas are nice, but we assume that data
values are uniformly distributed.

40

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

15 Keys × 32-bits = 60 bytes Distinct values of attribute

of occurrences

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Non-Uniform Approximation

E Q U I -W I DT H H I S TO G R A M

Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

41

15 Values × 32-bits = 60 bytes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Non-Uniform Approximation

E Q U I -W I DT H H I S TO G R A M

Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

41

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

Bucket Ranges

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E Q U I -W I DT H H I S TO G R A M

Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

41

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

0

5

10

15

1-3 4-6 7-9 10-12 13-15

Equi-Width Histogram

Bucket Ranges

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E Q U I - D E P T H H I S TO G R A M S

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

44

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram (Quantiles)

Bucket #1
Count=12

Bucket #2
Count=12

Bucket #3
Count=9

Bucket #4
Count=12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

E Q U I - D E P T H H I S TO G R A M S

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

44

0

5

10

15

1-5 6-8 9-13 14-15

Histogram (Quantiles)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S K E TC H E S

Probabilistic data structures that generate
approximate statistics about a data set.

Cost-model can replace histograms with sketches
to improve its selectivity estimate accuracy.

Most common examples:
→ Count-Min Sketch (1988): Approximate frequency count

of elements in a set.
→ HyperLogLog (2007): Approximate the number of

distinct elements in a set.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/HyperLogLog

15-445/645 (Fall 2022)

S A M P L I N G

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

47

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
FROM people
WHERE age > 50

id name age status

1001 Obama 61 Rested

1002 Kanye 45 Weird

1003 Tupac 25 Dead

1004 Bieber 28 Crunk

1005 Andy 41 Illin

1006 TigerKing 59 Jailed1001 Obama 61 Rested

1003 Tupac 25 Dead

1005 Andy 41 Illin

Table Sample

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O B S E R VAT I O N

Now that we can (roughly) estimate the selectivity
of predicates, and subsequently the cost of query
plans, what can we do with them?

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

Q U E R Y O P T I M I Z AT I O N

After performing rule-based rewriting, the DBMS
will enumerate different plans for the query and
estimate their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query
after exhausting all plans or some timeout.

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S I N G L E - R E L AT I O N Q U E R Y P L A N N I N G

Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

OLTP queries are especially easy…

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

O LT P Q U E R Y P L A N N I N G

Query planning for OLTP queries is easy because
they are sargable (Search Argument Able).
→ It is usually just picking the best index.
→ Joins are almost always on foreign key relationships with

a small cardinality.
→ Can be implemented with simple heuristics.

51

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
⋮

);

SELECT * FROM people
WHERE id = 123;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

M U LT I - R E L AT I O N Q U E R Y P L A N N I N G

Choice #1: Bottom-up Optimization
→ Start with nothing and then build up the plan to get to

the outcome that you want.

Choice #2: Top-down Optimization
→ Start with the outcome that you want, and then work

down the tree to find the optimal plan that gets you to
that goal.

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

B OT TO M - U P O P T I M I Z AT I O N

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL,
Postgres, most open-source DBMSs.

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

Break query up into blocks and generate the logical
operators for each block.

For each logical operator, generate a set of physical
operators that implement it.
→ All combinations of join algorithms and access paths

Then iteratively construct a "left-deep" join tree
that minimizes the estimated amount of work to
execute the plan.

54

Selinger

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

55

Step #1: Choose the best access paths
to each table

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

56

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) SM_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A2,A3) HASH_JOIN(A3,A2) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

56

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

56

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) SM_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) SM_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •SM_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

56

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

56

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

S Y S T E M R O P T I M I Z E R

56

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

The query has ORDER BY on
ARTIST.ID but the logical plans do
not contain sorting properties.

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

Start with a logical plan of what we want the query
to be. Perform a branch-and-bound search to
traverse the plan tree by converting logical
operators into physical operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities

during planning.

Example: MSSQL, Greenplum, CockroachDB

62

Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

TO P - D O W N O P T I M I Z AT I O N

63

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)Invoke rules to create new nodes

and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

C O N C L U S I O N

We use static rules and heuristics to optimize a
query plan without needing to understand the
contents of the database.

We use cost model to help perform more
advanced query optimizations

77

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2022)

N E X T C L A S S

Transactions!
→ aka the second hardest part about database systems

78

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

