Homework #5 is due Sunday Dec 4th @ 11:59pm

Project #4 is due Sunday Dec 11th @ 11:59pm

Upcoming Special Lectures:
→ Virtual Snowflake Lecture (Tuesday Dec 6th)
→ Live Call-in Q&A Lecture (Thursday Dec 8th)

Final Exam is Friday Dec 16th @ 1:00pm.
Hi Prof Pavlo,

In a recent video of your DB class, you mentioned that the origin of 2PC was fuzzy. I had worked with Jim Gray in the 1990s. I vaguely remembered his answer to one of my idle questions about 2PC during a lunchtime chat.

Here's his description (from his book with Andreas Reuter, p.575):

The two-phase commit protocol is just contract law applied to computers, so it is difficult to claim any one individual invented it. The first known instance of its use in distributed systems is credited to Nico Garzado in implementing the Italian social security system in the early 1970s. By the mid-1970s, it had been fairly well analyzed and had been named.

- Bob Devine
BIFURCATED ENVIRONMENT

OLTP Databases ➔ Extract ➔ Transform ➔ Load ➔ OLAP Database
Applications that serve the management, operations, and planning levels of an organization to help people make decisions about future issues and problems by analyzing historical data.

Star Schema vs. Snowflake Schema
SNOWFLAKE SCHEMA

- **CUSTOMER_DIM**
 - ID
 - FIRST_NAME
 - LAST_NAME
 - EMAIL
 - ZIP_CODE

- **PRODUCT_DIM**
 - CATEGORY_FK
 - PRODUCT_CODE
 - PRODUCT_NAME
 - PRODUCT_DESC

- **LOCATION_DIM**
 - COUNTRY
 - STATE_FK
 - ZIP_CODE
 - CITY

- **SALES_FACT**
 - PRODUCT_FK
 - TIME_FK
 - LOCATION_FK
 - CUSTOMER_FK
 - PRICE
 - QUANTITY

- **TIME_DIM**
 - YEAR
 - DAY_OF_YEAR
 - MONTH_FK
 - DAY_OF_MONTH

- **CATEGORY_LOOKUP**
 - CATEGORY_ID
 - CATEGORY_NAME
 - CATEGORY_DESC

- **STATE_LOOKUP**
 - STATE_ID
 - STATE_CODE
 - STATE_NAME

- **MONTH_LOOKUP**
 - MONTH_NUM
 - MONTH_NAME
 - MONTH_SEASON
STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization
- Snowflake schemas take up less storage space.
- Denormalized data models may incur integrity and consistency violations.

Issue #2: Query Complexity
- Snowflake schemas require more joins to get the data needed for a query.
- Queries on star schemas will (usually) be faster.
PROBLEM SETUP

Application Server

SELECT * FROM R JOIN S
ON R.id = S.id

Partitions

P1
P2
P3
P4
TODAY'S AGENDA

Execution Models
Query Planning
Distributed Join Algorithms
Cloud Systems
PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that contains the data.
→ Perform as much filtering and processing as possible where data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that needs it for processing.
Filtering and retrieving data using Amazon S3 Select

With Amazon S3 Select, you can use simple structured query language (SQL) statements to filter the contents of an Amazon S3 object and retrieve just the subset of data that you need. By using Amazon S3 Select to filter this data, you can reduce the amount of data that Amazon S3 transfers, which reduces the cost and latency to retrieve this data.

Amazon S3 Select works on objects stored in CSV, JSON, or Apache Parquet format. It also works with objects that are compressed with GZIP or BZIP2 (for CSV and JSON objects only), and server-side encrypted objects. You can specify the format of the results as either CSV or JSON, and you can determine how the records in the result are delimited.

You pass SQL expressions to Amazon S3 in the request. Amazon S3 Select supports a subset of SQL. For more information about the SQL elements that are supported by Amazon S3 Select, see SQL reference for Amazon S3 Select.

You can perform SQL queries using AWS SDKs, the S3 Select Object Content REST API, the AWS Command Line Interface (AWS CLI), or the Amazon S3 console. The Amazon S3 console limits the amount of data returned to 40 MB. To retrieve more data, use the AWS CLI or the API.
Query Blob Contents

The Query Blob Contents API applies a simple Structured Query Language (SQL) statement on a blob’s contents and returns only the queried subset of the data. You can also call Query Blob Contents to query the contents of a version or snapshot.

Request

The Query Blob Contents request may be constructed as follows. HTTPS is recommended. Replace myaccount with the name of your storage account:

<table>
<thead>
<tr>
<th>POST Method Request URL</th>
<th>HTTP Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://myaccount.blob.core.windows.net/mycontainer/myblob?comp=query</td>
<td>HTTP/1.0</td>
</tr>
<tr>
<td>https://myaccount.blob.core.windows.net/mycontainer/myblob?comp=query&snapsnot=<DateTime></td>
<td>HTTP/1.1</td>
</tr>
<tr>
<td>https://myaccount.blob.core.windows.net/mycontainer/myblob?comp=query&versionId=<DateTime></td>
<td></td>
</tr>
</tbody>
</table>
PUSH QUERY TO DATA

```
SELECT * FROM R JOIN S
ON R.id = S.id
```

Application Server

Node

- P1→R.id:1-100
- P1→S.id:1-100

Node

- P2→R.id:101-200
- P2→S.id:101-200

Result: \(R \bowtie S \)
SELECT * FROM R JOIN S
ON R.id = S.id
PULL DATA TO QUERY

SELECT * FROM R JOIN S
ON R.id = S.id

Node

Page ABC

Page XYZ

Node

Storage

Application Server

R \bowtie S
IDs [101,200]
PULL DATA TO QUERY

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R \Join S
OBSERVATION

The data that a node receives from remote sources are cached in the buffer pool.
→ This allows the DBMS to support intermediate results that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a node crashes during execution?
QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are designed to assume that nodes do not fail during query execution. → If one node fails during query execution, then the whole query fails.

The DBMS could take a snapshot of the intermediate results for a query during execution to allow it to recover if nodes fail.
QUERY FAULT TOLERANCE

```
SELECT * FROM R JOIN S
ON R.id = S.id
```

Application Server

Node

Storage

Result: R ⨝ S

Node

Result: R ⨝ S
QUERY FAULT TOLERANCE

```
SELECT * FROM R JOIN S
ON R.id = S.id
```

Result: \(R \Join S \)
All the optimizations that we talked about before are still applicable in a distributed environment.

→ Predicate Pushdown
→ Early Projections
→ Optimal Join Orderings

Distributed query optimization is even harder because it must consider the physical location of data and network transfer costs.
QUERY PLAN FRAGMENTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems that I know about that use this approach.
Union the output of each join to produce the final result.
OBSERVATION

The efficiency of a distributed join depends on the target tables' partitioning schemes.

One approach is to put entire tables on a single node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.
DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the proper tuples on the same node.

Once the data is at the node, the DBMS then executes the same join algorithms that we discussed earlier in the semester.
SCENARIO #1

One table is replicated at every node. Each node joins its local data in parallel and then sends their results to a coordinating node.

SELECT * FROM R JOIN S ON R.id = S.id
SCENARIO #1

One table is replicated at every node. Each node joins its local data in parallel and then sends their results to a coordinating node.

```
SELECT * FROM R JOIN S
ON R.id = S.id
```
SCENARIO #2

Tables are partitioned on the join attribute. Each node performs the join on local data and then sends to a coordinator node for coalescing.

SELECT * FROM R JOIN S
ON R.id = S.id
SCENARIO #2

Tables are partitioned on the join attribute. Each node performs the join on local data and then sends to a coordinator node for coalescing.

```
SELECT * FROM R JOIN S
ON R.id = S.id
```
Both tables are partitioned on different keys. If one of the tables is small, then the DBMS "broadcasts" that table to all nodes.

```
SELECT * FROM R JOIN S ON R.id = S.id
```
SCENARIO #3

Both tables are partitioned on different keys. If one of the tables is small, then the DBMS "broadcasts" that table to all nodes.

```
SELECT * FROM R JOIN S
ON R.id = S.id
```
SCENARIO #3

Both tables are partitioned on different keys. If one of the tables is small, then the DBMS "broadcasts" that table to all nodes.

```
SELECT * FROM R JOIN S
ON R.id = S.id
```
SCENARIO #3

Both tables are partitioned on different keys. If one of the tables is small, then the DBMS "broadcasts" that table to all nodes.

\[
\text{SELECT } * \text{ FROM } R \text{ JOIN } S \\
\text{ON } R.\text{id} = S.\text{id}
\]
Both tables are **not** partitioned on the join key. The DBMS copies the tables by "shuffling" them across nodes.

```sql
SELECT * FROM R JOIN S ON R.id = S.id
```
Both tables are not partitioned on the join key. The DBMS copies the tables by "shuffling" them across nodes.

```
SELECT * FROM R JOIN S ON R.id = S.id
```
SCENARIO #4

Both tables are not partitioned on the join key. The DBMS copies the tables by "shuffling" them across nodes.

```
SELECT * FROM R JOIN S
    ON R.id = S.id
```
SCENARIO #4

Both tables are not partitioned on the join key. The DBMS copies the tables by "shuffling" them across nodes.

```
SELECT * FROM R JOIN S
ON R.id = S.id
```
SCENARIO #4

Both tables are not partitioned on the join key. The DBMS copies the tables by "shuffling" them across nodes.

SELECT * FROM R JOIN S ON R.id = S.id
SCENARIO #4

Both tables are **not** partitioned on the join key. The DBMS copies the tables by "shuffling" them across nodes.

```
SELECT * FROM R JOIN S
ON R.id = S.id

P1: R ⨝ S
P2: R ⨝ S
```

```
R{id}
R{id}
S{id}
S{id}
R{name}
R{name}
S{val}
S{val}

id:1-100
id:1-100
id:1-100
id:1-100
name:A-M
name:A-M
val:1-50
val:1-50

id:101-200
id:101-200
name:N-Z
name:N-Z
val:51-100
val:51-100
```
S E M I - J O I N

Join type where the result only contains columns from the left table. Distributed DBMSs use semi-join to minimize the amount of data sent during joins.

→ This is like a projection pushdown.

Some DBMSs support **SEMI JOIN** SQL syntax. Otherwise you fake it with **EXISTS**.

```sql
SELECT R.id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL
```
S E M I - J O I N

Join type where the result only contains columns from the left table. Distributed DBMSs use semi-join to minimize the amount of data sent during joins.

→ This is like a projection pushdown.

Some DBMSs support **SEMI JOIN** SQL syntax. Otherwise you fake it with **EXISTS**.

```sql
SELECT R.id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL
```
Join type where the result only contains columns from the left table. Distributed DBMSs use semi-join to minimize the amount of data sent during joins. → This is like a projection pushdown.

Some DBMSs support **SEMI JOIN** SQL syntax. Otherwise you fake it with **EXISTS**.

```sql
SELECT R.id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL
```
S E M I - J O I N

Join type where the result only contains columns from the left table. Distributed DBMSs use semi-join to minimize the amount of data sent during joins.
→ This is like a projection pushdown.

Some DBMSs support **SEMI JOIN** SQL syntax. Otherwise you fake it with **EXISTS**.
SEMI-JOIN

Join type where the result only contains columns from the left table. Distributed DBMSs use semi-join to minimize the amount of data sent during joins.

→ This is like a projection pushdown.

Some DBMSs support **SEMI JOIN** SQL syntax. Otherwise you fake it with **EXISTS**.
Join type where the result only contains columns from the left table. Distributed DBMSs use semi-join to minimize the amount of data sent during joins. → This is like a projection pushdown.

Some DBMSs support **SEMI JOIN** SQL syntax. Otherwise you fake it with **EXISTS**.

```
SELECT R.id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL
```

```
SELECT R.id FROM R
WHERE EXISTS (SELECT 1 FROM S
WHERE R.id = S.id)
```
Vendors provide *database-as-a-service* (DBaaS) offerings that are managed DBMS environments.

Newer systems are starting to blur the lines between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 before copying data to compute nodes.
CLOUD SYSTEMS

Approach #1: Managed DBMSs

→ No significant modification to the DBMS to be "aware" that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS

→ The system is designed explicitly to run in a cloud environment.
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery, Amazon Redshift, Microsoft SQL Azure
Rather than always maintaining compute resources for each customer, a "serverless" DBMS evicts tenants when they become idle.
SERVERLESS DATABASES

Rather than always maintaining compute resources for each customer, a "serverless" DBMS evicts tenants when they become idle.
Rather than always maintaining compute resources for each customer, a "serverless" DBMS evicts tenants when they become idle.
Rather than always maintaining compute resources for each customer, a "serverless" DBMS evicts tenants when they become idle.
Rather than always maintaining compute resources for each customer, a "serverless" DBMS evicts tenants when they become idle.
Rather than always maintaining compute resources for each customer, a "serverless" DBMS evicts tenants when they become idle.
DATA LAKES

Repository for storing large amounts of structured, semi-structured, and unstructured data without having to define a schema or ingest the data into proprietary internal formats.

CREATE TABLE foo (...);
DATA LAKES

Repository for storing large amounts of structured, semi-structured, and unstructured data without having to define a schema or ingest the data into proprietary internal formats.

```
CREATE TABLE foo (...);
INSERT INTO foo VALUES (...);
```
DATA LAKES

Repository for storing large amounts of structured, semi-structured, and unstructured data without having to define a schema or ingest the data into proprietary internal formats.
DATA LAKES

Repository for storing large amounts of structured, semi-structured, and unstructured data without having to define a schema or ingest the data into proprietary internal formats.

SELECT * FROM foo
Most DBMSs use a proprietary on-disk binary file format for their databases. → Think of the BusTub page types...

The only way to share data between systems is to convert data into a common text-based format → Examples: CSV, JSON, XML

There are new open-source binary file formats that make it easier to access data across systems.
UNIVERSAL FORMATS

Apache Parquet
→ Compressed columnar storage from Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from Apache Hive.

Apache CarbonData
→ Compressed columnar storage with indexes from Huawei.

Apache Iceberg
→ Flexible data format that supports schema evolution from Netflix.

HDF5
→ Multi-dimensional arrays for scientific workloads.

Apache Arrow
→ In-memory compressed columnar storage from Pandas/Dremio.
DISAGGREGATED COMPONENTS

System Catalogs
→ HCatalog, Google Data Catalog, Amazon Glue Data Catalog

Node Management
→ Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
→ Greenplum Orca, Apache Calcite
CONCLUSION

The cloud has made the distributed OLAP DBMS market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...
Andy's potentially frivolous attempt to convince you to put as much application logic as you can into the DBMS but then you will go into the real world and find out that few people do these things.