g

SN ey
Intro to Database Systems (15 445/645)

.

Distributed OLAP
Databases

https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2021

ADMINISTRIVIA

Homework #5 is due Sunday Dec 4th @ 11:59pm
Project #4 is due Sunday Dec 11** @ 11:59pm

Upcoming Special Lectures:

— Virtual Snowflake Lecture (Tuesday Dec 6t")
— Live Call-in Q&A Lecture (Thursday Dec 8%?)

Final Exam is Friday Dec 16"* @ 1:00pm.

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

EMAILS

3 history of 2pc

T adh e From: Bob Devine
Uk ’ ’ "";' A To: Andy Pavlo <pavlo@cs.cmu.edu>
ANDREF oy AT k2 Date: 11/24/22 12:51 py
- "."-"bl o 5 - pr
rod)
RPic o e M : i - Hi Prof Pavlo,
1 ¢ ; In a recent video of your DB class, you mentioned that the origin of 2PC was fuzzy.
B Bt
e < - I had worked with Jim Gray in the 1990s. 1 vaguely remembered his answer
; DR > vt to one of my idle questions about 2pc during a lunchtime chat.
3. .. . Here's his description (from his book with Andreas Reuter, p.575):
- p The two-phase commit protocol is just contract law applied to computers, so it
3 ; s I i Ao is difficult to claim any one individual invented it. The first known instance of
Vye g e ? its use in distributed systems is Credited to Nico Garzado in implementing the
? oy ¥ ; ; " Italian social security system in the early 1970s. By the mid-1970s, it had been
S ; oL o S fairly well analyzed and had been named.
. ". A - Bob Devine
£=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents
https://archive.org/details/transactionproce0000gray/

BIFURCATED ENVIRONMENT

OLTP Databases OLAP Database

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

STAR SCHEMA

PRODUCT_DIM CUSTOMER_DIM
CATEGORY_NAME ID
CATEGORY_DESC FIRST_NAME
PRODUCT _CODE SALES_FACT

LAST _NAME
PRODUCT _NAME EMAIL
PRODUCT_DESC FIRELIET A ZIP_CODE

TIME_FK

LOCATION_FK
CUSTOMER_FK

LOCATION_DIM TIME_DIM

PRICE

COUNTRY YEAR
STATE_CODE QUANTITY DAY_OF_YEAR
STATE_NAME MONTH_NUM
ZIP_CODE MONTH_NAME
CITY DAY_OF_MONTH

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CAT_LOOKUP

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

PRODUCT_DIM

CATEGORY_FK
PRODUCT _CODE
PRODUCT _NAME
PRODUCT_DESC

LOCATION_DIM

SALES_FACT

SNOWFLAKE SCHEMA

CUSTOMER_DIM

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

ID
FIRST_NAME
LAST_NAME
EMAIL

ZIP_CODE

TIME_DIM

YEAR

DAY_OF _YEAR
MONTH_FK
DAY_OF_MONTH

COUNTRY
STATE_FK
ZIP_CODE “~ PRICE
— QUANTITY
STATE_LOOKUP

STATE_ID

STATE_CODE —

STATE_NAME

£2CMU-DB

15-445/645 (Fall 2022)

MONTH_LOOKUP

MONTH_NUM
ey MONTH_NAME
MONTH_SEASON

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.

— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.1id

Application
Server

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible
where data resides before transmitting over network.

Approach #2: Pull Data to Query

— Bring the data to the node that is executing a query that
needs it for processing.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

her You can perform SQL queries using AWS SDKs, the SELECT Object Content REST API, the AWS Command Line Interface
VV (AWS CLl), or the Amazon S3 console, The Amazon s3 console limits the amount of data returned to 40 MB. To retrieve
more data, use the AWS CLI or the API.

Approwce—r—.

. : .
— Bring the data to the node that is executing a query tha
needs it for processing.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html

Filtering and retrievin

PDF | Rss

g data using Amazon S3 Select

With Amazon s3

. er
Query B‘Ob Co nte nts = MleOSOﬁ. ! y);ta:gusge (SQL) statements to filter th
] ed. By usin r the conten
ch reduces the co 9 Amazon S3 Select to filter thi oren
Article « 07/20/2021 - 10 minutes to read * 3 contributors 4y Feedback st and latency to retrieve th data, you can
is data.

r Apache Par.
quet format. It
only), and ser - It also works with obj
! ver-si ob,
termine how th side encrypted objects. Yoy jocts that are
€ records in the result are de| o sbeclly the
elimited.

The query Blob contents AP applies a simple Structured Query Language (SQL) statementon a blob's

contents and returns only the queried subset of the data. Vou can also call Query Blob contents toquery

the contents of a version or snapshot.

azon S3 Select
supports a
elect, se subset of SQL .
e SQL reference for Amamn%g golr more information
elect.

bject Conte
nt RE
e limits the amouST API, the AWS Command Lin
nt of data returned to 40 Mg e Interface
- To retrieve

Request

The query Blob contents request may be constructed as follows. HTTPS is recommended. Replace

myaccount with the name of your storage account:

amazon

pOST Method Request URI HTTP Version Utlng a query tnat
nttps://myaccount. plob.core.windows. netfmyccntainer/myhlob?cnmp:query HTTP/1.0
https://myaccount. plob.core.windows. net/mycontainer/myhloh'?comp:query&snapsnot:<oateTime> HTTP/1.1

hteps: //myaccount. blob.core .windows. nel:/mycontainer/mybloh‘?comp:query&versionid:<nateT‘1me>

15-445/645 (FanrzozZ)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents

PUSH QUERY TO DATA

SELECT * FROM R JOIN S Node] .
ON R.id = S.id P1»R.1d:1-100
P1»S.1d:1-100
) A

)

RIS
[IDs [101@ Qesult: RIS
Application

Server Node]
P2>R.id:101-200
#Em 255 id:11-200
s

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node
ON R.id = S.1id #% Page ABC
AR
IZZaR [R4S
IZZZZ-. . IDs [101,200] Page XYZ
Application |

P2>ID:101-200

£2CMU-DB

15-445/645 (Fall 2022)

W
(=]
O

. O] 9| 9
@Dﬂﬂﬂ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node
ON R.id = S.1id #% Page ABC
AR
IZZaR [R4S
IZZZZ-. . IDs [101,200] Page XYZ
Application |

P2>ID:101-200

£2CMU-DB

15-445/645 (Fall 2022)

W
(=]
O

. O] 9| 9
@Dﬂﬂﬂ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node

ON R.id = S.1id i:}Eﬁ
o A _J

.\

ZZ RIS

ZZE IDs [101,200] | Result: R4 S
ZZ

Application |

ad

P2>ID:101-200

£2CMU-DB

15-445/645 (Fall 2022)

W
(=]
O

. O] 9| 9
@Dﬂﬂﬂ"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

18

OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.

— This allows the DBMS to support intermediate results
that are large than the amount of memory available.

— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail

during query execution.
— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the

intermediate results for a query during execution
to allow it to recover if nodes fail.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S Node |
ON R.id = S.1id #%
/
ZZ
mm __R MQ Result: R D] S
: . ~X
Application

v N
Server Node

.

£2CMU-DB

15-445/645 (Fall 2022)

W
(=]
O

. O] 9| 9
@Dﬂﬂﬂ"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

QUERY FAULT TOLERANCE

W
(=]
O

SELECT * FROM R JOIN S Node | (
ON R.id = S.1id #E} Result: R > S
AR
ZZ
ZZE
ZZEa

Application

Server %
\ y _

. O] 9| 9
@Dﬂﬂﬂ

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Early Projections

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.

— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.

— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems that [knows
about that uses this approach.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://www.singlestore.com/
https://vitess.io/

24

Union the output of Tl FRAGMENTS

each join to produce
the final ’"ﬁ’:ikaM R JOIN S
0 id = S.id

8 g

SELECT * FROM R JOIN S SELECT * FROM R JOIN S SELECT * FROM R JOIN S
ON R.id = S.id ON R.id = S.id ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100 WHERE R.id BETWEEN 101 AND 200 WHERE R.id BETWEEN 201 AND 300
id:1-100 id:101-200 id:201-300

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.
— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we
discussed earlier in the semester.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in
parallel and then sends their results to
a coordinating node.

27

SELECT * FROM R JOIN S
ON R.id = S.1id

id:1-100

Replicated
£=CMU-DB

15-445/645 (Fall 2022)

id:101-200

Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in
parallel and then sends their results to
a coordinating node.

id:1-100

Replicated
£=CMU-DB

15-445/645 (Fall 2022)

27

SELECT * FROM R JOIN S
ON R.id = S.1id

@ Replicated

ad RS

1d:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

id:1-100

id:1-150

££CMU-DB

15-445/645 (Fall 2022)

29

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:151-250

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

id:1-100

id:1-150

££CMU-DB

15-445/645 (Fall 2022)

29

SELECT * FROM R JOIN S
ON R.id = S.1id

g,

P2:R>S

id:101-200

id:151-250

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

£2CMU-DB

15-445/645 (Fall 2022)

31

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

£2CMU-DB

15-445/645 (Fall 2022)

31

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

££CMU-DB

15-445/645 (Fall 2022)

31

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

££CMU-DB

15-445/645 (Fall 2022)

31

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

name: A-M

val:1-50

£2CMU-DB

15-445/645 (Fall 2022)

35

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

id:1-100 R{id} LA

L 4
L
....

name: A-M

val:1-50

£2CMU-DB

15-445/645 (Fall 2022)

35

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

id:1-100

name: A-M

val:1-50

£2CMU-DB

15-445/645 (Fall 2022)

35

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

id:1-100

id:1-100

name: A-M

val:1-50

£2CMU-DB

15-445/645 (Fall 2022)

35

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

id:1-100

id:1-100

name: A-M

val:1-50

£2CMU-DB

15-445/645 (Fall 2022)

35

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

id:1-100

id:1-100

name: A-M

val:1-50

££CMU-DB

15-445/645 (Fall 2022)

35

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

1id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SEMI-JOIN

Join type where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.

— This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

££CMU-DB

15-445/645 (Fall 2022)

SELECT R.1id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SEMI-JOIN

Join type where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.

— This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

££CMU-DB

15-445/645 (Fall 2022)

SELECT R.1id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SEMI-JOIN

SELECT R.id
Join type where the result only FROM R JOIN S
contains columns from the left table. ON R.id = S.1id
WHERE R.id IS NOT NULL

Distributed DBMSs use semi-join to

minimize the amount of data sent
during joins.
— This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

£2CMU-DB

15-445/645 (Fall 2022)

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SEMI-JOIN

Join type where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.

— This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

£2CMU-DB

15-445/645 (Fall 2022)

SELECT R.1id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL

SELECT R.id FROM R

WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SEMI-JOIN

Join type where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.

— This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

££CMU-DB

15-445/645 (Fall 2022)

SELECT R.1id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL

SELECT R.id FROM R

WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SEMI-JOIN

Join type where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.

— This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

££CMU-DB

15-445/645 (Fall 2022)

SELECT R.1id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL

SELECT R.id FROM R

WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines

between shared-nothing and shared-disk.
— Example: You can do simple filtering on Amazon S3
before copying data to compute nodes.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

CLOUD SYSTEMS

Approach #1: Managed DBMSs

— No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.
— Examples: Most vendors

Approach #2: Cloud-Native DBMS

— The system is designed explicitly to run in a cloud
environment.
— Usually based on a shared-disk architecture.

— Examples: Snowflake, Google BigQuery, Amazon
Redshift, Microsoft SQL Azure

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

= logg S

Application
Server

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

L#%Ede@ @

| Application
Server
£=CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

()

Storage

.| Node | »aa

AR
e
2 « | #% 44

Application @
Server

£2CMU-DB . J

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SERVERLESS DATABASES

Rather than always maintaining compute

resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

| Application
Server
£=CMU-DB

15-445/645 (Fall 2022)

Buffer Pool
N Page Table

.

>

f

Storage

o]
=

~N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SERVERLESS DATABASES

Rather than always maintaining compute

resources for each customer, a "serverless" DBMS

evicts tenants when they become idle.

| Application
Server
£=CMU-DB

15-445/645 (Fall 2022)

f

Storage

o]
=

~N

1@

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS

evicts tenants when they become idle.
W olanetscale

© CockroachDB [Storage)
" NEON P a a
ama;on 73 >

— ZZE

Y fauna Iz

y— Application
2 SQLAzure Server

££CMU-DB

15-445/645 (Fall 2022)

Buffer Pool
Page Table

L J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

£2CMU-DB

15-445/645 (Fall 2022)

CREATE TABLE foo (...);

|

Node

.

.

Storage

@

faVaVlaVlaVal
CAr A drdd

SIS

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

£2CMU-DB

15-445/645 (Fall 2022)

CREATE TABLE foo (...);

INSERT INTO foo VALUES (...);

!

Node

C
.
.
.
.
.
\ v)

.

Stoiage

faVaVlaVlaVal
CAr A drdd

SIS

(((. DR T

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

£2CMU-DB

15-445/645 (Fall 2022)

SELECT * FROM foo

l

Node

C
.
.
.
.
.
\ v)

.

Stoiage

faVaVlaVlaVal
CAr A drdd

SIS

(((. R 11

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

55

DATA LAKES

SELECT * FROM foo

Repository for storing large amounts
of structured, semi-structured, and 1

' in)
unstructured data without having to Node

@

define a schema or ingest the data into
proprietary internal formats.

e Goodl
¥ trino [l S @ T

< databricks i"°:<snowfloke DTEStO

faVaVlaVlaVal
CArdrdrdrd

=l #%

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

59

UNIVERSAL FORMATS

Most DBMSs use a proprietary on-disk binary file

format for their databases.
— Think of the BusTub page types...

The only way to share data between systems is to

convert data into a common text-based format
— Examples: CSV, JSON, XML

There are new open-source binary file formats
that make it easier to access data across systems.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

60

UNIVERSAL FORMATS

Apache Parquet

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC

— Compressed columnar storage from
Apache Hive.

Apache CarbonData

— Compressed columnar storage with
indexes from Huawei.

£2CMU-DB

15-445/645 (Fall 2022)

Apache Iceberg

— Flexible data format that supports
schema evolution from Netflix.

HDF5

— Multi-dimensional arrays for
scientific workloads.

Apache Arrow

— In-memory compressed columnar
storage from Pandas/Dremio.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://www.hdfgroup.org/
https://arrow.apache.org/

DISAGGREGATED COMPONENTS

System Catalogs
— HCatalog, Google Data Catalog, Amazon Glue Data

Catalog

Node Management
— Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
— Greenplum Orca, Apache Calcite

£2CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/greenplum-db/gporca
https://calcite.apache.org/

CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

NEXT CLASS

Andy's potentially frivolous attempt to convince
you to put as much application logic as you can
into the DBMS but then you will go into the real
world and find out that few people do these things.

££CMU-DB

15-445/645 (Fall 2022)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2022

