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LAST CLASS

We introduced the Relational Model as the
superior data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and
modify a relational database.
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SQL HISTORY

In 1971, IBM created its first relational query
language called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM

System R prototype DBMS.
— Structured English Query Language

IBM releases commercial SQL-based DBMSs:
—> System/38 (1979), SQL/DS (1981), and DB2 (1983).
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SQL

In 1971, IBM created
language called SQUA

IBM then created "SE

System R prototype |
— Structured English Q

IBM releases comme
— System/38 (1979), SQ

Mappings may be composed by applying one mapping
to the result of another, as illustrated by Q3.

Q3. Find those items sold by departments on the second floor.

SALES ° LOC (2)
ITEM DEPT DEpT FLOOR

The floor 27 is first mapped to the departments located
there, and then to the items which they sell. The range
of the inner mapping must be compatible with the
domain of the outer mapping, but they need not be
identical, as illustrated by Q4.
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SQL HISTORY

In 1971, IBM created its first relational query
language called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM

System R prototype DBMS.
— Structured English Query Language

IBM releases commercial SQL-based DBMSs:
—> System/38 (1979), SQL/DS (1981), and DB2 (1983).
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SQL HISTORY

ANSI Standard in 1986. ISO in 1987

— Structured Query Language

Current standard is SQL:2023

— SQL:2023 — Property Graph Queries, Muti-Dim. Arrays
— SQL:2016 — JSON, Polymorphic tables

— SQL:2011 » Temporal DBs, Pipelined DML

— SQL:2008 — Truncation, Fancy Sorting

— SQL:2003 —» XML, Windows, Sequences, Auto-Gen IDs.
— SQL:1999 — Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.
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SQL HISTORY
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RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:

— View definition

— Integrity & Referential Constraints
— Transactions

Important: SQL is based on bags (duplicates) not
sets (no duplicates).
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TODAY'S AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Window Functions

Nested Queries

Lateral Joins

Common Table Expressions
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EXAMPLE DATABASE

student(sid, name, login, gpa) enrolled(sid,cid, grade)

sid name login age gpa sid cid grade

53666 | RZA rza@cs 44 (4.0 53666 15-445 C

53688 | Bieber jbieber@cs 27 3.9 53688 15-721 A

53655 | Tupac shakur@cs 25 3.5 53688 15-826 B

53655 15-445 B

course(cid, name) 53666 | 15-721 ¢

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases
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AGGREGATES

Functions that return a single value from a bag of

tuples:

— AVG(col)— Return the average col value.
— MIN(col)— Return minimum col value.
— MAX(col)— Return maximum col value.
— SUM(col)— Return sum of values in col.
— COUNT(col)— Return # of values for col.
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AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'
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AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
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AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt

[T VX PSR TV Tice= ol

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'
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AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(logln) AS cnt

ool PSR TV Tice= ol

SELECT COUNT(*) AS cnt

[T _V_X PSR T TV Lxice= ol

SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'
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AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(logln) AS cnt

ool PSR TV Tice= ol

SELECT COUNT(*) AS cnt

[T _V_X PSR T TV 0 Lxice= ol

SELECT COUNT(1) AS cnt

[T _V_X PR TR TV Eace= ol

SELECT COUNT(1+1+1) AS cnt
FROM student WHERE login LIKE '%@cs'
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MULTIPLE AGGREGATES

Get the number of students and their average GPA that
have a ‘@cs” login.

AVG(gpa) COUNT(sid)

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs
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AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

AVG(s.gpa) e.cid

SELECT AVG(s.gpa), e.cid 3.86 22?

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
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AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

AVG(s.gpa) e.cid

e d
FROM enrolled Asx\l student AS s

SELECT AVG(s.gpa), 3.86 22?
ON e.sid = s.sid
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GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e JOIN student AS s

ON e.sid = s.sid
GROUP BY e.cid

AVG(s.gpa) e.cid

2.46 |15-721
# | 3.39  [15-826

1.89 |15-445

53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445
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GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, |s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e, stud*

WHERE e.sid = s.sid
GROUP BY e.cid
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GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid, s.name
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HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

AND avg_gpa > 3.9

GROUP BY e.cid
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HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9; x
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HAVING

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING AVG(s.gpa) > 3.9;
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AVG(s.gpa) e.cid

3.75 15-415 avg_gpa e.cid
3.950000 |15-721 # 3.950000 | 15-721

3.900000 |15-826
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STRING OPERATIONS
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String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
MSSQL Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('TuPaC') SQL-92

WHERE name =

"TuPaC"

MySQL
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STRING OPERATIONS

LIKE is used for string matching.

String-matching operators

— '%"' Matches any substring (including
empty strings).

SELECT * FROM enrolled AS e
WHERE e.cid LIKE '15-%'

— ' _" Match any one character

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_'
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STRING OPERATIONS

SQL-92 defines string functions.
— Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'
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STRING OPERATIONS

SQL standard defines the | | operator for
concatenating two or more strings together.

SELECT name FROM student SQL-92
WHERE login = LOWER(name) || '@cs'
SELECT name FROM student MSSQL

WHERE login = LOWER(name) + '@cs'

SELECT name FROM student MySQL
WHERE login = CONCAT(LOWER(name), '@cs')
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DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.
Support/syntax varies wildly...

Demo: Get the # of days since the beginning of
the year.
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OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same
types as the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM enrolled;

CREATE TABLE Courselds ( MySQL
SELECT DISTINCT cid FROM enrolled);
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OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same
types as the input.

SELECT DISTINCT cid INTO Courselds  SQL-92

FROM[SELECT DISTINCT cid Postgres
INTO TEMPORARY Courselds
CREATE| FROM enrolled;

SELECT DISTINCT cid FROM enrolled);
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OUTPUT REDIRECTION

Insert tuples from query into another table:

— Inner SELECT must generate the same columns as the
target table.

— DBMSs have different options/syntax on what to do with
integrity violations (e.g., invalid duplicates).

INSERT INTO Courselds SQL-92
(SELECT DISTINCT cid FROM enrolled);
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OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of

their columns.

SELECT sid, grade FROM enrolled
WHERE cid = "15-721'
ORDER BY grade

sid
53123

53334

53650

£CMU-DB
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OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled
WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721"'

ORDER BY 2
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OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled
WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721"'

ORDER BY 2
SELECT sid FROM enrolled %_
WHERE cid = '15-721" 53650
ORDER BY grade DESC, sid ASC 5;;53
53334 |—
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OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
WHERE login LIKE '%@cs'

ORDER BY gpa

OFFSET 10 ROWS

FETCH FIRST 10 ROWS WITH TIES;
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OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
WHERE login LIKE '%@cs'

ORDER BY gpa

OFFSET 10 ROWS

FETCH FIRST 10 ROWS|WITH TIES:|
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WINDOW FUNCTIONS

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped
into a single output tuples.

How to “slice” up data

/ Can also sort

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableNdke

Aggregation Functions

=T Special Functions

15-445/645 (Fall 2023)
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WINDOW FUNCTIONS

Aggregation functions:

— Anything that we discussed earlier sid cid grade row_num
. . . 53666 15-445 C 1
Special window functions: 53688 |15-721 | A
— ROW_NUMBER()— # of the current row 53688 |15-826 B 3
— RANK()— Order position of the current 53655 | 15-445 B 4
FOW. 53666 | 15-721 C 5

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled
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WINDOW FUNCTIONS

The OVER keyword specifies how to

group together tuples when d - 3 - Ow_number
computing the window function. ecaas Te3ese 1o

: 15-721 | 53688 |1
Use PARTITION BY to specify group. o791 5366 |2

15-826 | 53688 |1

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid
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WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

SELECT =*,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid
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WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

Group tuples by cid
Then sort by grade

SELECT * FROM ( /
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS_rank

FROM enrolled) ﬁz—égﬂking__———v
WHERE |ranking. rank
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NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.

— They are often difficult to optimize for the DBMS to
optimize due to correlations.

— Inner queries can appear (almost) anywhere in query.

Outer Query ===p|SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled) Inner Query
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NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...

T

sid in the set of people that take 15-445
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NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445"
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NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445"
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NESTED QUERIES

Get the names of students in '15-445

SELECT name‘nl;wystudent
WHERE[S1d (
SELECT|sid |Ré™enrolled

WHERE cid = '15-445"'
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NESTED QUERIES

ALL— Must satisfy expression for all rows in the
sub-query.

ANY— Must satisfy expression for at least one row
in the sub-query.

IN— Equivalent to '=ANY()'.

EXISTS— At least one row is returned without
comparing it to an attribute in outer query.
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NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'
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NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT MAX(e.sid), s.name

FROM enrolled AS e, student AS s x
WHERE e.sid = s.sid;

This won't work in SQL-92. It runs in SQLite, but
not Postgres or MySQL (v8 with strict mode).
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NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student
WHERE ...

"Is the highest enrolled sid"

£CMU-DB
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NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student
WHERE sid IN (
SELECT MAX(sid) FROM enrolled

)
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NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT _sid name FROM ctiident
WHEISELECT sid, name FROM student

S| WHERE sid IN (
) SELECT sid FROM enrolled
ORDER BY sid DESC FETCH FIRST 1 ROW ONLY
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NESTED QUERIES

Find student record with the highest id that is enrolled

in at least one course.

SELECT _<sid name FROM ctiident

WHEISELECT sid, name FROM student

£CMU-DB

15-445/645 (Fall 2023)

S| WHE i (
) SISELECT student.sid, name
FROM student

) JOIN (SELECT MAX(sid) AS sid

ON student.sid = max_e.sid;

FROM enrolled) AS max_e
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NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE

“with no tuples in the enrolled table”

cid name

15-445 Database Systems

15-721 Advanced Database Systems
15-826 Data Mining

15-799 Special Topics in Databases

£CMU-DB

15-445/645 (Fall 2023)

sid cid grade
53666 |15-445 C
53688 |15-721 A
53688 |[15-826 B
53655 |15-445 B
53666 |[15-721 C
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NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(

tuples in the enrolled table

)
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NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTA(
SELECT * FROJl enrolled
WHERE |course.cid|= enrolled.cid

‘15—799 ‘Special Topics in Databases \
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LATERAL JOINS

The LATERAL operator allows a nested query to
reference attributes in other nested queries that

precede it.

— You can think of it like a for loop that allows you to
invoke another query for each tuple in a table.

SELECT * FROM ‘ 1 ‘2 ‘

(SELECT 1 AS x) AS t1,
LATERAL (SELECT t1.x+1 AS y) AS t2;

£CMU-DB

15-445/645 (Fall 2023)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

SELECT * FROM course AS c,
For each course:
» Compute the # of enrolled students

For each course:
» Compute the average gpa of enrolled students
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LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;
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LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

SELECT * FROM course AS c
AT S ERE cnrolied.cid - c.cid) AS 11|
WHERE enrolled.cid = c.cid) AS t1
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s

JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;
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LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM egrolled
WHERE enrolled.cid =|c.c1 S ti1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;
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LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1
LATERAL (SELECT AVG(gpa) AS avg FROM student AS|]s
JOIN enrolled AS e ON s.sid = e.sid

WHERE e.cid = c.cid) AS t2;
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LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order. P E— e o

15-445 [Database Systems 2 3.75

15-721 | Advanced Database Systems 2 3.95

SELECT * FROM course AS C, [15-826 [Data Mining ] 39
LATERAL (SELECT COUNT( ) [ 15-799 [Special Topics in Databases |0 null

WHERE enrollgd.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) A$ avg FROM student AS s
JOIN enrolled A% e ON s.sid = e.sid
WHERE e.cid =|c.cid) AS t2;
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COMMON TABLE EXPRESSIONS

Provides a way to write auxiliary statements for

use in a larger query.
— Think of it like a temp table just for one query.

Alternative to nested queries and views.

WITH |cteName |AS (
SELECT 1

)
SELECT * FROM|cteName
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COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names
before the AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName
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COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names
before the AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName |(colXXX, colXXX)| AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName
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COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names
before the AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (  Postgres

SELECT 1, 2

)
SELECT * FROM cteName
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COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled
in at least one course.

WITH cteSource (maxId) AS (

SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student,|cteSource
WHERE student.sid = cteSource.maxId
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CONCLUSION

SQL is not a dead language.

You should (almost) always strive to compute your
answer as a single SQL statement.
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HOMEWORK #1

Write SQL queries to perform basic data analysis.

— Write the queries locally using SQLite + DuckDB.
— Submit them to Gradescope

— You can submit multiple times and use your best score.

Due: Sunday Sept 10** @ 11:59pm

https://15445.courses.cs.cmu.edu/fall2023/homeworkl
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NEXT CLASS

Storage Management
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