—
(amegie |ntro to Database

University Systems (15-445/645)

Lecture #03

Database
Storage
Part 1

FALL 2023)) Prof.Andy Pavio ® Prof.Jignesh Patel

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

ADMINISTRIVIA

Homework #1 is due September 10 @ 11:59pm
Project #0 is due September 10® @ 11:59pm

Project #1 will be released on September 8™

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

LAST CLASS

We now understand what a database looks like at
a logical level and how to write queries to
read/write data (e.g., using SQL).

We will next learn how to build software that
manages a database (i.e., a DBMS).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

COURSE OUTLINE

Relational Databases Query Planning

Storage :

r . Operator Execution
xecution

Concurrency Control Access Methods

Recovery Buffer Pool Manager

Distributed Databases :

P . Disk Manager
otpourri

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

DISK-BASED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

STORAGE HIERARCHY

CPU Registers
13

CPU Caches

Volatile

Random Access 1‘

Byte-Addressable DRAM

.. 1+
Non-Volatile SSD
Sequential Access 3 3
Block-Addressable
HDD
13
oMU Network Storage

15-445/645 (Fall 2023)

Faster
Smaller
Expensive

Slower
Larger
Cheaper

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

STORAGE HIERARCHY

Faster
[CPU Registers Smal Ier
CPU - 13 Expensive
CPU Caches
13
Memory{ DRAM
.......... _f&
SSD
13
Disk - HDD .
ower
t¥ Larger
oMU] Network Storage Cheaper

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15721.courses.cs.cmu.edu/

e
STORAGE HIERARCHY

Faster
[CPU Registers Smal Ier.
CPU- 13 Expensive
CPU Caches

........................... Persistent Memory

Fast Network Storage
Disk - HDD .
ower
td Larger

oMU Network Storage Cheaper

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15721.courses.cs.cmu.edu/

CPU Registers L &’\@ f\‘<>l<x;.r\,\w&k‘1.«\wum PUBLISH] R'\
Non-Volatile

CPU- f‘
Memor y Databage

CPU Caches
Management Systems

2

Joy Ar ulraj
Aﬂdrew Pavlo

Disk -

t¥ Larger |
Network Storage Cheaper

£2CMU-DB B

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15721.courses.cs.cmu.edu/
https://doi.org/10.2200/S00891ED1V01Y201812DTM055

STORAGE HIERARCHY

(nteD OPTANEDCO»

PERSISTENT MEMORY
11\\/1/1 ¢mory Database
anagement Systemg

4 uzaﬁm-.umnx1||||u|||\|!\11\\\\1I||\!|!|||!mmm||||m“1 L LR

te ‘ Larger |
Network Storage Cheaper

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15721.courses.cs.cmu.edu/
https://doi.org/10.2200/S00891ED1V01Y201812DTM055

L L I —
Intel kills the remnants
of Optane memory

The speed-boosting storage tech was

2))
(intel) O PTANE DC. Qi

R Y StaffWriter, PCWorld | JUL 29, 2022 6:59 AM PDT
PERSISTENT MEMO

DEALS v

STORAGE HIE

already on the ropes.

M‘;‘u‘:d?jm

PTLLLLLLLLLLCRRELLLLLLLLLLEELEE im i \ [|| \| \| \| ‘ I ‘“ l“““ 11| : “““"‘““""""l
L i

image: Inte]

If you haven’t built a Super-high-end workstation in a while, you might not
have heard of Intel’s Optane memory caching tech. Optane also powered
1 ultra-fast SSDs for consumers and businesses alike. Not that it matters

much now. After 3 disastrous second-quarter earnings call in which it

missed expected revenue by billions of dollars, the Company announced
its plans to end jts Optane memory b

usiness entirely.
£CMU-DB -

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15721.courses.cs.cmu.edu/
https://doi.org/10.2200/S00891ED1V01Y201812DTM055
https://www.pcworld.com/article/821256/intel-kills-optane-memory.html

ACCESS TIMES

Latency Numbers Every Programmer Should Know

Ins L1 Cache Ref
4ns L2 Cache Ref
100 ns DRAM
16,000 ns SSD
2,000,000 ns HDD
~50,000,000 ns Network Storage
1,000,000,000 ns Tape Archives

£ CMU-DB Source: Colin Scott

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://colin-scott.github.io/personal_website/research/interactive_latency.html

ACCESS TIMES

Latency Numbers Every Programmer Should Know

1ns L1 Cache Ref « 1sec
4 ns .2 Cache Ref « 4 sec

100 ns DRAM ‘ 100 sec
16,000 ns SSD « 4.4 hours
2,000,000 ns HDD « 3.3 weeks

~50,000,000 ns Network Storage ‘ 1.5 years
1,000,000,000 ns Tape Archives 4@ 317 years

£ CMU-DB Source: Colin Scott

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://colin-scott.github.io/personal_website/research/interactive_latency.html

SEQUENTIAL VS. RANDOM ACCESS

Random access on non-volatile storage is almost
always much slower than sequential access.

DBMS will want to maximize sequential access.

— Algorithms try to reduce number of writes to random
pages so that data is stored in contiguous blocks.

— Allocating multiple pages at the same time is called an
extent.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

SYSTEM DESIGN GOALS

Allow the DBMS to manage databases that exceed
the amount of memory available.

Reading/writing to disk is expensive, so it must be
managed carefully to avoid large stalls and
performance degradation.

Random access on disk is usually much slower
than sequential access, so the DBMS will want to
maximize sequential access.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISK-ORIENTED DBMS

Directory

T :

——

Directory Headerl Headerl /-/eaa’erl Headerl /-/eaa’erl

% 1 2 3 4 B | e [;— Pages

L[]

Get Page #2)
Execution
‘ ao Engine

Buffer Pool

Memory

Database File

Disk

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISK-ORIENTED DBMS

Get Page #2

Execution
Engine

ST ETTTEEEEE PP TP >
s : Pointer to Page #2

Directory /-,’eag’erl

LT

1

Directory Headerl Headerl /-/eaderl Headerl /-/eaa’erl

% 1 2 3 4 B | e [;— Pages

L[]

Buffer Pool

.................

Memory

Database File

Disk

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISK-ORIENTED DBMS

Get Page #2
Execution
e tassssssssssssssssssaas o En gine
= . PR . Pomter to Page #2
f‘: dlrectony | fresce] : Interpret Page #2 layout
s(l0l| 2 — |
E (1] Update Page #2
Memo»ry m
= : : -
.L: Directory Headerl Headerl /-/eaderl Headerl /-/eaa’erl
o | ILT]
@« [X X J
sliccolf 1 2 [| 3 || 4| 5 — Pages
: S| (D
Disk 2 -1

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Memory

Lecture #6

Buffer Pool

DISK-ORIENTED DBMS

Lectures #12-13

Get Page #2

\ 4

Directory

Headerl

L[]
L[]
L[]

2

Execution
Engine

| Interpret Page #2 layout

Disk

$CMU-DB

15-445/645 (Fall 2023)

Database File

:

Update Page #2

1

v

Directory

Headerl

L[]
([[]
L[]

1

Heaa’erl

/-/eaderl

2

3

IB Lectures #3-5

— Pages

Heaa’erl

5

/-/eao’erl

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WHY NOT USE THE OS?

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn’t need to worry about it.

£CMU-DB

15-445/645 (Fall 2023)

Virtual
Memory

Physical
Memory

pagel

page?2

page3

page4

page?2 page3

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WHY NOT USE THE OS?

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

OS is responsible for moving file
pages in and out of memory, so the

DBMS doesn’t need to worry about it.

£CMU-DB

15-445/645 (Fall 2023)

Virtual Physical
Memory Memory
» pagel * pagel
A
page?2
page3
page4
pagel page?2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WHY NOT USE THE OS?

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

OS is responsible for moving file
pages in and out of memory, so the

DBMS doesn’t need to worry about it.

£CMU-DB

15-445/645 (Fall 2023)

Virtual
Memory

Physical
Memory

pagel

page?2 _—’//,——' page3
3
page3 :

\ 4

pageT

page4
pagel page?2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WHY NOT USE THE OS?

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn’t need to worry about it.

£CMU-DB

15-445/645 (Fall 2023)

Virtual Physical
Memory Memory
pagel »| pagel

page?2 _—’//,——' page3
page3 ’

@

page?2 page3

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

WHY NOT USE THE OS?

What if we allow multiple threads to access the
mmap files to hide page fault stalls?

This works good enough for read-only access.
[t is complicated when there are multiple writers...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

MEMORY MAPPED I/O0 PROBLEMS

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

Problem #2: I/0 Stalls

— DBMS doesn't know which pages are in memory. The
OS will stall a thread on page fault.

Problem #3: Error Handling

— Difficult to validate pages. Any access can cause a SIGBUS
that the DBMS must handle.

Problem #4: Performance Issues
— OS data structure contention. TLB shootdown:s.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WHY NOT USE THE OS?

There are some solutions to some of

these problems:

— madvise: Tell the OS how you expect to
read certain pages.

— mlock: Tell the OS that memory ranges
cannot be paged out.

— msync: Tell the OS to flush memory
ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

£CMU-DB

15-445/645 (Fall 2023)

Full Usage

mw@ LDB

RAVENDS @ levelps

& elasticsearch QQuestDB

Partial Usage
0 MongoDB. Q) SingleStore

?SQLite € influxdb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WHY NOT USE THE OS?

There are some solutions to some of

these problems:

— madvise: Tell the OS how you expect to
read certain pages.

— mlock: Tell the OS that memory ranges
cannot be paged out.

— msync: Tell the OS to flush memory
ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

£CMU-DB

15-445/645 (Fall 2023)

Full Usage

mw@ LDB

RAVENDS @ levelps

& elasticsearch QQuestDB

Partial Usage

oMOXOD& Q sindtore

?SQLite & iMdb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WHY NOT USE THE OS?

DBMS (almost) always wants to control things

itself and can do a better job than the OS.
— Flushing dirty pages to disk in the correct order.
— Specialized prefetching.

— Buffer replacement policy.

— Thread/process scheduling.

The OS is not your friend.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

$CMU-DB

15-445/645 (Fall 2023)

WHY NOT USE

DBMS (almost) always wants |
itself and can do a better job th

— Flushing dirty pages to disk in th
— Specialized prefetching:

— Buffer replacement policy.

— Thread/process scheduling.

The OS is not your friend.

Are You Sure You Want to Use MMAP in Your
Database Management System?

Andrew Crotty Viktor Leis

Carnegic Mellon University
andrewer@cs.cmu.edu

ABSTRACT
Memory-mapped (nmap) file 1/0 15 an OS-provided feature that
maps the contents of a file on secondary storage into program’s
address space. The program then accesses Pages via pointers as
if the file resided entirely in emory. The OS transparently loads
Pages only when the program references them and automat ically
evicts pages if memory fills up,

map's perceived ease of use has seduced database management
system (DBMS) developers for decades as a viable alternative to
implementing a buffer pool. There are, however, severs correct-
ness and performance issues with mmap that not immediately
apparent. Such problems make it difficult, if not impossible 1o ysn
mmap correctly and efficiently in 4 modem DBMS, In faet, severa
popular DBMSs initially used mmap to support larger-than-memory
databases but soon encountered these hidden peril forcing them to
switch to managing file 10 themselves after significant engineering
- mmap and DBMSs are like coffee and spicy food:
an unfortunate combination that becomes obvious after the finct,

Since developers keep trying to use mmap in new DBMSs, we
wrote this paper to provide 4 warning to others that mmap is nota
suitable replacement for u traditional bufler pool. We diueyss the
main shortcomings of mmap in detail, and ou experimental analysis
demonstrates clear performance limitations, Based on these find-
ings, we conclude with a prescription for when DBAMS developers
might consider using mmap for file 1/0),

costs. In this w;

1 INTRODUCTION
Animportant feature of disk-based DBMSs s their ability to support
databases that are larger than the available physical T
Tunctionality allows a user toquery adataba
tn memory, even if it does not fit all at once, DBMSs achieve
illusion by reading Pages of data from secondary storage (e
SSD) into memory on demand. If there is not enough memory for o
new page, the DBMS will evict an existing page that is no longer
needed in order to make room,

Traditionally, DBMSs implement the movement of pages be-
tween secondary storage and memory in a buffer poal, which in
teracts with secondary storage using system calls like read and
write. These file 1/O mechanisms copy data to and from a buffer
with the DBMS maintaining complete control over
pages
matively. the DBMS can relinquish the responsibility of data
it to the 0, which maintains ity own file mapping and

10ns Attribution 40 International
ense ehts to dissen

Personal und corpe ites with the upgro

attrilnite the ariginal work 10 the suthces an

Innovative Data Systems Research (CIDK 22), Jan

University of Erlangen-Nuremberg
viktorleis@fau.de

Andrew Pavlo
Carnegie Mellon University
pavio@cs.cmu.edu

Page cache. The POSIX mnap system call maps a file on secondary
storage into the virtual address space of the caller (ie., the DBMS),
and the OS will then load pages lazily w the DBMS accesses
them. To the DBMS, the database appears to reside fully in memory,
but the OS handles all necessary paging behind the scenes rather
than the DBMS's buffer pool

On the surface, nmap seems like an attractive implementation
option for managing file 1/0 in a DBMS, The most notable benefits
are ease of use and low engineering cost, The DBMS o longer
needs to track which page
how often pages are accessed or which pages are dirty. Instead,

wre In memory, nor does it need to track

the DBMS can simply access disk-resident data via pointers as if
Mt were accessing data in memory while leaving al low-level page
Mmanagement to the OS. If the available memory fills up, then the

OS will free space for new pages by transparently evicting (ideally
unneeded) pages from the page cache

From a performance perspective, smap should also have much
lower overhead than o traditional buffer pool Specifically, mmap
does not incur the cost of explicit system calls (e, readiwrite)
and avoids redundant copying to a buffer in ser space because the
DBMS can access pages directly from the 0§ pa he.

Since the early 19805, these supposed benefits have enticed DBMS
developers to forgo Implementing a buffer pool and instead rely
on the OS to manage file 10 [36). In fact, the developers of several
well-known DBMSs (see Section 2.3) have gone down this path,
with some even touting mmap as a key factor in achieving good
performance [20)

Unfortunately, mmap has a hidden dark side with many sordid
problems that make it undesirable for file 1O in 4 DBEMS. As we
describe in this Ppaper, these problems involve both data safety and
System performance concerns, We contend that the engineering
steps required to overcome them negate the purported simplicity
of warking with mmap. For these reasons, we beliey that mmap
adds too much complexity with no commensurate p mance
ben ongly urge DBMS developers to avoil using mmap as
 replacement for a traditional buffer pool

The remainder of this paper is organized as follows. We begin
with a short background on mmap (Section 2), followed by a disc us.
slon of its main problems (Section 3) and our experimental analysis
(Section 4). We then discuss related work (Section 5)and conclude
witha summary of our guidance for when you might consider using
mmap in your DBMS (Section 6)

d s

2 BACKGROUND

This section pravides the relevant background on mmap, We begin
with a high-level overview of memaor mapped file VO and the
POSIX mmap API. Then, we discuss real-world implementations of
mmap-based systems.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022

£CMU-DB

15-445/645 (Fall 2023)

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk. N TOday

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

FILE STORAGE

The DBMS stores a database as one or more files

on disk typically in a proprietary format.

— The OS doesn't know anything about the contents of
these files.

— We will discuss portable file formats next week...

Early systems in the 1980s used custom filesystems

on raw block storage.
— Some "enterprise" DBMS:s still support this.
— Most newer DBMSs do not do this.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

STORAGE MANAGER

The storage manager is responsible for

maintaining a database's files.
— Some do their own scheduling for reads and writes to
improve spatial and temporal locality of pages.

[t organizes the files as a collection of pages.
— Tracks data read/written to pages.
— Tracks the available space.

A DBMS typically does not maintain multiple

copies of a page on disk.
— Assume this happens above/below storage manager.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

DATABASE PAGES

A page is a fixed-size block of data.

— [t can contain tuples, meta-data, indexes, log records...
— Most systems do not mix page types.
— Some systems require a page to be self-contained.

Each page is given a unique identifier.
— The DBMS uses an indirection layer to map page IDs to
physical locations.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DATABASE PAGES

There e hiee i motom of | L D

"pages" in a DBMS: 4KB omacle
— Hardware Page (usually 4KB) ?SQLH@

— OS Page (usually 4KB, x64 2MB/1GB) RocksDB
" Rocks

— Database Page (512B-32KB)

A hardware page is the largest block o
of data that the storage device can 8KB > SQL Server
guarantee failsafe writes. PostgreSQL

16KB Y\ MysaL.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in

different ways.

— Heap File Organization
— Tree File Organization
— Sequential / Sorted File Organization (ISAM)
— Hashing File Organization

At this point in the hierarchy we don't need to
know anything about what is inside of the pages.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Get Page #2

£CMU-DB

15-445/645 (Fall 2023)

HEAP FILE

A heap file is an unordered collection of pages

with tuples that are stored in random order.
— Create / Get / Write / Delete Page
— Must also support iterating over all pages.

[t is easy to find pages if there is only a single file.

Offset = Page# x PageSize

Page0 Pagel Page?2 Page3 Page4

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Get Page #2———

£CMU-DB

15-445/645 (Fall 2023)

HEAP FILE

A heap file is an unordered collection of pages

with tuples that are stored in random order.
— Create / Get / Write / Delete Page
— Must also support iterating over all pages.

[t is easy to find pages if there is only a single file.

Page@ Pagel Page2 Page3 Page4 Page20| |Page21| |Page22| |Page23| |Page24

Database File
Database File

Page10| |Pagel11| |Pagel12| |Page13| |Pagel4 Page3@| |Page31| |Page32| |Page33| |Page34

Database File

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HEAP FILE

A heap file is an unordered collection of pages

with tuples that are stored in random order.
— Create / Get / Write / Delete Page
— Must also support iterating over all pages.

[t is easy to find pages if there is only a single file.

Need meta-data to keep track of what pages exist
in multiple files and which ones have free space.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HEAP FILE: PAGE DIRECTORY

Page@

The DBMS maintains special pages — | Data
that tracks the location of data pages
. Directory
in the database files. Pagel
— Must make sure that the directory pages |

are in sync with the data pages. | pata
The directory also records meta-data : :
about available space: i
— The number of free slots per page. P
— List of free / empty pages. S|

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TODAY'S AGENDA

Page Layout
Tuple Layout

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAGE HEADER

Every page contains a header of meta-

data about the page's contents.
— Page Size

— Checksum

— DBMS Version

— Transaction Visibility

— Compression / Encoding Meta-data
— Schema Information

— Data Summary / Sketches

Some systems require pages to be self-
contained (e.g., Oracle).

£CMU-DB

15-445/645 (Fall 2023)

Page

Header

Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAGE LAYOUT

For any page storage architecture, we now need to

decide how to organize the data inside of the page.
— We are still assuming that we are only storing tuples in a

Rt X &8 | row-oriented storage model.

Approach #1: Tuple-oriented Storage | < Today

Approach #2: Log-structured Storage
Approach #3: Index-organized Storage

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAGE LAYOUT

For any page storage architecture, we now need to

decide how to organize the data inside of the page.
— We are still assuming that we are only storing tuples in a

Rt X &8 | row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Lecture #4

Approach #3: Index-organized Storage

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.

£CMU-DB

15-445/645 (Fall 2023)

Page

Num Tuples = 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.

£CMU-DB

15-445/645 (Fall 2023)

Page

Num Tuples = 3

Tuple #1

Tuple #2

Tuple #3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then

just append a new tuple to the end.
— What happens if we delete a tuple?

£CMU-DB

15-445/645 (Fall 2023)

Page

Num Tuples

2

Tuple #1

Tuple #3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then

just append a new tuple to the end.
— What happens if we delete a tuple?

£CMU-DB

15-445/645 (Fall 2023)

Page

Num Tuples

3

Tuple #1

Tuple #4

Tuple #3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE-ORIENTED STORAGE

How to store tuples in a page? Page

Num Tuples = 3

Strawman Idea: Keep track of the
number of tuples in a page and then

just append a new tuple to the end. Tuple #4

— What happens if we delete a tuple?

— What happens if we have a variable-
length attribute?

Tuple #1

Tuple #3

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SLOTTED PAGES

, Slot Arra
The most common layout scheme is et

called slotted pages.

1 23 45¢6 7"
Header |9|® ? ®

The slot array maps "slots" to the ,J
tuples' starting position offsets. ;
The header keeps track of: Tuple #4| Tuple #3

— The # of used slots
— The offset of the starting location of the
last slot used.

Tuple #2 Tuple #1

|
Fixed- and Var-length
Tuple Data

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SLOTTED PAGES

, Slot Arra
The most common layout scheme is et

1 2 3 456 7"

called slotted pages.

Header
The slot array maps "slots" to the »
tuples' starting position offsets.
The header keeps track of: ‘ Tuple #4] Tuple #3
— The # of used slots

Tuple #2 | Tuple #1
— The offset of the starting location of the i e

last slot used. Y
Fixed- and Var-length
Tuple Data

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SLOTTED PAGES

, Slot Arra
The most common layout scheme is et

1 2 3 456 7"

called slotted pages.

Header
The slot array maps "slots" to the
tuples' starting position offsets.
The header keeps track of: Tuple #4 TUX#3
— The # of used slots

Tuple #2 | Tuple #1
— The offset of the starting location of the i e

last slot used. Y
Fixed- and Var-length
Tuple Data

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SLOTTED PAGES

, Slot Arra
The most common layout scheme is et

called slotted pages.

1 2 3 456 7"

Header ®
The slot array maps "slots" to the
tuples' starting position offsets. ;
The header keeps track of: Tuple #4
— The # of used slots

Tuple #2 | Tuple #1
— The offset of the starting location of the B up-¢e

last slot used. Y
Fixed- and Var-length
Tuple Data

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SLOTTED PAGES

, Slot Arra
The most common layout scheme is et

called slotted pages.

1 2 3 456 7"

Header ®
The slot array maps "slots" to the
tuples' starting position offsets.
The header keeps track of: Tuple #4
— The # of used slots

Tuple #2 | Tuple #1
— The offset of the starting location of the B up-¢e

last slot used. Y
Fixed- and Var-length
Tuple Data

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

RECORD IDS

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the

database.

— File Id, Page Id, Slot #

— Most DBMSs do not store ids in tuple.

— SQLite uses ROWID as the true primary
key and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

£CMU-DB

15-445/645 (Fall 2023)

PostgreSQl
CTID (6-bytes)

?SQLite

ROWID (8-bytes)

Microsoft®

#SQL Server
%%physloc%% (8-bytes)

ORACLE
ROWID (10-bytes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.sqlite.org/rowidtable.html

TODAY'S AGENDA

Tuple Layout

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE LAYOUT

A tuple is essentially a sequence of bytes.

[t's the job of the DBMS to interpret those bytes
into attribute types and values.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE HEADER

Each tuple is prefixed with a header

that contains meta-data about it.

— Visibility info (concurrency control)
— Bit Map for NULL values.

W e do not need to store meta-data
about the schema.

£CMU-DB

15-445/645 (Fall 2023)

Tuple

Header

Attribute Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE DATA

Attributes are typically stored in the Tuple

order that you specify them when you | Header| a | b | c d e
create the table.

.. : : CREATE TABLE foo (
This is done for software engineering a INT PRIMARY KEY,
reasons (i.e., simplicity). b INT NOT NULL,

c INT,
However, it might be more efficient d DOUBLE,
to lay them out differently.).e FLOAT

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and CREATE TABLE foo (

store them together in the same page. '*E INT PRIMARY KEY,
— Potentially reduces the amount of I/O for INT NOT NULL,

common workload patterns.); |CREATE TABLE bar (
— Can make updates more expensive. c INT PRIMARY KEY,
a INT

®Y REFERENCES foo (a),
);

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
— Potentially reduces the amount of I/O for

common workload patterns.
— Can make updates more expensive.

SELECT * FROM foo JOIN bar
ON foo.a = bar.a;

£CMU-DB

15-445/645 (Fall 2023)

foo
Header | a
bar
Header | c
Header | c
Header | c

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
— Potentially reduces the amount of I/O for

common workload patterns.
— Can make updates more expensive.

Header

SELECT * FROM foo JOIN bar
ON foo.a = bar.a;

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and Header

store them together in the same page.

— Potentially reduces the amount of I/O for
common workload patterns.

— Can make updates more expensive.

Not a new idea.

o
— [BM System R did this in the 1970s. @ +
a7,

= 8" MarkLogic:
— Several NoSQL DBMSs do this without ;..o os &uchDB :
calling it physical denormalization. RA% et 0 Mon o oDB.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONCLUSION

Database is organized in pages.
Different ways to track pages.
Different ways to store pages.
Different ways to store tuples.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

NEXT CLASS

Log-Structured Storage
Index-Organized Storage
Value Representation
Catalogs

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: Database Storage Part 1
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: COURSE OUTLINE

	Disk-Based Architecture
	Slide 5: DISK-BASED ARCHITECTURE
	Slide 6: STORAGE HIERARCHY
	Slide 7: STORAGE HIERARCHY
	Slide 8: STORAGE HIERARCHY
	Slide 9: STORAGE HIERARCHY
	Slide 10: STORAGE HIERARCHY
	Slide 11: STORAGE HIERARCHY
	Slide 12: ACCESS TIMES
	Slide 13: ACCESS TIMES
	Slide 14: SEQUENTIAL VS. RANDOM ACCESS
	Slide 15: SYSTEM DESIGN GOALS
	Slide 16: DISK-ORIENTED DBMS
	Slide 17: DISK-ORIENTED DBMS
	Slide 18: DISK-ORIENTED DBMS
	Slide 19: DISK-ORIENTED DBMS
	Slide 20: WHY NOT USE THE OS?
	Slide 21: WHY NOT USE THE OS?
	Slide 22: WHY NOT USE THE OS?
	Slide 23: WHY NOT USE THE OS?
	Slide 24: WHY NOT USE THE OS?
	Slide 25: MEMORY MAPPED I/O PROBLEMS
	Slide 26: WHY NOT USE THE OS?
	Slide 27: WHY NOT USE THE OS?
	Slide 28: WHY NOT USE THE OS?
	Slide 29: WHY NOT USE THE OS?
	Slide 30: DATABASE STORAGE
	Slide 31: TODAY'S AGENDA

	File Storage
	Slide 32: FILE STORAGE
	Slide 33: STORAGE MANAGER
	Slide 34: DATABASE PAGES
	Slide 35: DATABASE PAGES
	Slide 36: PAGE STORAGE ARCHITECTURE
	Slide 37: HEAP FILE
	Slide 38: HEAP FILE
	Slide 39: HEAP FILE
	Slide 40: HEAP FILE: PAGE DIRECTORY

	Page Layout
	Slide 41: TODAY'S AGENDA
	Slide 42: PAGE HEADER
	Slide 43: PAGE LAYOUT
	Slide 44: PAGE LAYOUT
	Slide 45: TUPLE-ORIENTED STORAGE
	Slide 46: TUPLE-ORIENTED STORAGE
	Slide 47: TUPLE-ORIENTED STORAGE
	Slide 48: TUPLE-ORIENTED STORAGE
	Slide 49: TUPLE-ORIENTED STORAGE
	Slide 50: SLOTTED PAGES
	Slide 51: SLOTTED PAGES
	Slide 52: SLOTTED PAGES
	Slide 53: SLOTTED PAGES
	Slide 54: SLOTTED PAGES
	Slide 55: RECORD IDS

	Tuple Layout
	Slide 56: TODAY'S AGENDA
	Slide 57: TUPLE LAYOUT
	Slide 58: TUPLE HEADER
	Slide 59: TUPLE DATA
	Slide 60: DENORMALIZED TUPLE DATA
	Slide 61: DENORMALIZED TUPLE DATA
	Slide 62: DENORMALIZED TUPLE DATA
	Slide 63: DENORMALIZED TUPLE DATA

	Conclusion
	Slide 64: CONCLUSION
	Slide 65: NEXT CLASS

