—
(amegie |ntro to Database

| '/ { o Y
Univensty Systems (15-445/645) .y 040 (g 0
: . ‘\ ‘\ -\‘v“\ \\\ N\ ;ll .
Lecture #04 AR Satie

Database :
Storage
Part 2

FALL 2023)) Prof.Andy Pavio ® Prof.Jignesh Patel

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

ADMINISTRIVIA

Homework #1 is due September 15% @ 11:59pm.

Project #1 is due October 1°* @ 11:59pm.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

UPCOMING DATABASE TALKS

Qdrant (ML2DB Seminar)

— Monday Sept 11% @ 4:30pm g d ro nt
Databricks @ :

— Tuesday Sept 12% @ 6:00pm datd bfleS

OtterTune (ML2DB Seminar) g m
— Monday Sept 18% @4:30pm

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://db.cs.cmu.edu/events/ml-db-2023-qdrant-vector-search-engine-internals-andrey-vasnetsov/
https://www.cs.cmu.edu/calendar/169807971
https://db.cs.cmu.edu/events/ml-db-2023-ottertune-ai-powered-database-optimization-as-a-service-dana-van-aken/

LAST CLASS

We presented a disk-oriented architecture where
the DBMS assumes that the primary storage
location of the database is on non-volatile disk.

We then discussed a page-oriented storage scheme
for organizing tuples across heap files.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE-ORIENTED STORAGE

Insert a new tuple:

— Check page directory to find a page with a free slot.
— Retrieve the page from disk (if not in memory).
— Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:

— Check page directory to find location of page.

— Retrieve the page from disk (if not in memory).

— Find offset in page using slot array.

— If new data fits, overwrite existing data.
Otherwise, mark existing tuple as deleted and insert new
version in a different page.

£2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TUPLE-ORIENTED STORAGE

Problem #1: Fragmentation
— Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/0O

— DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O

— Worse case scenario when updating multiple tuples is
that each tuple is on a separate page.

What if the DBMS cannot overwrite data in

pages and could only create new pages?
— Examples: Some object stores, HDFS

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TODAY'S AGENDA

Log-Structured Storage
Index-Organized Storage
Data Representation

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED STORAGE

Instead of storing tuples in pages, the DBMS

maintains a log that records changes to tuples.

— Each log entry represents a tuple PUT/DELETE operation.
— Originally proposed as log-structure merge trees (LSM
Trees) in 1996.

The DBMS appends new log entries to an in-
memory buffer and then writes out the changes
sequentially to disk.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/Log-structured_merge-tree

LOG-STRUCTURED STORAGE

B In-Memory Page

DBMS stores log records that contain
changes to tuples (PUT, DELETE).

— Each log record must contain the tuple's
unique identifier.

— Put records contain the tuple contents.

— Deletes marks the tuple as deleted.

PUT #103 {val=a,}
PUT #104 {val=b,}
DEL #102

PUT #103 {val=a,}
PUT #105 {val=c,}
PUT #103 {val=a.}

Newest<Oldest

As the application makes changes to

the database, the DBMS appends log
records to the end of the file without
checking previous log records.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED STORAGE

When the page gets full, the DBMS H In-Memory Page
writes it out disk and starts filling up

the next page with records.
— All disk writes are sequential.
— On-disk pages are immutable.

PUT #104 {val=b,}
PUT #105 {val=c,}
PUT #102 {val=d,}
DEL #1071
DEL #102
PUT #105 {val=c.}

Newest<Oldest

The DBMS may also flush partially
full pages for transactions but we will
ignore that for now...

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED STORAGE

GET #104 H In-Memory Page

To read a tuple with a given id, the

DBMS finds the newest log record * PUT #104 {val=b,}
corresponding to that id. PUT #105 {val=c,}
— Scan log from newest to oldest. PUT #102 {val=d]
1
DEL #101
DEL #102

PUT #105 {val=c,}

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED STORAGE

To read a tuple with a given id, the
DBMS finds the newest log record

corresponding to that id.
— Scan log from newest to oldest.

Maintain an index that maps a tuple id

to the newest log record.

— If log record is in-memory, just read it.
— If log record is on a disk page, retrieve it.

— We will discuss indexes in two weeks.

£CMU-DB

15-445/645 (Fall 2023)

GET #1904 HIn-Memory Page

#104

id=#101

#105

#102

id=#102

#101

id=#103

#102

id=#104

#105

1d=#105

{val=b,}
{val=c,}
{val=d,}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED STORAGE

To read a tuple with a given id, the
DBMS finds the newest log record

corresponding to that id.
— Scan log from newest to oldest.

Maintain an index that maps a tuple id

to the newest log record.

— If log record is in-memory, just read it.
— If log record is on a disk page, retrieve it.

— We will discuss indexes in two weeks.

£CMU-DB

15-445/645 (Fall 2023)

GET #1904 HIn-Memory Page

#104

id=#101

#105

#102

id=#102

#101

id=#103

#102

id=#104

#105

1d=#105

{val=b,}
{val=c,}
{val=d,}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

DBMS (usually) does not need to maintain all

older log entries for a tuple indefinitely.
— Periodically compact pages to reduce wasted space.

Page #1 Page #2

PUT #103 {val=a,} PUT #104 {val=b,} PUT #103 {val=a,}
PUT #104 {val=b} PUT #105 {val=c,} PUT #1064 {val=b,}
DEL #102 PUT #102 {val=d,} » PUT #105 {val=c,}
PUT #103 {val=a,} + DEL #101

PUT #105 {val=c,} DEL #102

PUT #103 {val=a,} PUT #105 {val=c,}

$2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

After a page is compacted, the DBMS
does not need to maintain temporal

ordering of records within the page.
— Each tuple id is guaranteed to appear at
most once in the page.

The DBMS can instead sort the page
based on id order to improve

efficiency of future look-ups.
—> Called Sorted String Tables (SSTables)
— Embed indexes / filters in the header for

reducing search times.
£2CMU-DB

15-445/645 (Fall 2023)

Newest<Oldest

@ Disk Page

PUT #103 {val=a.}

PUT #104 {val=b,}

DEL #101

DEL #102

PUT #105 {val=c.}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

After a page is compacted, the DBMS
does not need to maintain temporal

ordering of records within the page.
— Each tuple id is guaranteed to appear at
most once in the page.

The DBMS can instead sort the page
based on id order to improve

efficiency of future look-ups.
—> Called Sorted String Tables (SSTables)
— Embed indexes / filters in the header for

reducing search times.
£2CMU-DB

15-445/645 (Fall 2023)

Tuple Id Order

@ Disk Page

PUT #103 {val=a3}

PUT #104 {val=b2}

PUT #105 {val=c,}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

& Universal Compaction

Sorted Sorted Sorted Sorted
Log File||Log File||Log File||Log File

Oldest— Newest

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

& Universal Compaction
Sorted I—SXJ‘ $x1 \ Sorted
Log File || Lo Ale|]Lo Lle || Log File
l l
|

Sorted
Log File

Sorted

Log File Sorted Log File

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

& Universal Compaction

Sorted Sorted
Log File || Lo Ale|]Lo Lle || Log File
l)

1

. Sorted
L?xe Sorted XFlle Log File
| J
|
. Sorted
Sorted Log File Log File

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

& Universal Compaction & Level Compaction

Sorted Sorted Sorted Sorted
Log File ‘L(W‘chje\ Log File Level #0 Log File||Log File
\]
|

. Sorted .
L?xe SortedXFlle Log File Level #1 | Sorted Log File
| J
1
. Sorted
Sorted Log File Log File

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

& Universal Compaction

Sorted
Log File

Sorted
Lo Ale|]Lo Lle || Log File
\ J
1

Sorted

X

File

Sorted
Log File

J

!

Sorted Log File

Sorted
Log File

£CMU-DB

15-445/645 (Fall 2023)

& Level Compaction

Level #0

Sorted Log File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

& Universal Compaction & Level Compaction

Sorted Sorted Sorted Sorted
Log File ‘L(W‘chje\ Log File Level #0 Log File||Log File
\]
|

. Sorted . .
L?xe SortedXFlle Log File Level #1 Sorted Log File Sorted Log File
| J
1
. Sorted
Sorted Log File Log File

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOG-STRUCTURED COMPACTION

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

& Universal Compaction

Sorted Sorted
Log File || Lo Ale|]Lo Lle || Log File
l)

1

. Sorted
L?xe Sorted XFlle Log File
| J
|
. Sorted
Sorted Log File Log File

£CMU-DB

15-445/645 (Fall 2023)

& Level Compaction
Level #0
Level #1 | Sorted Log File Sorted Log File
..................... | |
I
Level #2 Sorted Log File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISCUSSION
Log-structured storage managers are more “ RocksDB
common today. This is partly due to the @ levelbs
proliferation of RocksDB.

AP ACHE

HBASE

LY yugabyteDB

What are some downsides of this approach?

— Write-Amplification Y fauna
— Compaction is Expensive ¢) Dgraph
) TipB

§ CockroachDB

/ﬁ,,,@%%cassandm

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

OBSERVATION

The two table storage approaches we've discussed

so far rely on indexes to find individual tuples.

— Such indexes are necessary because the tables are
inherently unsorted.

But what if the DBMS could keep tuples sorted
automatically using an index?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

?SQLite

NWMysaL.

INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an

index data structure.
— Still use a page layout that looks like a slotted page. ORACLE

Tuples are typically sorted in page based on key. =¢&(server

Inner key~ key~» key~»
Nodes | | ” /-Ieader offset | offset | offset »
Leaf
Nodes | ‘1' ‘l' ‘1'
Tuple #3 | Tuple #2 | Tuple #6

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

TUPLE STORAGE

A tuple is essentially a sequence of bytes.

[t's the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DATA LAYOUT

char
CREATE TABLE AndySux (‘ []

»id INT PRIMARY KEY, header id
value BIGINT

);

reinterpret_cast<int32_t*>(address)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

CREATE TABLE foo (
YR8 id INT PRIMARY KEY,
(g8 cdate TIMESTAMP,
IIZ21 color CHAR(2),
Ky~ zipcode INT

);

£CMU-DB

15-445/645 (Fall 2023)

- - char[]
64-bit Word 64-bitWord 64-bit Word 64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Source: Levente Kurusa

£CMU-DB

15-445/645 (Fall 2023)

WORD-ALIGNED TUPLES

Approach #1: Perform Extra Reads

— Execute two reads to load the appropriate parts
of the data word and reassemble them.

Approach #2: Random Reads

— Read some unexpected combination of bytes
assembled into a 64-bit word.

Approach #3: Reject

— Throw an exception and hope app handles it.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://medium.com/@iLevex/the-curious-case-of-unaligned-access-on-arm-5dd0ebe24965

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple
is word aligned.

CREATE TABLE dj2pl (
Ey21 id INT PRIMARY KEY,
. : 00000000 : 00000
2R cdate TIMESTAMP, id saaoo c | Zipe o
g1 color CHAR(2),
YA zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

);

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples'

physical layout to make sure they are aligned.
— May still have to use padding.

CREATE TABLE dj2pl (l
YR8 id INT PRIMARY KEY,
000000000000
I cdate TIMESTAMP, c e
IIZ21 color CHAR(2),
YA zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word
);

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB

— Header with length, followed by data bytes OR pointer to
another page/offset with data.

— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL

— 32/64-bit integer of (micro/milli)-seconds since Unix
epoch (January 1%, 1970).

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
— Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/IEEE-754

VARIABLE PRECISION NUMBERS

Rounding Example

#include <stdio.h>

in

I#include <stdio.h>

float x = 0.1;
float y = 0.2;
printf("x+y =
printf("0.3 =

int main(int argc, char* argv[]) {

%.20f\n", xty);
%.20f\n", 0.3);

Output

Xty = 0.300000

0.3 = 0.300000

Xty = 0.30000001192092895508
0.3 = 0.29999999999999998890

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors

are unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if the DBMS does not provide
arbitrary precision (e.g., decimal point can be in a
different position per value).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

POSTGRES: NUMERIC

of Digits

Weight of 15 Digit
Scale Factor
Positive/Negative/NaN
Digit Storage

£CMU-DB

15-445/645 (Fall 2023)

typedef unsigned char NumericDigit;
typedef struct {

\int ndigits;

hint weight;
/int scale;
int sign;

/NumericDigit xdigits;

} numeric;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

POSTGRES: NUMERIC

of Digits
typedef unsigned char NumericDigit:

typedef struct {

Weight of 15 Digit

int ndigits;
Scale FactOr «@eemmmmlmgint We
int sdb
Positive/Negative/NaN 4/ int sien;
/NumericDigit xdigits;
Digit Storage

} numeric;

b

le;

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

#

Weight o

Sc
Positive/Nega
Dig

$2CMU-DB

15-445/645 (Fall 2023)

AF e
* add var() -
*

* Full version of add functicnality on variable level (handling signs).
* result might point to one of the operands too without danger.
E3

int
PGTYPESnumeric add (numeric *varl, numeric *Var2, numeric *result)
{ E3

* Decide on the signs of the twg variables what to do

-

if {varl-»sign == NUMERIC Pos)

{
if {var2->sign == MUMERIC POS)
{

/*‘

* Both are positive result = +(ABS(varl) + ABS(varz))

*

if (add abs{varl, varZ, resuylt) 1= 0}

returp -1;
result—bsign = NUMERIC POS;
else

/Jk

* varl is positive, wvar2 is Negative Must compare absolute values
*/

Ew;tck (cmp abs(varil, var2})

* ABS(varl) == AB5{war2)
* result = ZgRp

x L

*/
zero var(result}),

result-srscale = Hax(varl-brscale, var2-»rscale);
result-sdscale = Max(varl—»dscale, var2->dscale);

reak;

* ABS(varl) > ABS(varz)
* result = +{ABS(var1) - ABS{wvar2))
*

&

if (sub abs(varl, var2, result) 1= o)
return -1;
result-»sign = NUMERIC POS;
break;
Case -1:

* .

* ABS(varl) < ABS{varz)
* result = -(ABS(var2) - ABS(varl))
*

umericDigit:

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

MYSQL: NUMERIC

ot Digits Before Point typedef int32 decimal_digit_t;

of Digits After Point struct decimal_t {

Length (Bytes) /
Positive/Negative

};

int intg, frac, len;
bool sign;
decimal_digit_t =*buf;

Digit Storage

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

MYSQL: NUMERIC

of Digits Before Point

typedef int32 decimal_digit_t;

struct decimal_t

of Digits After Point
Length (Bytes)

Positive/Negative

Digit Storage

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

#of D

of

$2CMU-DB

15-445/645 (Fall 2023)

¢ int do_add(const decimal_t *froml,
decimal_t *to) {
int intgl = RDUND_UP(froml-bintg),
fracl = ROUND_UP(froml—:frac),
fracO = <td; :max(fracl, frac2),
decl *hufl, xpuf2, *bufd, *gtop, *StopZ, X« carry;

statl

1

frac2

sanity(to):

/* is there a need for extra word hecause of carry ?
¥ = intgl > intg2
? fromi->buf[e]
1 intg2 > intgl ? from2->buf[B] X froml->huf[0
if (unlikely(x > DIG_MAX - 1)) /7 yes, there is */
{
intgo++;
to->buf{e] = &; /* safety */

FIX_INTG_FRAC_ERROR(to—>len, intge, fraco, error);
if (unlikely{error == E_DEC_OVERFLOW)} {
max_decimal(to—>len * pIG_PER_DECI, @, to);

return errov;

bufe = to->puf + intgd + fraco;

to->sign = fromi->5ign;
to->frac = std::max(fr0m1—>frac, from2->frac);
. wrr~ pDER NDEC1:

const decimal_t

intg2 = ROUND_UP(fr0m2->intg),
RGUND_UP(fromZ—)frac},
intg@ = std::max(intgl, intg2), ervor;

*fromz,

* f
i

1+ from2->buflel;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/mysql/mysql-server/blob/8.0/strings/decimal.cc#L1828

NULL DATA TYPES

Choice #1: Null Column Bitmap Header

— Store a bitmap in a centralized header that specifies what
attributes are null.

— This is the most common approach.

Choice #2: Special Values

— Designate a value to represent NULL for a data type (e.g.,
INT32_MIN).

Choice #3: Per Attribute Null Flag

— Store a flag that marks that a value is null.
— Must use more space than just a single bit because this
S CMUDB messes up with word alignment.

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LARGE VALUES

Most DBMSs don't allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

£CMU-DB

15-445/645 (Fall 2023)

Tuple

Header

alblc]|] d

|

Overflow Page

VARCHAR DATA

Q-

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXTERNAL VALUE STORAGE

Some systems allow you to store a Tuple

large value in an external file. Header| a | b | c d e
Treated as a BLOB type. T

— Oracle: BFILE data type

— Microsoft: FILESTREAM data type
External File

The DBMS cannot manipulate the

contents of an external file.
— No durability protections.
— No transaction protections.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXTERNAL VALUE !

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?
Russell Sears’, Catharine van Ingen’, Jim Gray'
I: Microsoft Research, 2: Universi of California at Berkeley
sears@cs.berkeley.edu, vaningen@m rosoft.com, gray@microsoft.com
MSR-TR-2006-45
April 2006 Revised June 2006

Abstract . i
Some systems allow you to store a S s LMdlon

large uh;ccv»mLulemalilmymm or in a database. media becomes ubiquitous. Furthermore, the
Generally, this decision is based on factors such o increasing popularity of web services and ot
Application simplicity or manageability. Often, system network applications means that sysems that

o .
rl l al ﬁle . performance affects these factors, managed static archives of “finished” objects now
l arge \7 a ue ln an Folklore tells us that databases effciently handie manage frequently modified versions of apphcation

large numbers of small objects, while filesystems are data as it is being creaied and o Rt o
brony SMicient for large objects. Where is the updating these objects, the archive cither stores

z
&

breakcven point? When is accessing a BLOB wored multiple versions of the objects (the V of WebDAY

as a file cheaper than accessing a BLOB soredasa gandc for “versioning”), or simply does wholesale
o database record? . replacement (as in SharePoint Team Services
re Of course, this depends on the particular [SharcPoin]).
21 filesystem, database system, and workload in Guestion Application designers have the choice of storing
This study shows that when comparing the NTFS e large objects as files in the filesystem, as BLOBs
data t e system and SQL Server 2005 database system on (binary large objects) in a database, or ae
r a C e. create, {read, repil * del combination of both. Only folklore js available
e . workload, BLOBs smaller than regarding the tradeoffs — often the design decision is
efficiently handled by SQL Ser

) h While NTFS 8. peced o Wwhich technology the designer knows best
1 ° REAM ata t e > larger than IMB. O course, Most designers will tell you that a daabase is probably
_) O SO t AL eve Will vary among different best for small binary objects and that that files are best
].Cr o database systems, filesystems, and workloads for large objects. But, what is the break-cven point?
By measuring the performance of a storage server What are the tradeoffs?
workload typical of web applications which use gevput This article: characterizes the performance of an
e Cpors sch as WebDAV [WebDAV], we found that abstracted write-intensive web application that dele
the break-even point depends on many factors. with relatively large objccts. Tao verdons.of o
However, our experimens suggest tha storage age. he system are compared: one uses a relational databse 1
yatio of bytes in deleted o replaced objects to bytesin o large objects, while the other version stores the

L]
ulate the fie objccts, is dominant. As storage age increases, objects as files in the filesystem. We measure how
judy has betlr fragmentation control than the Imgmented. The aricle concludes by describing ang

database we used, suggesting the databa

duantifying the factors that a designer should consider

would benefit from incorporating ideas from filese Mhen picking 3 sorage sysiem. 1t also. spann:
architecture, Conversely, filesystem performance may filesystem and database improvements for large object
te I I l a 1 o be improved by using database techniques to handl Sipors
I l tS O an small files One surprising (to us at least) conclusion of our
Surprisingly, for these studies, when average work is that storage fragmentation is the man

object size is held constant, the distribution of object determinant of the break-even point in the tradeoff.

stzes did not significantly affect performance. We alsp Therefore,

)
o1 S al ! much of our work and much of this article
11ty protections. o o b i i s e e
_) O ura— low ratio of free space to average object size leads to filesystems seem to have better fragment. handling
o f and perf d X
)
No transaction protections.

than databases and this drives the break-even point
down from about IMB to about 256KB.

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

CONCLUSION

Log-structured storage is an alternative approach

to the page-oriented architecture.
— Ideal for write-heavy workloads because it maximizes
sequential disk I/O.

The storage manager is not entirely independent
from the rest of the DBMS.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: Database Storage Part 2
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: TUPLE-ORIENTED STORAGE
	Slide 6: TUPLE-ORIENTED STORAGE
	Slide 7: TODAY'S AGENDA

	Log-Structured
	Slide 8: LOG-STRUCTURED STORAGE
	Slide 9: LOG-STRUCTURED STORAGE
	Slide 10: LOG-STRUCTURED STORAGE
	Slide 11: LOG-STRUCTURED STORAGE
	Slide 12: LOG-STRUCTURED STORAGE
	Slide 13: LOG-STRUCTURED STORAGE
	Slide 14: LOG-STRUCTURED COMPACTION
	Slide 15: LOG-STRUCTURED COMPACTION
	Slide 16: LOG-STRUCTURED COMPACTION
	Slide 17: LOG-STRUCTURED COMPACTION
	Slide 18: LOG-STRUCTURED COMPACTION
	Slide 19: LOG-STRUCTURED COMPACTION
	Slide 20: LOG-STRUCTURED COMPACTION
	Slide 21: LOG-STRUCTURED COMPACTION
	Slide 22: LOG-STRUCTURED COMPACTION
	Slide 23: LOG-STRUCTURED COMPACTION
	Slide 24: DISCUSSION

	Index-Organized Tables
	Slide 25: OBSERVATION
	Slide 26: INDEX-ORGANIZED STORAGE

	Data Representation
	Slide 27: TUPLE STORAGE
	Slide 28: DATA LAYOUT
	Slide 29: WORD-ALIGNED TUPLES
	Slide 30: WORD-ALIGNED TUPLES
	Slide 31: WORD-ALIGNMENT: PADDING
	Slide 32: WORD-ALIGNMENT: REORDERING
	Slide 33: DATA REPRESENTATION
	Slide 34: VARIABLE PRECISION NUMBERS
	Slide 35: VARIABLE PRECISION NUMBERS
	Slide 36: FIXED PRECISION NUMBERS
	Slide 37: POSTGRES: NUMERIC
	Slide 38: POSTGRES: NUMERIC
	Slide 39: POSTGRES: NUMERIC
	Slide 40: MYSQL: NUMERIC
	Slide 41: MYSQL: NUMERIC
	Slide 42: MYSQL: NUMERIC
	Slide 43: NULL DATA TYPES
	Slide 44: LARGE VALUES
	Slide 45: EXTERNAL VALUE STORAGE
	Slide 46: EXTERNAL VALUE STORAGE

	Conclusion
	Slide 53: CONCLUSION

