
Intro to Database
Systems (15-445/645)

FALL 2023 Prof. Andy Pavlo Prof. Jignesh Patel

Lecture #04

Database
Storage
Part 2

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2023)

A D M I N I S T R I V I A

Homework #1 is due September 15th @ 11:59pm.

Project #1 is due October 1st @ 11:59pm.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

U P C O M I N G DATA B A S E TA L K S

Qdrant (ML⇄DB Seminar)
→ Monday Sept 11th @ 4:30pm

Databricks
→ Tuesday Sept 12th @ 6:00pm

OtterTune (ML⇄DB Seminar)
→ Monday Sept 18th @4:30pm

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://db.cs.cmu.edu/events/ml-db-2023-qdrant-vector-search-engine-internals-andrey-vasnetsov/
https://www.cs.cmu.edu/calendar/169807971
https://db.cs.cmu.edu/events/ml-db-2023-ottertune-ai-powered-database-optimization-as-a-service-dana-van-aken/

15-445/645 (Fall 2023)

L A S T C L A S S

We presented a disk-oriented architecture where
the DBMS assumes that the primary storage
location of the database is on non-volatile disk.

We then discussed a page-oriented storage scheme
for organizing tuples across heap files.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

T U P L E - O R I E N T E D S TO R AG E

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert new
version in a different page.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

T U P L E - O R I E N T E D S TO R AG E

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is

that each tuple is on a separate page.

What if the DBMS cannot overwrite data in
pages and could only create new pages?
→ Examples: Some object stores, HDFS

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

TO DAY ' S AG E N DA

Log-Structured Storage

Index-Organized Storage

Data Representation

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D S TO R AG E

Instead of storing tuples in pages, the DBMS
maintains a log that records changes to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM

Trees) in 1996.

The DBMS appends new log entries to an in-
memory buffer and then writes out the changes
sequentially to disk.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/Log-structured_merge-tree

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D S TO R AG E

DBMS stores log records that contain
changes to tuples (PUT, DELETE).
→ Each log record must contain the tuple's

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without
checking previous log records.

N
ew

es
t←

O
ld
es
t

PUT #103 {val=a1}

PUT #104 {val=b1}

DEL #102

PUT #105 {val=c1}

PUT #103 {val=a3}

PUT #103 {val=a2}

In-Memory Page

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D S TO R AG E

When the page gets full, the DBMS
writes it out disk and starts filling up
the next page with records.
→ All disk writes are sequential.
→ On-disk pages are immutable.

The DBMS may also flush partially
full pages for transactions but we will
ignore that for now…

N
ew

es
t←

O
ld
es
t

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

In-Memory Page

…

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

…

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

LO G - S T RU C T U R E D S TO R AG E

To read a tuple with a given id, the
DBMS finds the newest log record
corresponding to that id.
→ Scan log from newest to oldest.

In-Memory PageGET #104

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

…

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

LO G - S T RU C T U R E D S TO R AG E

To read a tuple with a given id, the
DBMS finds the newest log record
corresponding to that id.
→ Scan log from newest to oldest.

Maintain an index that maps a tuple id
to the newest log record.
→ If log record is in-memory, just read it.
→ If log record is on a disk page, retrieve it.
→ We will discuss indexes in two weeks.

In-Memory PageGET #104

id=#102

id=#103

id=#104

id=#105

id=#101

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

…

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

LO G - S T RU C T U R E D S TO R AG E

To read a tuple with a given id, the
DBMS finds the newest log record
corresponding to that id.
→ Scan log from newest to oldest.

Maintain an index that maps a tuple id
to the newest log record.
→ If log record is in-memory, just read it.
→ If log record is on a disk page, retrieve it.
→ We will discuss indexes in two weeks.

In-Memory PageGET #104

id=#102

id=#103

id=#104

id=#105

id=#101

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

DBMS (usually) does not need to maintain all
older log entries for a tuple indefinitely.
→ Periodically compact pages to reduce wasted space.

Page #1 Page #2

+

PUT #103 {val=a3}

PUT #104 {val=b2}

PUT #105 {val=c3}

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

After a page is compacted, the DBMS
does not need to maintain temporal
ordering of records within the page.
→ Each tuple id is guaranteed to appear at

most once in the page.

The DBMS can instead sort the page
based on id order to improve
efficiency of future look-ups.
→ Called Sorted String Tables (SSTables)
→ Embed indexes / filters in the header for

reducing search times.

PUT #103 {val=a3}

PUT #104 {val=b2}

DEL #102

PUT #105 {val=c3}

DEL #101

N
ew

es
t←

O
ld
es
t

Disk Page

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

After a page is compacted, the DBMS
does not need to maintain temporal
ordering of records within the page.
→ Each tuple id is guaranteed to appear at

most once in the page.

The DBMS can instead sort the page
based on id order to improve
efficiency of future look-ups.
→ Called Sorted String Tables (SSTables)
→ Embed indexes / filters in the header for

reducing search times.

DEL #101

DEL #102PUT #104 {val=b2}

PUT #105 {val=c3}

PUT #103 {val=a3}

N
ew

es
t←

O
ld
es
t

Disk Page

T
u

pl
e

Id
 O

rd
er

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

17

Oldest→Newest

Universal Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File Sorted Log File Sorted

Log File

18

Universal Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File Sorted Log File Sorted

Log File

Sorted Log File Sorted
Log File

19

Universal Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

Sorted
Log File

Sorted Log File

Level #0

Level #1

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File Sorted Log File Sorted

Log File

Sorted Log File Sorted
Log File

20

Universal Compaction Level Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

Sorted Log File

Level #0

Level #1

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File Sorted Log File Sorted

Log File

Sorted Log File Sorted
Log File

21

Universal Compaction Level Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

Sorted
Log File

Sorted Log File

Level #0

Level #1

Sorted
Log File

Sorted Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File Sorted Log File Sorted

Log File

Sorted Log File Sorted
Log File

22

Universal Compaction Level Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

LO G - S T RU C T U R E D C O M PAC T I O N

Coalesce larger disk-resident log files into smaller
files by removing unnecessary records.

Sorted Log File

Sorted Log File

Level #0

Level #1

Level #2

Sorted Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File

Sorted
Log File Sorted Log File Sorted

Log File

Sorted Log File Sorted
Log File

23

Universal Compaction Level Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

D I S C U S S I O N

Log-structured storage managers are more
common today. This is partly due to the
proliferation of RocksDB.

What are some downsides of this approach?
→ Write-Amplification
→ Compaction is Expensive

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

O B S E R VAT I O N

The two table storage approaches we've discussed
so far rely on indexes to find individual tuples.
→ Such indexes are necessary because the tables are

inherently unsorted.

But what if the DBMS could keep tuples sorted
automatically using an index?

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

Header key→
offset

Tuple #2 Tuple #6Tuple #3

key→
offset

key→
offset

I N D E X- O RG A N I Z E D S TO R AG E

DBMS stores a table's tuples as the value of an
index data structure.
→ Still use a page layout that looks like a slotted page.

Tuples are typically sorted in page based on key.

26

Inner
Nodes

Leaf
Nodes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

T U P L E S TO R AG E

A tuple is essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

DATA L AYO U T

28

CREATE TABLE AndySux (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

char[]

reinterpret_cast<int32_t*>(address)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

W O R D -A L I G N E D T U P L E S

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

29

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

W O R D -A L I G N E D T U P L E S

Approach #1: Perform Extra Reads

→Execute two reads to load the appropriate parts
of the data word and reassemble them.

Approach #2: Random Reads

→Read some unexpected combination of bytes
assembled into a 64-bit word.

Approach #3: Reject

→Throw an exception and hope app handles it.

30

Source: Levente Kurusa

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://medium.com/@iLevex/the-curious-case-of-unaligned-access-on-arm-5dd0ebe24965

15-445/645 (Fall 2023)

W O R D -A L I G N M E N T: PA D D I N G

Add empty bits after attributes to ensure that tuple
is word aligned.

31

id cdate zipc
00000000
00000000
00000000
00000000

00000
000

00000
000

c

CREATE TABLE dj2pl (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

id cdate c zipc

W O R D -A L I G N M E N T: R E O R D E R I N G

Switch the order of attributes in the tuples'
physical layout to make sure they are aligned.
→ May still have to use padding.

32

CREATE TABLE dj2pl (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000
000000000000
000000000000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

DATA R E P R E S E N TAT I O N

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix

epoch (January 1st, 1970).

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

VA R I A B L E P R E C I S I O N N U M B E R S

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values…

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/IEEE-754

15-445/645 (Fall 2023)

VA R I A B L E P R E C I S I O N N U M B E R S

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %f\n", x+y);
 printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %.20f\n", x+y);
 printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

F I X E D P R E C I S I O N N U M B E R S

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors
are unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide

arbitrary precision (e.g., decimal point can be in a
different position per value).

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P O S TG R E S : N U M E R I C

typedef unsigned char NumericDigit;

typedef struct {

 int ndigits;

 int weight;

 int scale;

 int sign;

 NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P O S TG R E S : N U M E R I C

typedef unsigned char NumericDigit;

typedef struct {

 int ndigits;

 int weight;

 int scale;

 int sign;

 NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P O S TG R E S : N U M E R I C

typedef unsigned char NumericDigit;

typedef struct {

 int ndigits;

 int weight;

 int scale;

 int sign;

 NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

15-445/645 (Fall 2023)

M Y S Q L : N U M E R I C

typedef int32 decimal_digit_t;

struct decimal_t {

 int intg, frac, len;

 bool sign;

 decimal_digit_t *buf;

};

of Digits Before Point

of Digits After Point

Length (Bytes)

Positive/Negative

Digit Storage

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

M Y S Q L : N U M E R I C

typedef int32 decimal_digit_t;

struct decimal_t {

 int intg, frac, len;

 bool sign;

 decimal_digit_t *buf;

};

of Digits Before Point

of Digits After Point

Length (Bytes)

Positive/Negative

Digit Storage

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

M Y S Q L : N U M E R I C

typedef int32 decimal_digit_t;

struct decimal_t {

 int intg, frac, len;

 bool sign;

 decimal_digit_t *buf;

};

of Digits Before Point

of Digits After Point

Length (Bytes)

Positive/Negative

Digit Storage

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/mysql/mysql-server/blob/8.0/strings/decimal.cc#L1828

15-445/645 (Fall 2023)

N U L L DATA T Y P E S

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what

attributes are null.
→ This is the most common approach.

Choice #2: Special Values
→ Designate a value to represent NULL for a data type (e.g.,

INT32_MIN).

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this

messes up with word alignment.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

L A RG E VA L U E S

Most DBMSs don't allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

44

Overflow Page

VARCHAR DATA

Tuple

Header a b c d e

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

E X T E R N A L VA L U E S TO R AG E

Some systems allow you to store a
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

45

Data

Header a b c d e

External File

Tuple

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

E X T E R N A L VA L U E S TO R AG E

Some systems allow you to store a
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

45

Data

Header a b c d e

External File

Tuple

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

15-445/645 (Fall 2023)

C O N C L U S I O N

Log-structured storage is an alternative approach
to the page-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes

sequential disk I/O.

The storage manager is not entirely independent
from the rest of the DBMS.

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: Database Storage Part 2
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: TUPLE-ORIENTED STORAGE
	Slide 6: TUPLE-ORIENTED STORAGE
	Slide 7: TODAY'S AGENDA

	Log-Structured
	Slide 8: LOG-STRUCTURED STORAGE
	Slide 9: LOG-STRUCTURED STORAGE
	Slide 10: LOG-STRUCTURED STORAGE
	Slide 11: LOG-STRUCTURED STORAGE
	Slide 12: LOG-STRUCTURED STORAGE
	Slide 13: LOG-STRUCTURED STORAGE
	Slide 14: LOG-STRUCTURED COMPACTION
	Slide 15: LOG-STRUCTURED COMPACTION
	Slide 16: LOG-STRUCTURED COMPACTION
	Slide 17: LOG-STRUCTURED COMPACTION
	Slide 18: LOG-STRUCTURED COMPACTION
	Slide 19: LOG-STRUCTURED COMPACTION
	Slide 20: LOG-STRUCTURED COMPACTION
	Slide 21: LOG-STRUCTURED COMPACTION
	Slide 22: LOG-STRUCTURED COMPACTION
	Slide 23: LOG-STRUCTURED COMPACTION
	Slide 24: DISCUSSION

	Index-Organized Tables
	Slide 25: OBSERVATION
	Slide 26: INDEX-ORGANIZED STORAGE

	Data Representation
	Slide 27: TUPLE STORAGE
	Slide 28: DATA LAYOUT
	Slide 29: WORD-ALIGNED TUPLES
	Slide 30: WORD-ALIGNED TUPLES
	Slide 31: WORD-ALIGNMENT: PADDING
	Slide 32: WORD-ALIGNMENT: REORDERING
	Slide 33: DATA REPRESENTATION
	Slide 34: VARIABLE PRECISION NUMBERS
	Slide 35: VARIABLE PRECISION NUMBERS
	Slide 36: FIXED PRECISION NUMBERS
	Slide 37: POSTGRES: NUMERIC
	Slide 38: POSTGRES: NUMERIC
	Slide 39: POSTGRES: NUMERIC
	Slide 40: MYSQL: NUMERIC
	Slide 41: MYSQL: NUMERIC
	Slide 42: MYSQL: NUMERIC
	Slide 43: NULL DATA TYPES
	Slide 44: LARGE VALUES
	Slide 45: EXTERNAL VALUE STORAGE
	Slide 46: EXTERNAL VALUE STORAGE

	Conclusion
	Slide 53: CONCLUSION

