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A D M I N I S T R I V I A

Homework #1 is due September 15th @ 11:59pm.

Project #1 is due October 1st @ 11:59pm.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023


15-445/645 (Fall 2023)

U P C O M I N G  DATA B A S E  TA L K S

Qdrant (ML⇄DB Seminar)
→ Monday Sept 11th @ 4:30pm

Databricks
→ Tuesday Sept 12th @ 6:00pm

OtterTune (ML⇄DB Seminar)
→ Monday Sept 18th @4:30pm
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L A S T  C L A S S

We presented a disk-oriented architecture where 
the DBMS assumes that the primary storage 
location of the database is on non-volatile disk.

We then discussed a page-oriented storage scheme 
for organizing tuples across heap files.
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T U P L E - O R I E N T E D  S TO R AG E

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert new 
version in a different page.
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T U P L E - O R I E N T E D  S TO R AG E

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is 

that each tuple is on a separate page.

What if the DBMS cannot overwrite data in 
pages and could only create new pages?
→ Examples: Some object stores,  HDFS
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TO DAY ' S  AG E N DA

Log-Structured Storage

Index-Organized Storage

Data Representation
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LO G - S T RU C T U R E D  S TO R AG E

Instead of storing tuples in pages, the DBMS 
maintains a log that records changes to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM 

Trees) in 1996. 

The DBMS appends new log entries to an in-
memory buffer and then writes out the changes 
sequentially to disk.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/Log-structured_merge-tree


15-445/645 (Fall 2023)

LO G - S T RU C T U R E D  S TO R AG E

DBMS stores log records that contain 
changes to tuples (PUT, DELETE).
→ Each log record must contain the tuple's 

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to 
the database, the DBMS appends log 
records to the end of the file without 
checking previous log records.

N
ew

es
t←

O
ld
es
t

PUT #103 {val=a1}

PUT #104 {val=b1}

DEL #102

PUT #105 {val=c1}

PUT #103 {val=a3}

PUT #103 {val=a2}

In-Memory Page
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LO G - S T RU C T U R E D  S TO R AG E

When the page gets full, the DBMS 
writes it out disk and starts filling up 
the next page with records.
→ All disk writes are sequential.
→ On-disk pages are immutable.

The DBMS may also flush partially 
full pages for transactions but we will 
ignore that for now…
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t←

O
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t

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

In-Memory Page

…
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…

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

LO G - S T RU C T U R E D  S TO R AG E

To read a tuple with a given id, the 
DBMS finds the newest log record 
corresponding to that id.
→ Scan log from newest to oldest.

                                        
                         

                                          
                                              
                                      

In-Memory PageGET #104

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023


15-445/645 (Fall 2023)

…

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

LO G - S T RU C T U R E D  S TO R AG E

To read a tuple with a given id, the 
DBMS finds the newest log record 
corresponding to that id.
→ Scan log from newest to oldest.

Maintain an index that maps a tuple id 
to the newest log record.
→ If log record is in-memory, just read it.
→ If log record is on a disk page, retrieve it.
→ We will discuss indexes in two weeks.

In-Memory PageGET #104

id=#102

id=#103

id=#104

id=#105

id=#101
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…

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

LO G - S T RU C T U R E D  S TO R AG E

To read a tuple with a given id, the 
DBMS finds the newest log record 
corresponding to that id.
→ Scan log from newest to oldest.

Maintain an index that maps a tuple id 
to the newest log record.
→ If log record is in-memory, just read it.
→ If log record is on a disk page, retrieve it.
→ We will discuss indexes in two weeks.

In-Memory PageGET #104

id=#102

id=#103

id=#104

id=#105

id=#101
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LO G - S T RU C T U R E D  C O M PAC T I O N

DBMS (usually) does not need to maintain all 
older log entries for a tuple indefinitely.
→ Periodically compact pages to reduce wasted space.

Page #1 Page #2

+

PUT #103 {val=a3}

PUT #104 {val=b2}

PUT #105 {val=c3}
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LO G - S T RU C T U R E D  C O M PAC T I O N

After a page is compacted, the DBMS 
does not need to maintain temporal 
ordering of records within the page.
→ Each tuple id is guaranteed to appear at 

most once in the page.

The DBMS can instead sort the page 
based on id order to improve 
efficiency of future look-ups.
→ Called Sorted String Tables (SSTables)
→ Embed indexes / filters in the header for 

reducing search times.

PUT #103 {val=a3}

PUT #104 {val=b2}

DEL #102

PUT #105 {val=c3}

DEL #101

N
ew

es
t←

O
ld
es
t

Disk Page
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LO G - S T RU C T U R E D  C O M PAC T I O N

After a page is compacted, the DBMS 
does not need to maintain temporal 
ordering of records within the page.
→ Each tuple id is guaranteed to appear at 

most once in the page.

The DBMS can instead sort the page 
based on id order to improve 
efficiency of future look-ups.
→ Called Sorted String Tables (SSTables)
→ Embed indexes / filters in the header for 

reducing search times.

DEL #101

DEL #102PUT #104 {val=b2}

PUT #105 {val=c3}

PUT #103 {val=a3}

N
ew

es
t←

O
ld
es
t

Disk Page

T
u

pl
e 

Id
 O

rd
er
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LO G - S T RU C T U R E D  C O M PAC T I O N

Coalesce larger disk-resident log files into smaller 
files by removing unnecessary records.

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File
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LO G - S T RU C T U R E D  C O M PAC T I O N

Coalesce larger disk-resident log files into smaller 
files by removing unnecessary records.

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File Sorted Log File Sorted 

Log File
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LO G - S T RU C T U R E D  C O M PAC T I O N

Coalesce larger disk-resident log files into smaller 
files by removing unnecessary records.

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File Sorted Log File Sorted 

Log File

Sorted Log File Sorted 
Log File

19

Universal Compaction

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023


15-445/645 (Fall 2023)

LO G - S T RU C T U R E D  C O M PAC T I O N

Coalesce larger disk-resident log files into smaller 
files by removing unnecessary records.

Sorted 
Log File

Sorted Log File

Level #0

Level #1

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File Sorted Log File Sorted 

Log File

Sorted Log File Sorted 
Log File
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LO G - S T RU C T U R E D  C O M PAC T I O N

Coalesce larger disk-resident log files into smaller 
files by removing unnecessary records.

Sorted Log File

Level #0

Level #1

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File Sorted Log File Sorted 

Log File

Sorted Log File Sorted 
Log File
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LO G - S T RU C T U R E D  C O M PAC T I O N

Coalesce larger disk-resident log files into smaller 
files by removing unnecessary records.

Sorted 
Log File

Sorted Log File

Level #0

Level #1

Sorted 
Log File

Sorted Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File Sorted Log File Sorted 

Log File

Sorted Log File Sorted 
Log File
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LO G - S T RU C T U R E D  C O M PAC T I O N

Coalesce larger disk-resident log files into smaller 
files by removing unnecessary records.

Sorted Log File

Sorted Log File

Level #0

Level #1

Level #2

Sorted Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File

Sorted 
Log File Sorted Log File Sorted 

Log File

Sorted Log File Sorted 
Log File
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D I S C U S S I O N

Log-structured storage managers are more 
common today. This is partly due to the 
proliferation of RocksDB.

What are some downsides of this approach?
→ Write-Amplification
→ Compaction is Expensive
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O B S E R VAT I O N

The two table storage approaches we've discussed 
so far rely on indexes to find individual tuples.
→ Such indexes are necessary because the tables are 

inherently unsorted.

But what if the DBMS could keep tuples sorted 
automatically using an index?

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023


15-445/645 (Fall 2023)

Header key→
offset

Tuple #2 Tuple #6Tuple #3

key→
offset

key→
offset

I N D E X- O RG A N I Z E D  S TO R AG E

DBMS stores a table's tuples as the value of an 
index data structure.
→ Still use a page layout that looks like a slotted page.

Tuples are typically sorted in page based on key.

26
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T U P L E  S TO R AG E

A tuple is essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes 
into attribute types and values.

The DBMS's catalogs contain the schema 
information about tables that the system uses to 
figure out the tuple's layout.
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DATA  L AYO U T

28

CREATE TABLE AndySux (
  id INT PRIMARY KEY,
  value BIGINT
);

header id value

char[]

reinterpret_cast<int32_t*>(address)
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W O R D -A L I G N E D  T U P L E S

All attributes in a tuple must be word aligned to 
enable the CPU to access it without any 
unexpected behavior or additional work.

29

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

char[]
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W O R D -A L I G N E D  T U P L E S

Approach #1: Perform Extra Reads

→Execute two reads to load the appropriate parts 
of the data word and reassemble them.

Approach #2: Random Reads

→Read some unexpected combination of bytes 
assembled into a 64-bit word.

Approach #3: Reject

→Throw an exception and hope app handles it.
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Source: Levente Kurusa
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W O R D -A L I G N M E N T:  PA D D I N G

Add empty bits after attributes to ensure that tuple 
is word aligned.

31

id cdate zipc
00000000
00000000
00000000
00000000

00000
000

00000
000

c

CREATE TABLE dj2pl (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word
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id cdate c zipc

W O R D -A L I G N M E N T:  R E O R D E R I N G

Switch the order of attributes in the tuples' 
physical layout to make sure they are aligned.
→ May still have to use padding.

32

CREATE TABLE dj2pl (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000 
000000000000
000000000000
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DATA  R E P R E S E N TAT I O N

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to 

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix 

epoch (January 1st, 1970).
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VA R I A B L E  P R E C I S I O N  N U M B E R S

Inexact, variable-precision numeric type that uses 
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision 
numbers because CPU ISA's (Xeon, Arm) have 
instructions / registers to support them.

But they do not guarantee exact values…
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VA R I A B L E  P R E C I S I O N  N U M B E R S

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %.20f\n", x+y);
    printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890
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F I X E D  P R E C I S I O N  N U M B E R S

Numeric data types with (potentially) arbitrary 
precision and scale. Used when rounding errors 
are unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary 

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide 

arbitrary precision (e.g., decimal point can be in a 
different position per value).
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P O S TG R E S :  N U M E R I C

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

37
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P O S TG R E S :  N U M E R I C

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage
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P O S TG R E S :  N U M E R I C

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage
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M Y S Q L :  N U M E R I C

typedef int32 decimal_digit_t; 

struct decimal_t {

  int intg, frac, len;

  bool sign;

  decimal_digit_t *buf;

};

# of Digits Before Point

# of Digits After Point 

Length (Bytes)

Positive/Negative

Digit Storage
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M Y S Q L :  N U M E R I C

typedef int32 decimal_digit_t; 

struct decimal_t {

  int intg, frac, len;

  bool sign;

  decimal_digit_t *buf;

};

# of Digits Before Point

# of Digits After Point 

Length (Bytes)

Positive/Negative

Digit Storage
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M Y S Q L :  N U M E R I C

typedef int32 decimal_digit_t; 

struct decimal_t {

  int intg, frac, len;

  bool sign;

  decimal_digit_t *buf;

};

# of Digits Before Point

# of Digits After Point 

Length (Bytes)

Positive/Negative

Digit Storage
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N U L L  DATA  T Y P E S

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what 

attributes are null.
→ This is the most common approach.

Choice #2: Special Values
→ Designate a value to represent NULL for a data type (e.g., 

INT32_MIN).

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this 

messes up with word alignment.
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L A RG E  VA L U E S

Most DBMSs don't allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

44

Overflow Page

VARCHAR DATA

Tuple

Header a b c d e
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E X T E R N A L  VA L U E  S TO R AG E

Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of an external file.
→ No durability protections.
→ No transaction protections.

45

Data

Header a b c d e

External File

Tuple
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E X T E R N A L  VA L U E  S TO R AG E

Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of an external file.
→ No durability protections.
→ No transaction protections.
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Data

Header a b c d e

External File

Tuple
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C O N C L U S I O N

Log-structured storage is an alternative approach 
to the page-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes 

sequential disk I/O.

The storage manager is not entirely independent 
from the rest of the DBMS.
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