
Intro to Database
Systems (15-445/645)

FALL 2023 Prof. Andy Pavlo Prof. Jignesh Patel

Lecture #08

B+Tree
Index

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2023)

U P C O M I N G E V E N T S

PostgresML (ML⇄DB Seminar)
→ Monday Sept 25th @ 4:30pm

Weaviate (ML⇄DB Seminar)
→ Monday Oct 2nd @ 4:30pm

FeatureForm (ML⇄DB Seminar)
→ Monday Oct 9th @ 4:30pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://db.cs.cmu.edu/events/ml-db-2023-postgresml-why-moving-the-compute-to-the-data-is-better-than-the-alternative-montana-low/
https://db.cs.cmu.edu/events/ml%e2%87%84db-2023-weaviate-the-vector-database-your-parents-wished-they-had-etienne-dilocker/
https://db.cs.cmu.edu/events/ml-db-2023-postgresml-why-moving-the-compute-to-the-data-is-better-than-the-alternative-montana-low/

15-445/645 (Fall 2023)

L A S T C L A S S

Hash tables are important data structures that are
used all throughout a DBMS.
→ Space Complexity: O(n)
→ Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal
data structures.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

TO DAY ' S AG E N DA

B+Tree Overview

Design Choices

Optimizations

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

5

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

6

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?doid=356770.356776

15-445/645 (Fall 2023)

7

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?id=319663

15-445/645 (Fall 2023)

8

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?id=319663
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README

15-445/645 (Fall 2023)

9

B -T R E E FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E

A B+Tree is a self-balancing, ordered tree data
structure that allows searches, sequential access,
insertions, and deletions in O(log n).
→ Generalization of a binary search tree, since a node can

have more than two children.
→ Optimized for systems that read and write large blocks of

data.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E P RO P E RT I E S

A B+Tree is an M-way search tree with the
following properties:
→ It is perfectly balanced (i.e., every leaf node is at the same

depth in the tree)
→ Every node other than the root is at least half-full

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E E X A M P L E

20

6 10 20 31 38 44

3510

<node*>|<key> Root Node

Inner Nodes

Leaf Nodes

<value>|<key>

Sibling Pointers
<20 ≥20

<10 ≥10 <35 ≥35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

N O D E S

Every B+Tree node is comprised of an array of
key/value pairs.
→ The keys are derived from the attribute(s) that the index

is based on.
→ The values will differ based on whether the node is

classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B+Tree Leaf Node

B + T R E E L E A F N O D E S

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B+Tree Leaf Node

B + T R E E L E A F N O D E S

Key + Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B+Tree Leaf Node

B + T R E E L E A F N O D E S

Key + Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B+Tree Leaf Node

B + T R E E L E A F N O D E S

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values

¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

L E A F N O D E VA L U E S

Approach #1: Record IDs
→ A pointer to the location of the tuple to

which the index entry corresponds.

Approach #2: Tuple Data
→ AKA Index-Organized Storage
→ The leaf nodes store the actual contents of

the tuple.
→ Secondary indexes must store the Record

ID as their values.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B -T R E E V S . B + T R E E

The original B-Tree from 1972 stored keys and
values in all nodes in the tree.
→ More space-efficient, since each key only appears once in

the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – I N S E RT

Find correct leaf node L.
Insert data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

Source: Chris Re

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2023)

B + T R E E V I S UA L I Z AT I O N

https://cmudb.io/btree

Source: David Gales (Univ. of San Francisco)

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://cmudb.io/btree
https://www.cs.usfca.edu/~galles/

15-445/645 (Fall 2023)

B + T R E E – D E L E T E

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

Source: Chris Re

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Fall 2023)

S E L E C T I O N C O N D I T I O N S

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.

Example: Index on <a,b,c>
→ Supported (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Supported: (b=2), (c=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S E L E C T I O N C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

1 ≤ 1
2 ≤ 3

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S E L E C T I O N C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S E L E C T I O N C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*) 1 ≤ 1

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S E L E C T I O N C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*) 1 ≤ 1

(1,*) ≤ (2,*)

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S E L E C T I O N C O N D I T I O N S

Find Key=(1,2)

Find Key=(*,1) 1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3Find Key=(1,*)

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S E L E C T I O N C O N D I T I O N S

Find Key=(1,2)

Find Key=(*,1) 1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3Find Key=(1,*)

(1,1) ∅(1,1)
(2,1)

(4,1)

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – D U P L I C AT E K E Y S

Approach #1: Append Record ID
→ Add the tuple's unique Record ID as part of the key to

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain

the duplicate keys.
→ This is more complex to maintain and modify.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – A P P E N D R E C O R D I D

<5 <9 ≥9

6 7 8 9 131 3

5 9
Insert 6

35

<Key,RecordId>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – A P P E N D R E C O R D I D

<5 <9 ≥9

6 7 8 9 131 3

5 9
 Insert <6,(Page,Slot)>

36

<Key,RecordId>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – A P P E N D R E C O R D I D

<5

6 7 8 9 131 3

5 9
 Insert <6,(Page,Slot)>

7 8

7 9

<7

37

<Key,RecordId>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – A P P E N D R E C O R D I D

<5

6 7 8 9 131 3

5 9
 Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7

38

<Key,RecordId>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – OV E R F LO W L E A F N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9
Insert 6

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – OV E R F LO W L E A F N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – OV E R F LO W L E A F N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E – OV E R F LO W L E A F N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

C L U S T E R E D I N D E X E S

The table is stored in the sort order specified by
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will

automatically make a hidden primary key.

Other DBMSs cannot use them at all.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

C L U S T E R E D B + T R E E

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
sorting data for each query. Table Pages

101 102 103 104

Scan Direction

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

I N D E X S C A N PAG E S O RT I N G

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B + T R E E D E S I G N C H O I C E S

Node Size

Merge Threshold

Variable-Length Keys

Intra-Node Search

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?id=2185842

15-445/645 (Fall 2023)

N O D E S I Z E

The slower the storage device, the larger the
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

M E RG E T H R E S H O L D

Some DBMSs do not always merge nodes when
they are half full.
→ Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the
amount of reorganization.

It may also be better to just let smaller nodes exist
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree

15-445/645 (Fall 2023)

VA R I A B L E - L E N G T H K E Y S

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.
→ Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value

list within the node.

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/T-tree

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

33

Find Key=8
5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

33

Find Key=8
5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

33

5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

33

5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00 0 0 01

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

33

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

33

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

33

5 6 7 8 9 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

I N T R A- N O D E S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

33

5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

O P T I M I Z AT I O N S

Prefix Compression

Deduplication

Suffix Truncation

Pointer Swizzling

Bulk Insert

Buffered Updates

Many more…

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P R E F I X C O M P R E S S I O N

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

robbed robbing robot

bed bing ot

Prefix: rob

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

D E D U P L I C AT I O N

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key (similar to what
we discussed for hash tables).

36

K1 V1 K1 V2 K1 V3 K2 V4

K1 V1 V2 V3 K2 V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S U F F I X T RU N C AT I O N

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

abcdefghijk lmnopqrstuv

… …… …

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S U F F I X T RU N C AT I O N

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

… …… …

abc lmn

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

38

6 9

6 71 3

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

38

6 9

6 71 3

Page #2

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Page #2 → <Page*>

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

38

6 9

6 71 3

Page #2

Page #3

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Page #2 → <Page*>
Page #3 → <Page*>

Find Key>3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

P O I N T E R S W I Z Z L I N G

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

38

6 9

6 71 3

B
u

ff
er

 P
oo

l

1
Header

2
Header

3
Header

Find Key>3

<Page*>

<Page*>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B U L K I N S E RT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

67

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

B U L K I N S E RT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

68

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

O B S E R VAT I O N

Modifying a B+tree is expensive when the DBMS
has to split/merge nodes.
→ Worst case is when DBMS reorganizes the entire tree.
→ The worker that causes a split/merge is responsible for

doing the work.

What if there was a way to delay updates and then
apply multiple changes together in a batch?

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

W R I T E - O P T I M I Z E D B + T R E E

41

20

35

6 3810 20

10

Mod Log

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

W R I T E - O P T I M I Z E D B + T R E E

41

20

35

6 3810 20

10

Insert 7

Insert 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

W R I T E - O P T I M I Z E D B + T R E E

41

20

35

6 3810 20

10

Insert 7

Insert 7

Delete 10

Delete 10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

W R I T E - O P T I M I Z E D B + T R E E

41

20

35

6 3810 20

10

Insert 7
Delete 10

Find 10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

W R I T E - O P T I M I Z E D B + T R E E

41

20

35

6 3810 20

10Insert 7
Delete 10

Insert 40

Insert 40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

D E M O

B+Tree vs. Hash Indexes

Table Clustering

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

C O N C L U S I O N

The venerable B+Tree is (almost) always a good
choice for your DBMS.

76

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

N E X T C L A S S

Index Concurrency Control

77

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: B+Tree Index
	Slide 2: UPCOMING EVENTS
	Slide 3: LAST CLASS
	Slide 4: TODAY'S AGENDA

	B-Tree
	Slide 5: B-TREE FAMILY
	Slide 6: B-TREE FAMILY
	Slide 7: B-TREE FAMILY
	Slide 8: B-TREE FAMILY
	Slide 9: B-TREE FAMILY
	Slide 10: B+TREE
	Slide 11: B+TREE PROPERTIES
	Slide 12: B+TREE EXAMPLE
	Slide 13: NODES
	Slide 14: B+TREE LEAF NODES
	Slide 15: B+TREE LEAF NODES
	Slide 16: B+TREE LEAF NODES
	Slide 17: B+TREE LEAF NODES
	Slide 18: LEAF NODE VALUES
	Slide 19: B-TREE VS. B+TREE
	Slide 20: B+TREE – INSERT
	Slide 21: B+TREE VISUALIZATION
	Slide 26: B+TREE – DELETE
	Slide 27: SELECTION CONDITIONS
	Slide 28: SELECTION CONDITIONS
	Slide 29: SELECTION CONDITIONS
	Slide 30: SELECTION CONDITIONS
	Slide 31: SELECTION CONDITIONS
	Slide 32: SELECTION CONDITIONS
	Slide 33: SELECTION CONDITIONS
	Slide 34: B+TREE – DUPLICATE KEYS
	Slide 35: B+TREE – APPEND RECORD ID
	Slide 36: B+TREE – APPEND RECORD ID
	Slide 37: B+TREE – APPEND RECORD ID
	Slide 38: B+TREE – APPEND RECORD ID
	Slide 39: B+TREE – OVERFLOW LEAF NODES
	Slide 40: B+TREE – OVERFLOW LEAF NODES
	Slide 41: B+TREE – OVERFLOW LEAF NODES
	Slide 42: B+TREE – OVERFLOW LEAF NODES

	Use in a DBMS
	Slide 43: CLUSTERED INDEXES
	Slide 44: CLUSTERED B+TREE
	Slide 45: INDEX SCAN PAGE SORTING

	Design Choices
	Slide 46: B+TREE DESIGN CHOICES
	Slide 47: NODE SIZE
	Slide 48: MERGE THRESHOLD
	Slide 49: VARIABLE-LENGTH KEYS
	Slide 50: INTRA-NODE SEARCH
	Slide 51: INTRA-NODE SEARCH
	Slide 52: INTRA-NODE SEARCH
	Slide 53: INTRA-NODE SEARCH
	Slide 54: INTRA-NODE SEARCH
	Slide 55: INTRA-NODE SEARCH
	Slide 56: INTRA-NODE SEARCH
	Slide 57: INTRA-NODE SEARCH

	Optimizations
	Slide 58: OPTIMIZATIONS
	Slide 59: PREFIX COMPRESSION
	Slide 60: DEDUPLICATION
	Slide 61: SUFFIX TRUNCATION
	Slide 62: SUFFIX TRUNCATION
	Slide 63: POINTER SWIZZLING
	Slide 64: POINTER SWIZZLING
	Slide 65: POINTER SWIZZLING
	Slide 66: POINTER SWIZZLING
	Slide 67: BULK INSERT
	Slide 68: BULK INSERT

	B-Epsilon Trees
	Slide 69: OBSERVATION
	Slide 70: WRITE-OPTIMIZED B+TREE
	Slide 71: WRITE-OPTIMIZED B+TREE
	Slide 72: WRITE-OPTIMIZED B+TREE
	Slide 73: WRITE-OPTIMIZED B+TREE
	Slide 74: WRITE-OPTIMIZED B+TREE

	Conclusion
	Slide 75: DEMO
	Slide 76: CONCLUSION
	Slide 77: NEXT CLASS

