—
(amegie |ntro to Database

University Systems (15-445/645)

Lecture #08

B+1ree
Index

FALL 2023)) Prof.Andy Pavio ® Prof.Jignesh Patel

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

UPCOMING EVENTS

PostgresML (ML2DB Seminar)
— Monday Sept 25" @ 4:30pm

Weaviate (ML2DB Seminar)
— Monday Oct 2™ @ 4:30pm

FeatureForm (MLZ2DB Seminar)
— Monday Oct 9" @ 4:30pm

£CMU-DB

15-445/645 (Fall 2023)

Iy Postgres ML

“ Weaviate

{eature{orm

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://db.cs.cmu.edu/events/ml-db-2023-postgresml-why-moving-the-compute-to-the-data-is-better-than-the-alternative-montana-low/
https://db.cs.cmu.edu/events/ml%e2%87%84db-2023-weaviate-the-vector-database-your-parents-wished-they-had-etienne-dilocker/
https://db.cs.cmu.edu/events/ml-db-2023-postgresml-why-moving-the-compute-to-the-data-is-better-than-the-alternative-montana-low/

LAST CLASS

Hash tables are important data structures that are

used all throughout a DBMS.

— Space Complexity: O(n)
— Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal
data structures.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TODAY'S AGENDA

B+Tree Overview
Design Choices
Optimizations

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)

— B+Tree (1973)

— B*Tree (1977?)

— Blink_-Tree (1981)

— Be-Tree (2003)

— Bw-Tree (2013)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

The Ubiquitous B-Tree

DOUGLAS COMER
Computer Science Department, Purdye Unuwersity, West Lafayette, Indiana 47907

B-TREE FAMIL

B-trees have become, de facto, a standard for file organization. File indexes of users,
dedicated database systems, and general.

There is a specific data structure ca SRR

CR Categores: 3.73 374433434

INTRODUCTION might be labeled with the employees' last
names. A sequential request requires the
The secondary storage facilities available Searcher to examine the entire file, one
on large computer systems allow users to folder at a tum_a. O]:n the other hand, a
store, update, and recall data from large Tandom request implies that the searcher,
collections of information called files. A guided by the: labels on the drawers and
computer must retrieve an item and place folders, need on!_y extract one folder.
it in main memory before it can he pro- Assocmtgd with a large, ran_donﬂy ac-
cessed. In order to make 8ood use of the cessed file in a computer system is an index

People also use the term to general
class of balanced tree data structur

p T s, one must ize files Which, like the labels on the drawers and
intelligently, maki the retrieval folders of the file cabinet, speeds retrieval
ﬁ B" ' ree (1 97 1) i.rf:;;i;f,? ¥ maldng the retriev, Process by directing the searcher to the small part.

The choice of a good file arganization of the file containing the desired item. Fig-
depends on the kinds of retrieval to be ure 1 depncta_a ﬁle.and its mde:_:. An index
performed. There are two broad classes of may be physically integrated with the file,
retrieval commands which can be illus- like the labels on employee folders, or phys-
trated by the following examples: ically separate, like the Iabel_s on the draw-
Sequential: “From our empl A ers. Usually the index itself is a file. If the

€q g i 'F' oyee Ie' Pre” index file is large, another index may be

pare a list of all employees built on top of it to speed retrieval further,

— B+Tree (1973)
— B*Tree (1977?)

. ammes and addresses,” and and so on. The resulting hierarchy is similay

llnk ee (1 9 8 1 Random: From our employee file, ex- to the employee file, where the topmost

B = I r emmploone information about 0, the employes labels on drawers, and the

— employee J. Smith”, next level of index consists of labels on

We can imagine a filing cabinet with three folders,

drawers of folders, one folder for each em. Natural hierarchies, like the one formed

ployee. The drawers might be labeled “A- by considering last names as index entries,

G,” “H-R,” and “8-Z," while the folders do not always produce the best perform-
—_—

Permission to copy without fee all or part of this material is granted provided that the Copies are not made or

distributed for direct lal advantage, the ACM COPYright notice and the title of the publication and 1ts

— Be-Tree (2003)
— Bw-Tree (2013)

date appear, and notice 15 given that copying is by is of the A ion for Computing Machi . To
copy otherwise, or to republish, requires a fee and/or specific permssion,
© 1979 ACM 0010-4892,/79,/0600-0127 $00 75

Computing Surveys, Vol 11, No

 June 1979

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?doid=356770.356776

£2CMU-DB

15-445/645 (Fall 2023)

B-TREE FAMILY

There is a specific data structure calle

People also use the term to generaHy'
class of balanced tree data structures:

— B-Tree (1971)

— B+Tree (1973)
—s B*Tree (1977?)
> BIink_Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)

Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN
Carnegie-Mellon University
and

S. BING YAO
Purdue University

KeyWnrd--ndPhru database, d; B-tree, inds izati
concurrency controls, locking correctness, consistency, multiway search trees

Pprotocols,
CR Categories: 3.73, 3,74, 4.32, 433,434,524

1. INTRODUCTION

, ly o) Y storage
Buaranteed small (average) search, insertion, and deletion time
for these structures makes them quite appealing for database applications,

A topic of current interest in database design is the construction of databases
that can be m, ipul; ly and ly by several . In this
Paper, we consider g simple variant of the B-tree (actually of the B*-tree,
Proposed by Wedekingd [15) especially well suited for use in a concurrent database
System.

Methods for concurrent operations on B*-trees have been discussed by Bayer
and Schkolnick [3] and others [6, 12, 13). The solution given in the current paper

Permissioy
This research was Supported by the National Science Foundation under Grant MCS76-16604,
Authors’ present : P. L. Lel Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA 156213; S. B. Yao, Department of Computer Science and College of Business
and Management, University of Maryland, College Park, MD 20742

©1981 ACM oaszmlsmxlzmosm $00.75

ACM Transactions on Database Systems, Vol. 6, No, 4, Decernber 1981, Pages 650-670,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?id=319663

README

arnegie-Mellon University
d
BING YAOQ
rdue University
me
e | Bla
| cod

e
h
ADME
/backend/access/nbtree/RE
‘ src

B-tree and its variants have been found to be highly useful (both theoretically and in practice)
toring large amounts of information, especially on secondary sto)
lem of Overcoming the inherent difficulty of con,
ical storage model. A singl
|
|

Tage devices. We examine the
current operations on such structures, using o
le additional “link” pointer in each node allows a process to easil
T from tree modifications performed by oth,
bly with earlier solutio,
(small) constant n
Btree Indexing
|
|

y

S poncurTent processes. Our solution comparey

s in that the locking scheme is simpler (g read-locks are used) and
yber of nodes are locked by any update Process at

nal correctness proof for our System is given,

fords and Phrases: database,

any given time. An
data structures, B-tree, index Organizations, concurrent algorithms,
iy controls, locking protocols, correctness, cons;
ories: 3.73, 3.74, 4.3,
|
|

istency, multiway search trees
433,434,524
\
d Yao's
i Lehman an
i tation of
tains a correct implemen
n
i irectory co

This dir

|

s

n and S. Yao,
-tree management algorithm {Pé_iizzzr e sons
B ng Concurrent Operations on e aleo
\ Efficient Locking for T O aper 1951, pp-bEd . e o
‘ O rtad ve Yo 0; the deletion logic descrit et
e i VegsgonShasha, A Symmetric Concurre
shasha (V. Lanin an .

-tree,
use ina concurrent database

ds for concurrent operations on B*-trees have been discussed by Bayer
olnick [3] and others [6, 12, 13]. The solution given in the current paper
ference, pp 380-389).
Confe g
: Computer
1 Joint
: 1986 Fal
ngs of

Proceedi

i , the ACM €opyright notice and the title of the
d its date appear, and notice is given that copyi 'Y permission of the Association
"8 Machinery. To copy otherwise, or to republish, Tequires a fee and/or specific
ithm
Algorit
. n & Yao
¢ Lehma
The basl

Was supported by the National Science Foundation under

idre - L. Lehman, Department of Compute:

s 16213;8. B. Yao, Department of- Comput,

ement, University of Maryland, College Park, MD 2074
e m - ©1981 ACM 0362-69]5/81/1200«0650&)0.75

Grant M
r Sei ‘arnegie-Mellon
er Science and Coll,
2,

lege of Business

ACM Transactions on Database Systems, Vol. 6, No. 4, Decomber 1981, Pages 650-670,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?id=319663
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_-Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

B+TREE

A B+Tree is a self-balancing, ordered tree data
structure that allows searches, sequential access,

insertions, and deletions in O(log n).

— Generalization of a binary search tree, since a node can
have more than two children.

— Optimized for systems that read and write large blocks of
data.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

B+TREE PROPERTIES

A B+Tree is an M-way search tree with the

following properties:

— It is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)

— Every node other than the root is at least half-full
M/2-1 < #keys < M-1

— Every inner node with k keys has k+1 non-null children

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

<node*>|<key>

B+TREE EXAMPLE

20

%g Pointers ?ze

10

»

P
<

<10

210

\ 4

Root Node

35

<i§//

a

<value>|<key>

$CMU-DB

15-445/645 (Fall 2023)

10

\ 4

a

20

31

Inner Nodes

¥‘35

[
>

y

38

44

Leaf Nodes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

NODES

Every B+Tree node is comprised of an array of

key/value pairs.

— The keys are derived from the attribute(s) that the index
is based on.

— The values will differ based on whether the node is
classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
k : PagelD 4—@ K1 | Vi || kn| vn E—»Pagem
—T —T

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
* t PageID4—| o | K7 | VI || Kn!l Vn | = |—>PageID
Key+Value

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE LEAF NODES

B+Tree Leaf Node
| Prev Next
i x PageID4—| o | K7 | & || Kn| » | u |—>PageID
Key+Value

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev Next
i o) o
Sorted Keys
K2 K4 | K5

K1
V«*tes
o

{

|

o

$2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LEAF NODE VALUES

Approach #1: Record IDs PostgreSQL %%Qr_ Server

— A pointer to the location of the tuple to
which the index entry corresponds.

ORACLE
Approach #2: Tuple Data

— AKA Index-Organized Storage oo Mo
— The leaf nodes store the actual contents of SQLite $ SQL Server
the tuple.

— Secondary indexes must store the Record RMHSQL ORrRACLE

ID as their values.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys and

values in all nodes in the tree.
— More space-efficient, since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.

[f L has enough space, done!

Otherwise, split L keys into L and a new node L2
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

£ CMU-DB Source: Chris Re

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREE VISUALIZATION

https://cmudb.io/btree

Source: David Gales (Univ. of San Francisco)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://cmudb.io/btree
https://www.cs.usfca.edu/~galles/

B+TREE - DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only M/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

£ CMU-DB Source: Chris Re

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

£CMU-DB

15-445/645 (Fall 2023)

SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.
Example: Index on <a, b, c>

— Supported (a=1 AND b=2 AND c=3)

— Supported: (a=1 AND b=2)
— Supported: (b=2), (¢c=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in
search key.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SELECTION CONDITIONS

Find Key=(1,2)

—— |

IA IA

1,11,

N
—
w
~.I\J
—
“N
N
'N
w

3,3

3,4

4,1

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

1,1|[1,2 1,3([2,1 2,212,3 3,3|(3,4||4,1

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SELECTION CONDITIONS

Find Key=(1,2)

Find Key=(1,*) 1 <1
1,3[]2,2|(3,3
1,2 1,3[[2,1 2,2(2,3 3,3((3,4] (4,1

1,1

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SELECTION CONDITIONS

Find Key=(1,2)

Find Key=(1,*) 1 <1
1,3[]2,2|(3,3
1,1([1,2 1,3|2,1 2,2(2,3 3,3((3,4] (4,1

| 0.0

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

*,1 < *%,3
Find Key=(*,1) 1,3|]2,2|]3,3
1,1|1,2 1,3|]2,1 2,2(2,3 3,3|(3,4| 4,1

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,%*)

x,1 < %,3
Find Key=(*,1) 1,3/[2,2| 3,3
A
-l
1,1[1,2 1,3([2,1 2,2[2,3 3,3|(3,4][4,1
(1,1) (1,1) 2 (4,1)

(2,1)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

B+TREE - DUPLICATE KEYS

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - APPEND RECORD ID

Insert 6
51|19
‘‘‘‘ {1]]3 —le|l7]| 8| —]|9][13
<Key,RecordId>

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - APPEND RECORD ID

Insert <6, (Page,Slot)>

5|9
/<5—/<9/ 29
{14]3 _1ls||l7]||8|[—]|9]l13

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»*
2°

<Key,RecordId>

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - APPEND RECORD ID

Insert <6, (Page,Slot)>

51[7(]9
P
{14]3 g | 7|8 | 9|13

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»*
2°

<Key,RecordId>

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - APPEND RECORD ID

9
M
7|8 _

Insert <6, (Page,Slot)>

5
s)
{14]3 g |

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»*
2°

<Key,RecordId>

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - OVERFLOW LEAF NODES

Insert 6
5|9
}/q/ >9
1] 3 —|le||7]|s 9 ||13

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - OVERFLOW LEAF NODES

Insert 6
5|9
}/q/ >9
1] 3 —|le||7]|s 9 ||13
6

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - OVERFLOW LEAF NODES

Insert 6
5|9
Insert 7 }/<7 =9
1] 3 — 16|78 —_1l9|l13
6|7

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE - OVERFLOW LEAF NODES

Insert 6
Insert 7

Insert 6

$CMU-DB

15-445/645 (Fall 2023)

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
— [f a table does not contain a primary key, the DBMS will
automatically make a hidden primary key.

Other DBMSs cannot use them at all.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than
sorting data for each query.

£CMU-DB

15-445/645 (Fall 2023)

Scan Direction

101

102

103

104

Table Pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.

£CMU-DB

15-445/645 (Fall 2023)

Scan Direction

=N

——

=

101 102 103 104
[Page 102 [Page 101
[Page 103 Page 101
1 Page 104 [Page 102

Page 104 Page 102
[Page 102 Page 102
[Page 103 Page 102
[Page 102 [] Page 103

Page 102 Page 103
[Page 101 Page 103
[Page 103 [] Page 104
[Page 104 Page 104
[Page 103 Page 104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://dl.acm.org/citation.cfm?id=2185842

£CMU-DB

15-445/645 (Fall 2023)

NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

MERGE THRESHOLD

Some DBMSs do not always merge nodes when

they are half full.

— Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the
amount of reorganization.

[t may also be better to just let smaller nodes exist
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-

balanced" B+Tree (nbtree).
£=CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree

£CMU-DB

15-445/645 (Fall 2023)

VARIABLE-LENGTH KEYS

Approach #1: Pointers

— Store the keys as pointers to the tuple’s attribute.
— Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value

list within the node.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/T-tree

INTRA-NODE SEARCH

Approach #1: Linear Find Key=8
— Scan node keys from beginning to end. 4(|5(|6|[7]8[]9]|10
— Use SIMD to vectorize comparisons. '

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

£CMU-DB

15-445/645 (Fall 2023)

Find Key=8

6

7

8

10

*

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.

— Use SIMD to vectorize comparisons.

£CMU-DB

15-445/645 (Fall 2023)

0

Z
4

Ve

10

m</
0 " U1 h ©

00 ¢

_mm_cmpeq_epi32_mask(a, b)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

£CMU-DB

15-445/645 (Fall 2023)

0

0

]

~

5

10

(&)
o o V

1

;

8
8

[

_mm_cmpeq_epi32_mask(a, b)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right 4113

10

depending on comparison.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right 4113

10

depending on comparison.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right 4113

10

depending on comparison.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

£CMU-DB

15-445/645 (Fall 2023)

Of fset: (8-4)*7/(10-4)=4

5

6

7

8

9

10

*

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert

Buffered Updates
Many more...

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

robbed ||robbing|| robot

Instead of storing the entire key each
time, extract common prefix and store .'

only unique suffix for each key.
— Many variations.

Prefix: rob

bed [[bing|| ot

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key (similar to what
we discussed for hash tables).

£CMU-DB

15-445/645 (Fall 2023)

K1 |Vl | K1 |V2]|K1|V3]|K2]|V4
K1 |Vl]|V2]|V3|K2]|V4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

£CMU-DB

15-445/645 (Fall 2023)

abcdefghijk

lmnopqrstuvl]

\\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic". abe) [Lr]

— We don't need the entire key. & \

Store a minimum prefix that is needed
to correctly route probes into the
index.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

POINTER SWIZZLING

Nodes use page ids to reference other Find Key>3

nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

| R ERI

[f a page is pinned in the buffer pool,
then we can store raw pointers

instead of page ids. This avoids

address lookups from the page table.

Buffer Pool

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

£CMU-DB

15-445/645 (Fall 2023)

~Page #2

Buffer Pool«--

Find Key>3

[]
[]
[}
L]
L]
L]

L)

-

.

.
*
’0
.
L] v,
*
*

Page #2 » <Page*>

Heaa’erl

Headerl

Headerl

1

2

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

POINTER SWIZZLING

Nodes use page ids to reference other Find Key>3
nodes in the index. The DBMS must page #2 619

get the memory location from the

page table during traversal. -Page #3

- i o2
[f a page is pinned in the buffer pool,

then we can store raw pointers Eggs e :';ggg:;
instead of page ids. This avoids
address lookups from the page table.

Heaa’erl Headerl Headerl

1 2 || 3

Buffer Pool«.....

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

£CMU-DB

15-445/645 (Fall 2023)

<Page*>

<Page*>

IIIII-I‘IHII-I

Find Key>3

6

9

Buffer Pool

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

BULK INSERT

The fastest way to build a new

B+Tree for an existing table is to first

sort the keys and then build the index LGEBE, 12 1EH 61
from the bottom up. Sorted Keys: 1, 3,6,7,9,13

))
1|3 6|7
—/ "/

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first

sort the keys and then build the index
from the bottom up.

£CMU-DB

15-445/645 (Fall 2023)

Keys: 3,7,9,13, 6,1
Sorted Keys: 1,3,6,7,9,13

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

OBSERVATION

Modifying a B+tree is expensive when the DBMS

has to split/merge nodes.

— Worst case is when DBMS reorganizes the entire tree.

— The worker that causes a split/merge is responsible for
doing the work.

What if there was a way to delay updates and then
apply multiple changes together in a batch?

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.

— Also known as Be-trees. Mod Log »-

20

Updates cascade down to

lower nodes incrementally 4 [d EE

when buffers get full. / \ / \

Tokutek. @) spLintErDSE 6 10 20 38

<> Relational AI

t v

t v

t v

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WRITE-OPTIMIZED B+TREE

Instead of immediately applying Insert 7
updates, store changes to key/value
entries in log buffers at inner nodes.
— Also known as Be-trees.

20

Updates cascade down to

lower nodes incrementally - |IRE [

when buffers get full. / \ / \

Y
Tokutek. @) spLinterDB 6 | 10 | 20 38

<> Relational AI

t v

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WRITE-OPTIMIZED B+TREE

Instead of immediately applying Insert 7
updates, store changes to key/value Delete 10

entries in log buffers at inner nodes.
— Also known as Be-trees.

Insert 7
Delete 10

20

Updates cascade down to

lower nodes incrementally - |IRE [

when buffers get full. / \ / \

t v

—> —>
Tokutek. @) spLinterDB 6 | 10 | 20 38

A V4 0
S2CMU-DB <,..> RelationalAI

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WRITE-OPTIMIZED B+TREE

Instead of immediately applying

Find 10

updates, store changes to key/value
entries in log buffers at inner nodes.

— Also known as Be-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

Tokutek. @) spLinerDE

A V4 0
S2CMU-DB <,..> RelationalAI

15-445/645 (Fall 2023)

Insert 7
Delete 10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

WRITE-OPTIMIZED B+TREE

Instead of immediately applying Insert 40
updates, store changes to key/value

entries in log buffers at inner nodes.
— Also known as Be-trees.

20

Updates cascade down to

lower nodes incrementally 10 - [EE
when buffers get full. / \ / \

t v

38

6 10 1| 20

Tokutek. @) spLinerDE

A V4 0
S2CMU-DB <,..> RelationalAI

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DEMO

B+Tree vs. Hash Indexes
Table Clustering

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

NEXT CLASS

Index Concurrency Control

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: B+Tree Index
	Slide 2: UPCOMING EVENTS
	Slide 3: LAST CLASS
	Slide 4: TODAY'S AGENDA

	B-Tree
	Slide 5: B-TREE FAMILY
	Slide 6: B-TREE FAMILY
	Slide 7: B-TREE FAMILY
	Slide 8: B-TREE FAMILY
	Slide 9: B-TREE FAMILY
	Slide 10: B+TREE
	Slide 11: B+TREE PROPERTIES
	Slide 12: B+TREE EXAMPLE
	Slide 13: NODES
	Slide 14: B+TREE LEAF NODES
	Slide 15: B+TREE LEAF NODES
	Slide 16: B+TREE LEAF NODES
	Slide 17: B+TREE LEAF NODES
	Slide 18: LEAF NODE VALUES
	Slide 19: B-TREE VS. B+TREE
	Slide 20: B+TREE – INSERT
	Slide 21: B+TREE VISUALIZATION
	Slide 26: B+TREE – DELETE
	Slide 27: SELECTION CONDITIONS
	Slide 28: SELECTION CONDITIONS
	Slide 29: SELECTION CONDITIONS
	Slide 30: SELECTION CONDITIONS
	Slide 31: SELECTION CONDITIONS
	Slide 32: SELECTION CONDITIONS
	Slide 33: SELECTION CONDITIONS
	Slide 34: B+TREE – DUPLICATE KEYS
	Slide 35: B+TREE – APPEND RECORD ID
	Slide 36: B+TREE – APPEND RECORD ID
	Slide 37: B+TREE – APPEND RECORD ID
	Slide 38: B+TREE – APPEND RECORD ID
	Slide 39: B+TREE – OVERFLOW LEAF NODES
	Slide 40: B+TREE – OVERFLOW LEAF NODES
	Slide 41: B+TREE – OVERFLOW LEAF NODES
	Slide 42: B+TREE – OVERFLOW LEAF NODES

	Use in a DBMS
	Slide 43: CLUSTERED INDEXES
	Slide 44: CLUSTERED B+TREE
	Slide 45: INDEX SCAN PAGE SORTING

	Design Choices
	Slide 46: B+TREE DESIGN CHOICES
	Slide 47: NODE SIZE
	Slide 48: MERGE THRESHOLD
	Slide 49: VARIABLE-LENGTH KEYS
	Slide 50: INTRA-NODE SEARCH
	Slide 51: INTRA-NODE SEARCH
	Slide 52: INTRA-NODE SEARCH
	Slide 53: INTRA-NODE SEARCH
	Slide 54: INTRA-NODE SEARCH
	Slide 55: INTRA-NODE SEARCH
	Slide 56: INTRA-NODE SEARCH
	Slide 57: INTRA-NODE SEARCH

	Optimizations
	Slide 58: OPTIMIZATIONS
	Slide 59: PREFIX COMPRESSION
	Slide 60: DEDUPLICATION
	Slide 61: SUFFIX TRUNCATION
	Slide 62: SUFFIX TRUNCATION
	Slide 63: POINTER SWIZZLING
	Slide 64: POINTER SWIZZLING
	Slide 65: POINTER SWIZZLING
	Slide 66: POINTER SWIZZLING
	Slide 67: BULK INSERT
	Slide 68: BULK INSERT

	B-Epsilon Trees
	Slide 69: OBSERVATION
	Slide 70: WRITE-OPTIMIZED B+TREE
	Slide 71: WRITE-OPTIMIZED B+TREE
	Slide 72: WRITE-OPTIMIZED B+TREE
	Slide 73: WRITE-OPTIMIZED B+TREE
	Slide 74: WRITE-OPTIMIZED B+TREE

	Conclusion
	Slide 75: DEMO
	Slide 76: CONCLUSION
	Slide 77: NEXT CLASS

