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U P C O M I N G  E V E N T S

PostgresML (ML⇄DB Seminar)
→ Monday Sept 25th @ 4:30pm

Weaviate (ML⇄DB Seminar)
→ Monday Oct 2nd @ 4:30pm

FeatureForm (ML⇄DB Seminar)
→ Monday Oct 9th @ 4:30pm
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L A S T  C L A S S

Hash tables are important data structures that are 
used all throughout a DBMS.
→ Space Complexity: O(n)
→ Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal 
data structures.
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TO DAY ' S  AG E N DA

B+Tree Overview

Design Choices

Optimizations
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B -T R E E  FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a 
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
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B -T R E E  FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a 
class of balanced tree data structures:
→ B-Tree (1971)
→ B+Tree (1973)
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B -T R E E  FA M I LY

There is a specific data structure called a B-Tree.
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B -T R E E  FA M I LY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a 
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B + T R E E

A B+Tree is a self-balancing, ordered tree data 
structure that allows searches, sequential access, 
insertions, and deletions in O(log n).  
→ Generalization of a binary search tree, since a node can 

have more than two children. 
→ Optimized for systems that read and write large blocks of 

data.
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B + T R E E  P RO P E RT I E S

A B+Tree is an M-way search tree with the 
following properties: 
→ It is perfectly balanced (i.e., every leaf node is at the same 

depth in the tree)
→ Every node other than the root is at least half-full 

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children
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B + T R E E  E X A M P L E

20

6 10 20 31 38 44

3510

<node*>|<key> Root Node

Inner Nodes

Leaf Nodes

<value>|<key>

Sibling Pointers
<20 ≥20

<10 ≥10 <35 ≥35
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N O D E S

Every B+Tree node is comprised of an array of 
key/value pairs.
→ The keys are derived from the attribute(s) that the index 

is based on. 
→ The values will differ based on whether the node is 

classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.
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B+Tree Leaf Node

B + T R E E  L E A F  N O D E S

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID
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B+Tree Leaf Node

B + T R E E  L E A F  N O D E S

Key +  Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID
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B+Tree Leaf Node

B + T R E E  L E A F  N O D E S

Key +  Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID
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B+Tree Leaf Node

B + T R E E  L E A F  N O D E S

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values

¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023


15-445/645 (Fall 2023)

L E A F  N O D E  VA L U E S

Approach #1: Record IDs
→ A pointer to the location of the tuple to 

which the index entry corresponds.

Approach #2: Tuple Data
→ AKA Index-Organized Storage
→ The leaf nodes store the actual contents of 

the tuple.
→ Secondary indexes must store the Record 

ID as their values.
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B -T R E E  V S .  B + T R E E

The original B-Tree from 1972 stored keys and 
values in all nodes in the tree.
→ More space-efficient, since each key only appears once in 

the tree.

A B+Tree only stores values in leaf nodes. Inner 
nodes only guide the search process.
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B + T R E E  –  I N S E RT

Find correct leaf node L.
Insert data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, 
but push up middle key. 

Source: Chris Re
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B + T R E E  V I S UA L I Z AT I O N

https://cmudb.io/btree

Source: David Gales (Univ. of San Francisco)
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B + T R E E  –  D E L E T E

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done! 
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent 

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L 
or sibling) from parent of L.

Source: Chris Re
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S E L E C T I O N  C O N D I T I O N S

The DBMS can use a B+Tree index if the query 
provides any of the attributes of the search key.

Example: Index on <a,b,c>
→ Supported (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Supported: (b=2), (c=3)

Not all DBMSs support this.

For a hash index, we must have all attributes in 
search key.
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S E L E C T I O N  C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

1 ≤ 1
2 ≤ 3
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S E L E C T I O N  C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)
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S E L E C T I O N  C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*) 1 ≤ 1
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S E L E C T I O N  C O N D I T I O N S

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*) 1 ≤ 1

(1,*) ≤ (2,*)
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S E L E C T I O N  C O N D I T I O N S

Find Key=(1,2)

Find Key=(*,1) 1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3Find Key=(1,*)
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S E L E C T I O N  C O N D I T I O N S

Find Key=(1,2)

Find Key=(*,1) 1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3Find Key=(1,*)

(1,1) ∅(1,1)
(2,1)

(4,1)
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B + T R E E  –  D U P L I C AT E  K E Y S

Approach #1: Append Record ID
→ Add the tuple's unique Record ID as part of the key to 

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain 

the duplicate keys.
→ This is more complex to maintain and modify.
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B + T R E E  –  A P P E N D  R E C O R D  I D

<5 <9 ≥9

6 7 8 9 131 3

5 9
Insert 6          
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B + T R E E  –  A P P E N D  R E C O R D  I D

<5 <9 ≥9

6 7 8 9 131 3

5 9
        Insert <6,(Page,Slot)>

36

<Key,RecordId>
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B + T R E E  –  A P P E N D  R E C O R D  I D

<5

6 7 8 9 131 3

5 9
        Insert <6,(Page,Slot)>

7 8

7 9

<7
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<Key,RecordId>
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B + T R E E  –  A P P E N D  R E C O R D  I D

<5

6 7 8 9 131 3

5 9
        Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7
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B + T R E E  –  OV E R F LO W  L E A F  N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9
Insert 6
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B + T R E E  –  OV E R F LO W  L E A F  N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6
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B + T R E E  –  OV E R F LO W  L E A F  N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7
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B + T R E E  –  OV E R F LO W  L E A F  N O D E S

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6
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C L U S T E R E D  I N D E X E S

The table is stored in the sort order specified by 
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will 

automatically make a hidden primary key.

Other DBMSs cannot use them at all.
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C L U S T E R E D  B + T R E E

Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.

This will always be better than
sorting data for each query. Table Pages

101 102 103 104

Scan Direction
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I N D E X  S C A N  PAG E  S O RT I N G

Retrieving tuples in the order they 
appear in a non-clustered index is 
inefficient due to redundant reads.

A better approach is to find all the 
tuples that the query needs and then 
sort them based on their page ID.

The DBMS retrieves each page once.

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction
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B + T R E E  D E S I G N  C H O I C E S

Node Size

Merge Threshold

Variable-Length Keys

Intra-Node Search
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N O D E  S I Z E

The slower the storage device, the larger the 
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB 
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals
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M E RG E  T H R E S H O L D

Some DBMSs do not always merge nodes when 
they are half full.
→ Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the 
amount of reorganization.

It may also be better to just let smaller nodes exist 
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).
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VA R I A B L E - L E N G T H  K E Y S

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.
→ Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value 

list within the node.
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

                    
                                      

                        

                           
                                           

                              

33

Find Key=8
5 6 7 8 9 104
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.
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Find Key=8
5 6 7 8 9 104
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

                    
                                      

                        

                           
                                           

                              

33

5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.
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5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00 0 0 01
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right 

depending on comparison.
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right 

depending on comparison.
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right 

depending on comparison.
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I N T R A- N O D E  S E A RC H

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right 

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based 

on known distribution of keys.
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5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4
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O P T I M I Z AT I O N S

Prefix Compression

Deduplication

Suffix Truncation

Pointer Swizzling

Bulk Insert

Buffered Updates

Many more…
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P R E F I X  C O M P R E S S I O N

Sorted keys in the same leaf node are 
likely to have the same prefix.

Instead of storing the entire key each 
time, extract common prefix and store 
only unique suffix for each key.
→ Many variations.

robbed robbing robot

bed bing ot

Prefix: rob
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D E D U P L I C AT I O N

Non-unique indexes can end up 
storing multiple copies of the same 
key in leaf nodes.

The leaf node can store the key once 
and then maintain a "posting list" of 
tuples with that key (similar to what 
we discussed for hash tables).

36

K1 V1 K1 V2 K1 V3 K2 V4
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S U F F I X  T RU N C AT I O N

The keys in the inner nodes are only 
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed 
to correctly route probes into the 
index.

abcdefghijk lmnopqrstuv

… …… …
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S U F F I X  T RU N C AT I O N

The keys in the inner nodes are only 
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed 
to correctly route probes into the 
index.

… …… …

abc lmn
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P O I N T E R  S W I Z Z L I N G

Nodes use page ids to reference other 
nodes in the index. The DBMS must 
get the memory location from the 
page table during traversal.

If a page is pinned in the buffer pool, 
then we can store raw pointers 
instead of page ids. This avoids 
address lookups from the page table.
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Nodes use page ids to reference other 
nodes in the index. The DBMS must 
get the memory location from the 
page table during traversal.

If a page is pinned in the buffer pool, 
then we can store raw pointers 
instead of page ids. This avoids 
address lookups from the page table.
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P O I N T E R  S W I Z Z L I N G

Nodes use page ids to reference other 
nodes in the index. The DBMS must 
get the memory location from the 
page table during traversal.

If a page is pinned in the buffer pool, 
then we can store raw pointers 
instead of page ids. This avoids 
address lookups from the page table.
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P O I N T E R  S W I Z Z L I N G

Nodes use page ids to reference other 
nodes in the index. The DBMS must 
get the memory location from the 
page table during traversal.

If a page is pinned in the buffer pool, 
then we can store raw pointers 
instead of page ids. This avoids 
address lookups from the page table.
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B U L K  I N S E RT

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13
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B U L K  I N S E RT

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13
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O B S E R VAT I O N

Modifying a B+tree is expensive when the DBMS 
has to split/merge nodes.
→ Worst case is when DBMS reorganizes the entire tree.
→ The worker that causes a split/merge is responsible for 

doing the work.

What if there was a way to delay updates and then 
apply multiple changes together in a batch?
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Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

W R I T E - O P T I M I Z E D  B + T R E E
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Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ Also known as Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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D E M O

B+Tree vs. Hash Indexes

Table Clustering
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C O N C L U S I O N

The venerable B+Tree is (almost) always a good 
choice for your DBMS.
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N E X T  C L A S S

Index Concurrency Control
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