
Intro to Database
Systems (15-445/645)

FALL 2023 Prof. Andy Pavlo Prof. Jignesh Patel

Lecture #12

Query
Execution
Part 1

15-445/645 (Fall 2022)

A D M I N I S T R I V I A

Homework #3 is due Wed Oct 8th @ 11:59pm

Project #3 is due Oct 29, 2023 @ 11:59pm

Mid-Term Exam is Wednesday Oct 11th

→ During regular class time from 2:00-3:20 pm
→ Please contact us if you need accommodations.

2

15-445/645 (Fall 2022)

TO DAY ' S AG E N DA

Processing Models

Access Methods

Modification Queries

Expression Evaluation

Mid-Term Review

3

15-445/645 (Fall 2022)

P RO C E S S I N G M O D E L

A DBMS’s processing model defines how the
system executes a query plan.
→ Different trade-offs for different workloads.

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

4

15-445/645 (Fall 2022)

I T E R ATO R M O D E L

Each query plan operator implements a Next() function.
→ On each invocation, the operator returns either a single tuple or a eof

marker if there are no more tuples.
→ The operator implements a loop that calls Next() on its children to retrieve

their tuples and then process them.

Each operator implementation also has Open() and Close() functions.
Analogous to constructors and destructors, but for operators.

Also called the Volcano or the Pipeline Model.

5

15-445/645 (Fall 2022)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

I T E R ATO R M O D E L

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4Single Tuple

Next()

Next()

Next() Next()

Next()

6

15-445/645 (Fall 2022)

I T E R ATO R M O D E L

This is used in most DBMSs today. Allows for tuple pipelining.

Many operators must block until their children emit all their tuples.
→ Joins, Aggregates, Subqueries, Order By

Output control works easily with this approach.

7

15-445/645 (Fall 2022)

M AT E R I A L I Z AT I O N M O D E L

Each operator processes its input all at once and then emits its
output all at once.
→ The operator “materializes” its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid scanning too many

tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or subsets of
columns (DSM).

8

15-445/645 (Fall 2022)

M AT E R I A L I Z AT I O N M O D E L

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

1

2

3 5

4
All Tuples

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

9

15-445/645 (Fall 2022)

M AT E R I A L I Z AT I O N M O D E L

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large
intermediate results.

10

15-445/645 (Fall 2022)

V E C TO R I Z AT I O N M O D E L

Like the Iterator Model where each operator implements a
Next() function, but …

Each operator emits a batch of tuples instead of a single
tuple.
→ The operator’s internal loop processes multiple tuples at a time.
→ The size of the batch can vary based on hardware or query properties.

11

15-445/645 (Fall 2022)

V E C TO R I Z AT I O N M O D E L

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

1

2

3 out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

5

4

Tuple Batch

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

12

15-445/645 (Fall 2022)

V E C TO R I Z AT I O N M O D E L

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to more easily use vectorized
(SIMD) instructions to process batches of tuples.

13

15-445/645 (Fall 2022)

P L A N P RO C E S S I N G D I R E C T I O N

Approach #1: Top-to-Bottom

→ Start with the root and “pull” data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top

→ Start with leaf nodes and push data to their parents.
→ Allows for tighter control of caches/registers in pipelines.
→ More amenable to dynamic query re-optimization.

14

15-445/645 (Fall 2022)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

AC C E S S M E T H O D S

An access method is the way that the
DBMS accesses the data stored in a table.
→ Not defined in relational algebra.

Three basic approaches:
→ Sequential Scan.
→ Index Scan (many variants).
→ Multi-Index Scan.

15

15-445/645 (Fall 2022)

S E Q U E N T I A L S C A N

For each page in the table:
→ Retrieve it from the buffer pool.
→ Iterate over each tuple and check whether

to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot
it examined.

for page in table.pages:
 for t in page.tuples:
 if evalPred(t):
 // Do Something!

16

15-445/645 (Fall 2022)

S E Q U E N T I A L S C A N : O P T I M I Z AT I O N S

This is almost always the worst thing that the
DBMS can do to execute a query, but it may be the
only choice available.

Sequential Scan Optimizations:
→ Prefetching
→ Buffer Pool Bypass
→ Parallelization
→ Heap Clustering
→ Late Materialization
→ Data Skipping

Lecture #06

Lecture #06

Lecture #13

Lecture #08

Lecture #11

17

15-445/645 (Fall 2022)

DATA S K I P P I N G

Approach #1: Approximate Queries (Lossy)

→ Execute queries on a sampled subset of the entire table to produce
approximate results.

→ Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle, Snowflake, Google
BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)

→ Pre-compute columnar aggregations per page that allow the DBMS to check
whether queries need to access it.

→ Trade-off between page size vs. filter efficacy.
→ Examples: Oracle, Vertica, SingleStore, Netezza, Snowflake, Google BigQuery

18

http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

15-445/645 (Fall 2022)

ZO N E M A P S

Pre-computed aggregates for the attribute values
in a page. DBMS checks the zone map first to
decide whether it wants to access the page.

Zone Map

val
100
400
280
1400

type
MIN
MAX
AVG
SUM

5COUNT

Original Data

val
100
200
300
400
400

SELECT * FROM table
 WHERE val > 600

19

15-445/645 (Fall 2022)

I N D E X S C A N

The DBMS picks an index to find the tuples that
the query needs.

Which index to use depends on:
→ What attributes the index contains
→ What attributes the query references
→ The attribute's value domains
→ Predicate composition
→ Whether the index has unique or non-unique keys

Lecture #14

20

15-445/645 (Fall 2022)

I N D E X S C A N

Suppose that we have a single table
with 100 tuples and two indexes:
→ Index #1: age
→ Index #2: dept

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

There are 99 people
under the age of 30 but
only 2 people in the CS
department.

Scenario #1

There are 99 people in
the CS department but
only 2 people under the
age of 30.

Scenario #2

21

15-445/645 (Fall 2022)

M U LT I - I N D E X S C A N

If there are multiple indexes that the DBMS can use for a query:
→ Compute sets of Record IDs using each matching index.
→ Combine these sets based on the query's predicates (union vs. intersect).
→ Retrieve the records and apply any remaining predicates.

Examples:
→ DB2 Multi-Index Scan
→ PostgreSQL Bitmap Scan
→ MySQL Index Merge

22

https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

15-445/645 (Fall 2022)

M U LT I - I N D E X S C A N

With an index on age and an index on
dept:
→ We can retrieve the Record IDs satisfying

age<30 using the first,
→ Then retrieve the Record IDs satisfying

dept='CS' using the second,
→ Take their intersection
→ Retrieve records and check country='US'.

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

23

15-445/645 (Fall 2022)

M U LT I - I N D E X S C A N

Set intersection can be done efficiently
with bitmaps or hash tables.

age<30 dept='CS'

record ids record ids

country='US'fetch records

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

24

15-445/645 (Fall 2022)

M O D I F I C AT I O N Q U E R I E S

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for modifying
the target table and its indexes.
→ Constraint checks can either happen immediately inside

of operator or deferred until later in query/transaction.

The output of these operators can either be
Record Ids or tuple data (i.e., RETURNING).

25

15-445/645 (Fall 2022)

M O D I F I C AT I O N Q U E R I E S

UPDATE/DELETE:
→ Child operators pass Record IDs for target tuples.
→ Must keep track of previously seen tuples.

INSERT:
→ Choice #1: Materialize tuples inside of the operator.
→ Choice #2: Operator inserts any tuple passed in from

child operators.

26

15-445/645 (Fall 2022)

CREATE INDEX idx_salary
 ON people (salary);

U P DAT E Q U E R Y P RO B L E M

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(999,Andy)

(1099,Andy)

(1099,Andy)

(1199,Andy)

27

15-445/645 (Fall 2022)

H A L LO W E E N P RO B L E M

Anomaly where an update operation changes the
physical location of a tuple, which causes a scan
operator to visit the tuple multiple times.
→ Can occur on clustered tables or index scans.

First discovered by IBM researchers while
working on System R on Halloween day in 1976.

Solution: Track modified record ids per query.

28

https://en.wikipedia.org/wiki/Halloween_Problem

15-445/645 (Fall 2022)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

E X P R E S S I O N E VA L UAT I O N

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent
different expression types:
→ Comparisons (=, <, >, !=)
→ Conjunction (AND), Disjunction (OR)
→ Arithmetic Operators (+, -, *, /, %)
→ Constant Values
→ Tuple Attribute References Attribute(S.id)

=

Attribute(R.id)

AND

>

Attribute(value) Constant(100)

29

15-445/645 (Fall 2022)

E X P R E S S I O N E VA L UAT I O N
Evaluating predicates in this manner is slow.
→ The DBMS traverses the tree and for each node

that it visits, it must figure out what the operator
needs to do.

Consider this predicate:
WHERE S.val=1

A better approach is to just evaluate the
expression directly.
→ Think JIT compilation

Constant(1)

=

Attribute(s.val)

bool check(val) {
 return (val == 1);
}

Machine Code

gcc, Clang, LLVM, …

30

15-445/645 (Fall 2022)

1000

991 9

true

1000

Execution Context

E X P R E S S I O N E VA L UAT I O N

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

31

15-445/645 (Fall 2022)

S c h e d u l e r

So far, we have largely taken a data flow perspective of the query
processing model.

The control flow was implicit in the processing model. We can
make the control flow more explicit with a scheduler.

Query schedulers are often not discussed in database papers. We’ll
look at what was done in the Quickstep (academic) project. Based
on allowing frequent switches between data flow and control flow.

32

15-445/645 (Fall 2022)

Clean Separation of Data Flow and Control Flow

⨝

σ σ

R S
SELECT * FROM R, S
WHERE R.b > 10
 AND S.c >100
 AND R.a= S.a

The “traditional” way The Quickstep way

33

15-445/645 (Fall 2022)

Pool of
Worker
Threads

⨝

σ σ

R S
SELECT * FROM R, S
WHERE R.b > 10
 AND S.c >100
 AND R.a= S.a

r1 r2 s1 s2

s3 s4

Pending work orders
σ (r1)σ (r2)σ (s1). . .

Network

Buffer Pool
r1

r2

s1 s2

s3 s4
r’ s’

s’’

Buffer pool: Abstraction to manage “data blocks”/pages using LRU-2.

Data blocks = base data, intermediate results, QP data structures (Hash tables)
Variable length, but multiples of a base block size. Thus, hash tables can grow (via doubling in size)

Clean Separation of Data Flow and Control Flow

The Quickstep Scheduler
34

15-445/645 (Fall 2022)

Pool of
Worker
Threads

⨝

σ σ

R S
SELECT * FROM R, S
WHERE R.b > 10
 AND S.c >100
 AND R.a= S.a

r1 r2 s1 s2

s3 s4

Pending work orders
Build Hash

(r’)
Probe Hash

(h’, s1)
Probe Hash

(h’, s2)

Network

Buffer Pool
s’

s’’

h’

+ Cleaner Abstraction
+ Dynamic Optimization
+ In-built query suspension
+ Better p9X
+ Manageability and Debug-ability

Advantages

r’

Clean Separation of Data Flow and Control Flow

The Quickstep Scheduler
35

15-445/645 (Fall 2022)

2 4 6 8 10 12 14 16 18

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
To

ta
lC

P
U

R
es

ou
rc

es

Q3 (Priority 10)
Q2 (Priority 1)
Q1 (Priority 1)

0.0 5.0 10.0 15.0 20.0
Time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
PU

U
til

iz
at

io
n

Q4.3 (2)
Q4.2 (2)
Q4.1 (1)
Q3.4 (1)
Q3.3 (1)
Q3.2 (1)
Q3.1 (1)
Q2.3 (1)
Q2.2 (1)
Q2.1 (1)
Q1.3 (1)
Q1.2 (1)
Q1.1 (1)

Priority scheduling = Elastic behavior
36

15-445/645 (Fall 2022)

[0] SelectOperator
Input stored relation [supplier]

Span: [0ms, 38ms] (6.15%)
Effective concurrency: 6.89

Completed

[1] BuildHashOperator
Span: [45ms, 80ms] (5.61%)
Effective concurrency: 1.12

Completed

[6] HashJoinOperator
probe side stored relation [lineorder]

Span: [111ms, 620ms] (81.96%)
Effective concurrency: 37.92

In progress

[7] HashJoinOperator
Not started

[2] SelectOperator
Input stored relation [customer]

Span: [0ms, 88ms] (14.32%)
Effective concurrency: 27.55

Completed

[3] BuildHashOperator
Span: [89ms, 96ms] (1.27%)
Effective concurrency: 10.58

Completed

[8] HashJoinOperator
Not started

[4] SelectOperator
Input stored relation [ddate]
Span: [78ms, 83ms] (0.87%)
Effective concurrency: 1.00

Completed

[5] BuildHashOperator
Span: [84ms, 84ms] (0.06%)
Effective concurrency: 1.00

Completed

[9] AggregationOperator
Not started

[10] FinalizeAggregationOperator
Not started

[11] DestroyAggregationStateOperator
Not started

[12] SortRunGenerationOperator
Not started

[13] SortMergeRunOperator
Not started

I n - b u i l t Q u e r y P r o g r e s s M o n i t o r i n g

37

15-445/645 (Fall 2022)

C O N C L U S I O N

The same query plan can be executed in multiple
different ways.

(Most) DBMSs will want to use index scans as
much as possible.

Expression trees are flexible but slow.
JIT compilation can (sometimes) speed them up.

38

15-445/645 (Fall 2022)

N E X T C L A S S

Parallel Query Execution

39

15-445/645 (Fall 2022)

M I DT E R M E X A M

Who: You

What: Midterm Exam

Where: Tepper 1403

When: Thursday Oct 11th @ 2:00am-3:20pm

Email us if you need special accommodations.

https://15445.courses.cs.cmu.edu/fall2023/midterm-guide.html

40

15-445/645 (Fall 2022)

M I DT E R M E X A M

What to bring:

→ CMU ID
→ Calculator
→ One 8.5x11” page of handwritten notes (double-sided)

What not to bring:

→ Live animals
→ Your wet laundry
→ Votive Candles (aka "Jennifer Lopez" Candles)

41

15-445/645 (Fall 2022)

R E L AT I O N A L M O D E L

Integrity Constraints

Relation Algebra

42

15-445/645 (Fall 2022)

S Q L

Basic operations:
→ SELECT / INSERT / UPDATE / DELETE
→ WHERE predicates
→ Output control

More complex operations:
→ Joins
→ Aggregates
→ Common Table Expressions
→ Window Functions

43

15-445/645 (Fall 2022)

S TO R AG E

Buffer Management Policies
→ LRU / LRU-K / CLOCK

On-Disk File Organization

Page Layout
→ Slotted Pages
→ Log-Structured

44

15-445/645 (Fall 2022)

H A S H I N G

Static Hashing
→ Linear Probing
→ Robin Hood
→ Cuckoo Hashing

Dynamic Hashing
→ Extendible Hashing
→ Linear Hashing

45

15-445/645 (Fall 2022)

T R E E I N D E X E S

B+Tree
→ Insertions / Deletions
→ Splits / Merges
→ Difference with B-Tree
→ Latch Crabbing / Coupling

46

15-445/645 (Fall 2022)

S O RT I N G

Two-way External Merge Sort

General External Merge Sort

Cost to sort different data sets with different
number of buffers.

47

15-445/645 (Fall 2022)

J O I N S

Nested Loop
→ Block
→ Index

Sort-Merge
Hash
→ Basic
→ Partitioned / GRACE
→ Hybrid

Execution costs under different conditions.

48

15-445/645 (Fall 2022)

Q U E R Y P RO C E S S I N G

Processing Models
→ Advantages / Disadvantages

Access Methods
→ Sequential Scan
→ Index Scan
→ Multi-Index Scan

49

15-445/645 (Fall 2022)

N E X T C L A S S

Parallel Query Execution

50

