Garnegie |ntro to Database
University Systems (15-445/645)

Lecture #13

Query
Execution
Part 2

FALL 2023)) Prof. Andy Pavlo ® Prof. Jignesh Patel

;¢ i A\ AW i\ A RURN \ .
y AL N ‘ ' n -
\ \\ \‘\\ N\ | ‘ | \ E
\ N W i ' 2
\\ \ X AN \ \) k‘\\\\ / / i -
/AN NS TR & \)i/ \\
| \ | BB | J C g
A\ n W\) nE
/ I | i
7 N i

7 g

Il
[

V4

. S R
7 N il \\4\ \ A = s
‘ §§ \\ \ \] i g
y ~ . . [4
D — \ »\\\\\ 3 W\ i 3 F o
s A& k',
) 2 /]

ADMINISTRIVIA

Mid-Term Exam

— Grades have been posted to S3
— See the Profs. during OH for exam viewing
— Next week, you can post a regrade request on Gradescope

Project #2
— Due: Oct 29" @ 11:59pm
— Special OH: Oct 28™ from 3-5pm in GHC 4303

Project #3
— Due: Nov 12" @ 11:59pm

$ZCMU-DB

15-445/645 (Fall 2023)

QUERY EXECUTION

In the last class, we discussed SELECT R.id, S.cdate
. . FROM R JOIN S

composing operators into a plan to ON R.id = S id
execute an arbitrary query. WHERE S.value > 100

: . t
We assumed that queries execute with TT =.id, s.cdate
a single worker (e.g., a thread). t

Dk id-s. id
: .)\

We will now discuss how to execute / O values100
queries using multiple workers. R g

$ZCMU-DB

15-445/645 (Fall 2023)

Hardware trends

42 Years of Microprocessor Trend Data

7L |
10 “ Transistors
thousands
10° ()
5 | Single-Thread
10
Performance 3
10* (SpecINT x 107)
. Frequency (MHz
10 y
Typical Power
102 - (Watts)
1 Number of
10 Logical Cores
v
10° | ; * O e 4 00%0 SO DN SPGB G B -
| l | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

sZCMU-DB

15-445/645 (Fall 2023)

Transistor growth
continues.

The question is how to use
this hardware for higher
application performance.

Individual cores are not
becoming faster, but there
are more cores.

Every processor is now a
“parallel” data machine,
and the degree of

parallelism is increasing.

| Latency Numbers You Should Know) ByteByteGo.com

Every
programmer
must know these

1 ns L1 Ccache

10 wns L2 cache o
numbers.
100 wns RAM access)
1 = redis read e
ps v
10 us [send data over network Memcached send data ove:r 1Gbps wetworle. / {
100 ps read from SSD . RocksPB read g RocksDB | '
1 wms Database insert <« Postgresql insert
10 ms HDD disk seek
Rewmote Zoowm call
100 ms packet CA->NL->CA) o Jeff Dean
1s . qrafana refresh interval @
10 s retry/vefresh interval '

https://blog.bytebytego.com/p/ep22-latency-numbers-you-should-know

£CMU-DB

15-445/645 (Fall 2023)

WHY CARE ABOUT PARALLEL EXECUTION?

$ZCMU-DB

15-445/645 (Fall 2023)

Need to use the (parallel) hardware well
— Higher Throughput
— Lower Latency (especially important for human-in-the-

loop scenarios)

Potentially lower total cost of ownership (TCO)

— Fewer machines means less parts / physical footprint /

energy consumption.

$ZCMU-DB

15-445/645 (Fall 2023)

PARALLEL / DISTRIBUTED

The database is spread across multiple resources to

— Deal with large data sets that don'’t fit on a single machine/node
— Higher performance

— Redundancy/Fault-tolerance

Appears as a single logical database instance to the

application, regardless of physical organization.
— SQL query for a single-resource DBMS should generate the same

result on a parallel or distributed DBMS.

PARALLEL VS. DISTRIBUTED

Parallel DBMSs

— Resources are physically close to each other.
— Resources communicate over high-speed interconnect.

— Communication is assumed to be cheap and reliable.

Distributed DBMSs

— Resources can be far from each other.
— Resources communicate using slow(er) interconnect.
— Communication costs and problems cannot be ignored.

$ZCMU-DB

15-445/645 (Fall 2023)

TODAY'’S AGENDA

Process Models

Execution Parallelism

I/O Parallelism

$ZCMU-DB

15-445/645 (Fall 2023)

PROCESS MODEL

A DBMS'’s process model defines how the system is

architected to support concurrent requests / queries.

A worker is the DBMS component responsible for

executing tasks on behalf of the client and returning the

results.

PROCESS MODEL

Approach #1: Process per DBMS Worker
Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS

PROCESS PER WORKER

Each worker is a separate OS process.

— Relies on the OS dispatcher.

— Use shared-memory for global data structures. ORACLE"
— A process crash does not take down the entire system.
— Examples: IBM DB2, Postgres, Oracle PostgreSQL
SQL Commands
m Connect 4’0 » 0 é_el-
Application Dispatcher W orker Processes

$ZCMU-DB

15-445/645 (Fall 2023)

THREAD PER WORKER

Microsoft®

Single process with multiple worker threads. ZSOL Server

— DBMS (mostly) manages its own scheduling.

N MysaL.

— May or may not use a dispatcher thread.

— Thread crash (may) kill the entire system.
— Examples:[IMSSQL} MySQL, DB2, Oracle (2014)
Almost every DBMS created in the last 20 years! ORACLE

SQL Commands

Connect 0 »

Application Dispatcher W orker Threads
£2CMU-DB

15-445/645 (Fall 2023)

(00 (00

https://docs.oracle.com/database/121/CNCPT/process.htm

SCHEDULING

For each query plan, the DBMS decides where, when,

and how to execute it.

— How many tasks should it use?
— How many CPU cores should it use?
— What CPU core should the tasks execute on?

— Where should a task store its output?

The DBMS nearly always knows more than the OS.

$ZCMU-DB

15-445/645 (Fall 2023)

$ZCMU-DB

15-445/645 (Fall 2023)

SQL SERVER - SQLOS

SQLOS is a user-level OS layer that runs inside the

DBMS and manages provisioned hardware resources.

— Determines which tasks are scheduled onto which threads.
— It also manages I/O scheduling and higher-level concepts like

logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

$ZCMU-DB

15-445/645 (Fall 2023)

TS

SQl -

Search Q
Startups
SQLOS is a user vieo
Audio
Newsletters

DBMS and mang Extra Crunch

Advertise

— Determines Whl‘ Events

—> It aISO manages] More
logical database

Transportation
Apple
Tesla

Security

Non-preemptiv

instrumented D

How Microsoft brought
SQL Server to Linux

Frederic Lardinois @fredericl / 12:00 pm EDT « July 17,2017 O comment

Back in 2016, when Microsoft announced that SQL Server would soon run on Linux, the
news came as a major surprise to users and pundits alike. Over the course of the last year,
Microsoft's Support for Linux (and open source in general), has come into clearer focus and

the company’s mission now seems to be all about bringing its tools to Wwherever its users are.

improvements in this New version, the fact that SQL Server 2017 Supports Linux remains one
of the most interesting aspects of this release.

Ahead of today’s announcement, | talked to Rohan Kumar, the general manager of
Microsoft's Database Systems group, to get a bit more info about the history of this project
and how his team Mmanaged to bring an extremely complex Piece of software like SQL Server
to Linux. Kumar, who has been at Microsoft for more than 18 years, noteqd that his team

“Talking to enterprises, it became clear that doing this was necessary,” Kumar said. “We were
forcing customers to use Windows as their platform of choice.” In another incarnation of
Microsoft, that probably would've been seen as something positive, but the company’s
strategy today s quite different,

SQL SERVER - SQLOS

SQLOS quantum is 4 ms, but the
scheduler cannot enforce that.

DBMS developers must add

explicit yield calls in various
locations in the source code.

SELECT * FROM R WHERE R.val = ?

last = now()
for tuple in R:
if now() - last > 4ms:

» last = now()

if eval(predicate, tuple, params):
emit(tuple)

See Lecture #12 for a different/modern way to do query/operator scheduling.

$ZCMU-DB

15-445/645 (Fall 2023)

EMBEDDED DBMS

DBMS runs inside the same address space as the ?SQLM
application. Application is (primarily) responsible for “* RocksDB
threads and scheduling.
The application may support outside connections. @'9"9"’8
— Examples: BerkeleyDB, SQLite, RocksDB, LevelDB Yettal®
- WIREDT G ER
;E"_\
-g_\ @SPUNTERDB
=\ bitcask
Application

$ZCMU-DB

15-445/645 (Fall 2023)

$ZCMU-DB

15-445/645 (Fall 2023)

PROCESS MODELS

Advantages of a multi-threaded architecture:
— Less overhead per context switch.

— Do not have to manage shared memory.

The thread per worker model does not mean that the

DBMS supports intra-query parallelism.

DBMS from the last 15 years use native OS threads

unless they are Redis or Postgres forks.

INTER- VS. INTRA-QUERY PARALLELISM

$ZCMU-DB

15-445/645 (Fall 2023)

Inter-Query: Execute multiple disparate

queries simultaneously.

— Increases throughput & reduces latency.

Intra-Query: Execute the operations of a
single query in parallel.

— Decreases latency for long-running queries, especially
for OLAP queries.

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple queries to

execute simultaneously.

[f queries are read-only, then this requires almost no explicit
coordination between the queries. Lecture #15
—|Buffer pool can handle most of the sharing if necessary.

[f multiple queries are updating the database at the same time, then

this is hard to do correctly...

$ZCMU-DB

15-445/645 (Fall 2023)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by

executing its operators in parallel.

Think of the organization of operators in terms of

a producer/consumer paradigm.

There are parallel versions of every operator.
— Can either have multiple threads access centralized data

structures or use partitioning to divide work up.

$ZCMU-DB

15-445/645 (Fall 2023)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each level of buckets

for R and S after partitioning.

R(id,name) : HTy HT : S(id,value,cdate)

£2CMU-DB
15-445/645 (Fall 2023)

£2CMU-DB
15-445/645 (F

all 2023)

INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)
Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

$ZCMU-DB

15-445/645 (Fall 2023)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)

— Decompose operators into independent fragments that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the

query plan to coalesce/split results from multiple

children/parent operators.

— Postgres calls this “gather”

INTRA-OPERATOR PARALLELISM

SELECT * FROM A
WHERE A.val > 99

Gvalue>99

T
A

$ZCMU-DB

15-445/645 (Fall 2023,)

A

2

Next Exchange I
Fragment
\ t

? Nex

A7

o

sagvg

EXCHANGE OPERATOR

Exchange Type #1 — Gather
— Combine the results from multiple workers

into a single output stream.

Exchange Type #2 — Distribute

— Split a single input stream into multiple
output streams.

Exchange Type #3 — Repartition
— Shuffle multiple input streams across multiple

output streams.

$ZCMU-DB

15-445/645 (Fall 2023)

Gather

4

ato
4 i

Repartition

Source: Craig Freedman

https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B Exchange
ON A.id = B.1id
WHERE A.value < 99
AND B.value > 100 P?Tq

Exchange I | I
- BuildHT B BuildHT W BuildHT Probe HT || Probe HT | Probe HT

T
4
0}
3
B

T

¢ ¢ ¢ ¢ 9

1% A A A B B
& &

Al || [B L 19

£2CMU-DB
15-445/645 (Fall 2

$ZCMU-DB

15-445/645 (Fall 2023)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical) ZXPULSAR

— Operations are overlapped in order to pipeline data from one % kafka
stage to the next without materialization.

— Workers execute operators from different segments of a

query plan at the same time.

@ APACHE
STORM™

— More common in streaming systems (continuous queries)

Also called pipeline parallelism. Iy

AAAAAA

INTER-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B g
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100 a for r € incoming:
TC emit (1(r))

1

for r; € outer:

/'G G\ QN for r, € inner:
emit(rXr,)
A B

$ZCMU-DB

15-445/645 (Fall 2023)

BUSHY PARALLELISM

Approach #3: Bushy Parallelism

— Hybrid of intra- and inter-operator
parallelism where workers execute
multiple operators from different

segments of a query plan at the same time.
— Still need exchange operators to combine
intermediate results from segments.

SELECT =*
FROM A JOIN B JOIN C JOIN D

o)

<]

%

T3 g

<]

———
<]

$ZCMU-DB

15-445/645 (Fall 2023)

N
B

N

° N

Exchan
P>
yd

C

O’

$ZCMU-DB

15-445/645 (Fall 2023)

OBSERVATION

Using additional processes/threads to execute
queries in parallel won'’t help if the disk is always

the main bottleneck.

[t can sometimes make the DBMS'’s performance

worse if a worker is accessing different segments

of the disk at the same time.

1/0 PARALLELISM

Split the DBMS across multiple storage devices to
improve disk bandwidth latency.

Many different options that have trade-offs:
— Multiple Disks per Database

— One Database per Disk

— One Relation per Disk

— Split Relation across Multiple Disks

Some DBMSs support this natively. Others

require admin to configure outside of DBMS.
£2CMU-DB

15-445/645 (Fall 2023)

MULTI-DISK PARALLELISM Performance

Data on the disk can get corrupted (bit rot),
or an entire disk can fail.
Get higher performance from a disk array.

File of 6 pages (logical view):

errorlng (RAID 1)

Software-based: Use erasure codes at the

file/object level. Faster and more flexible. |

Hardware-based: A hardware controller
manages multiple devices, e.g. RAID.

‘ page

This is transparent to the DBMS. w w w

Physical layout of pages across disksJ
£ CMU-DB -

15-445/645 (Fall 2023)

DATABASE PARTITIONING

Some DBMSs allow you to specify the disk location of

each individual database.

— The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the

DBMS stores each database in a separate directory.
— The DBMS recovery log file might still be shared if

transactions can update multiple databases.

$ZCMU-DB

15-445/645 (Fall 2023)

PARTITIONING

Split a single logical table into disjoint physical segments that are

stored/managed separately.

Partitioning should (ideally) be transparent to the application.

— The application should only access logical tables and not have to worry

about how things are physically stored.
W e will cover this further when we talk about distributed databases.

$ZCMU-DB

15-445/645 (Fall 2023)

CONCLUSION

Parallel execution is important, which is why

(almost) every major DBMS supports it.

However, it is hard to get right.
— Coordination Overhead

— Scheduling

— Concurrency Issues

— Resource Contention

$ZCMU-DB

15-445/645 (Fall 2023)

NEXT CLASS

Query Optimization
— Logical vs Physical Plans
— Search Space of Plans

— Cost Estimation of Plans

$ZCMU-DB

15-445/645 (Fall 2023)

