Garnegie |ntro to Database
University Systems (15-445/645)

Lecture #1/) e
Timestamp I8
Ordering
Concurrency
Control

FALL 2023)) Prof. Andy Pavlo ® Prof. Jignesh Patel

CONCURRENCY CONTROL APPROACHES

$ZCMU-DB

15-445/645 (Fall 2023)

Two-Phase Locking (2PL)

— Determine serializability order of conflicting

Pessimistic

operations at runtime while txns execute.

Timestamp Ordering

— A serialization mechanism using timestamps.

Optimistic Concurrency Control O ptimistic

— Run then check for serialization violations.

£2CMU-DB
15-445/645 (F

all 2023)

T/O CONCURRENCY CONTROL

Use timestamps to determine the serializability order of

txXns.

[f TS(T;) < TS(T;), then the DBMS must ensure that

the execution schedule is equivalent to the serial

schedule where T; appears before T;.

$ZCMU-DB

15-445/645 (Fall 2023)

TIMESTAMP ALLOCATION

Each txn T, is assigned a unique fixed timestamp that is

monotonically increasing.
— Let TS(T;) be the timestamp allocated to txn T;.

— Different schemes assign timestamps at different times during the txn.

Multiple implementation strategies:
— System/Wall Clock.

— Logical Counter.
— Hybrid.

TODAY'’S AGENDA

Basic Timestamp Ordering (T/O) Protocol
Optimistic Concurrency Control

Isolation Levels

$ZCMU-DB

15-445/645 (Fall 2023)

$ZCMU-DB

15-445/645 (Fall 2023)

BASIC T/O

Txns read and write objects without locks.

Every object X is tagged with timestamp of the last txn that

successfully did read/write:
— W-TS(X) - Write timestamp on X
— R-TS(X) - Read timestamp on X

Check timestamps for every operation:

— If txn tries to access an object “from the future”, it aborts and restarts.

$ZCMU-DB

15-445/645 (Fall 2023)

BASIC T/O - READS

Don’t read stuff from the “future.”

Action: Transaction T; wants to read object X.

[f TS(T;) < W-TS(X), this violates the timestamp order
of T; with regard to the writer of X.

— Abort T, and restart it with a new TS.

Else:

— Allow T; to read X.
— Update R-TS(X) to max(R-TS(X), TS(T;))

— Make a local copy of X to ensure repeatable reads for T;.

BASIC T/O - WRITES

Can’t write if a future transaction has read or written to the object.

Action: Transaction T; wants to write object X.

If TS(T;) < R-TS(X) or TS(T;) < W-TS(X)

— Abort and restart T;.

Else:
— Allow T; to write X and update W-TS(X)

— Also, make a local copy of X to ensure repeatable reads.

$ZCMU-DB

15-445/645 (Fall 2023)

BASIC T/O - EXAMPLE #1

]

Schedule
o B
{ T, T,
: BEGIN
1 | R(B)
: BEGIN
I R(B)
I W(B)
| [R(A)
I R(A)
1| RCA)
I W(A)
: COMMIT COMMIT
:
i
|
\

’

$ZCMU-DB

15-445/645 (Fall 2023)

\-----------’

’----

Database

Object R-TS W-TS

) S ———.

BASIC T/O - EXAMPLE #1

Schedule Database

TS(T1)=1 T2

—
BEGIN
R(B)

]

Object

’----

BEGIN
R(B)
WB) | Vemmememmmmmm——————
RCA)
RCA)
RCA)
W(A)

COMMIT COMMIT

\-----------’

’--------

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Schedule Database

TS(T1)=1 T2

—
BEGIN
R(B)

]

Object

’----

BEGIN
R(B)
WB) | Vemmememmmmmm——————
RCA)
RCA)
RCA)
W(A)

COMMIT COMMIT

\-----------’

’--------

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Sc_h_e_dl.llg N\ Database
TS(T,)=1 . ARTRTTTZTTTTNTXT :
N = - M object R-TS W-TS
1 | BEGIN TS(T,)=2 D la 0 0
1| R(B) i I g 1 0
: BEGIN i :
i mpR(B) ! j
I W(B) " S e e e
1| RCA) i
i R(A) :
1| RCA) i
I W(A) :
: COMMIT COMMIT I

|

i |
I i
!]
\

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Sc_h_e_dl.llg N\ Database
TS(T,)=1 . ARTRTTTZTTTTNTXT :
N = - M object R-TS W-TS
1 | BEGIN TS(T,)=2 D la 0 0
1| R(B) i I g 2 0
: BEGIN i :
i mpR(B) ! j
I W(B) " e L e
1| RCA) i
i R(A) :
1| RCA) i
I W(A) :
: COMMIT COMMIT I

|

i |
I i
!]
\

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Sc_h_e_dl.llg N\ Database
TS(T,)=1 T st =
N = o M object R-TS W-TS
1 | BEGIN TS(T,)=2 D la 0 0
1| R(B) i I g 2 2
: BEGIN i 1
| R(B) : I
!) i(B) . NSRS by ISR NSRS |
1| RCA) i
i R(A) :
1| RCA) i
I W(A) :
: COMMIT COMMIT I

|

i |
I i
R]

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Sc_h_e_dl.llg N\ Database
TS(T,)=1 . ARTRTTTZTTTTNTXT :
N = - M object R-TS W-TS
1 | BEGIN TS(T,)=2 D la 1 0
1| R(B) i I g 2 2
: BEGIN i :
| R(B) : |
I W(B) " S e e e
mPR(A) i
i R(A) :
1| RCA) i
I W(A) :
: COMMIT COMMIT I

|

i |
I i
R]

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Sc_h_e_dl.llg N\ Database
TS(T,)=1 T st =
N = o M object R-TS W-TS
1 | BEGIN TS(T,)=2 D la 2 0
1| R(B) i I g 2 2
: BEGIN i 1
| R(B) : I
I W(B) " S e e e
1| RCA) |
I R(A) :
1| RCA) i
I W(A) :
: COMMIT COMMIT I
|
= |
I i
R]

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Schedule

I TBEGIN TS(T.)=2
| | R(B) (23
: BEGIN I
I R(B) :
: W(B) 1
1| ROV :
I R(A) ,
mpR(A) i
I W(A) :
: COMMIT COMMIT 1
i
i |
: i
\ N7 A

$ZCMU-DB

15-445/645 (Fall 2023)

’----

_y

) S ———.

BASIC T/O - EXAMPLE #1

Sc_h_e_dl.llg N\ Database
TS(T,)=1 T st =
N = o M object R-TS W-TS
| BEGIN TS(T,)=2 LA 2 2
1| R(B) i I g 2 2
: BEGIN i 1
| R(B) : I
I W(B) " S e e e
1| RCA) |
I R(A) :
1| RCA) i
I W(A) :
: COMMIT COMMIT I
|
= |
I i
R]

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #1

Schedule Database

TS(T,)-1 T, \ :’ e —— "}

I p— - I Object R-TS W-TS I

j | BEGIN TS(T,)=2 1A 2 2 I

R®) | I |5 2 2 '

: BEGIN i I :

! R(B) : I |

I W(B) i N o e e e e e 2

1| RCA)]

: R(A) No violations so both txns

1 | RCAD are safe to commit.

| W(A)

| [COMMIT T COMMIT

i

= |

: i

\ A

$ZCMU-DB

15-445/645 (Fall 2023)

BASIC T/O - EXAMPLE #2

Schedule Database
,"";""“;“"\ i i —— -
| L - : Mobject R-TS W-TS
| | BEGIN | N 2 2
1| R(A) : I B 0 0
: BEGIN i :
| W(A) : |
: COMMIT " N e e e e e e
ARIEY) :
1| R(A) ,
| | coMmIT |
I
! |
I i
I 1
I i
I i
!]

\\ ______________ P 4

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #2

Schedule Database
-------------- ~ ¢~ "N NN N NN NN NN BN NN BN BN BN BN BN B Sy
T T l
L 2 W object R-TS __W-Ts
:E§§N 1A 1 0
I
BEGIN : B 0 0
W(A) I
COMMIT | PR ————

W(A)
R(A)
COMMIT

\-----------’

ScmMubs 02000 oo EEEEEEEEE

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #2

Schedule Database
,"";""";“"\ NN e s -
I L 2 : Wobject R-TS W-TS
| | BEGIN | N 1 2
1] R(A) : I B 0 0
: BEGIN i :

i m_p (1) ! j
: COMMIT " e e e e e e
1| WCA) :

1| R(A) :

| | coMmIT |

I

! :

I i

I i

I i

I i

!]

\\ ______________ P 4

$ZCMU-DB

15-445/645 (Fall 2023)

) S ———.

BASIC T/O - EXAMPLE #2

Schedule Database

A" N /N ~\ A ——— ——— - — - -
I 1
I T T2 : : Object R-TS :
: BEGIN : : A 1 2 I
1| R(A) I i |
! BEGIN : B 0 0 | !
! g (()SI*)IIIT : 1 [Violation:

i TS(T,) < W-TS(A)
1| RCA) !

1 | coMMIT |

i |

! i

! i

! i

: i

\ A

$ZCMU-DB

15-445/645 (Fall 2023)

BASIC T/O - EXAMPLE #2

Schedule Database
s N EEEEE "\ ~\ P -
I 1
I T T2 : : Object R-TS :
| | BEGIN | N - 2. s
: BEGIN : | B : 0| |
i W(A) : :\ Violation:
COMMIT 11 ====| TS(T,)<W-TS(A)
I
:

T, cannot overwrite update by
T,, so the DBMS must abort it!

’-----

$ZCMU-DB

15-445/645 (Fall 2023)

THOMAS WRITE RULE

IFTS(T;) < R-TS(X):

— Abort and restart T;.

IFTS(T;) < W-TS(X):

— Thomas Write Rule: Ignore the write to allow the txn to

continue executing without aborting.

— This violates timestamp order of T;.

Else: »
— Allow T; to write X and update W-TS(X)

£CMU-DB

15-445/645 (Fall 2023)

https://en.wikipedia.org/wiki/Thomas_write_rule

£CMU-DB

15-445/645 (Fall 2023)

It TS(T
— Abo

It TS(T
— Thq

conf
— Thi

Else:
— Allg

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

& Not logged in Talk Contributions Create account Log in

Article Talk Read = Edit View history | Search Wikipedia Q|

Creeper and Reaper

From Wikipedia, the free encyclopedia
(Redirected from Creeper (program))

Creeper was the first computer worm, while Reaper was the first antivirus software, designed to eliminate Creeper.

| Contents [hide] f

| 1 Creeper |

| 2 Reaper |
J 3 Cultural impact
| 4 References

Creeper [edi;

Creeper was an experimental computer program written by Bob Thomas

Creeper
atBBN in 197112 its original iteration was designed to move between |
. . i | Type Computer |
DEC PDP-10 mainframe computers running the TENEX operating system | wormll] |
usmg‘ the ARPANET, with a later version by ‘Ray Tomhns[g]n dt_asngned to :‘ Isolation 1971
copy itself between computers rather than simply move. Th|§ self- | Author(s) Bob Thomas
replicating version of Creeper is generally accepted to be the first | . |
| Operating system(s) TENEX |
computer worm.[Ui4] Creeper was a test created to demonstrate the ‘ ‘

| affected |
possibility of a self-replicating Computer program that could spread to ‘

other computers.

The program was not actively malicious software as it caused no damage to data, the only effect being a message it
output to the teletype reading "I'M THE CREEPER. CATCH ME IF YOU CAN!"514]

https://en.wikipedia.org/wiki/Thomas_write_rule

BASIC T/O - EXAMPLE #2

Schedule Database

]

P -
T, | .
: Object R-TS W-TS
1 (A 1 0
|
BEGIN : B 0 0
W(A) I
COMMIT e mdaed X

W(A)
R(A)
COMMIT

\-----------’

$ZCMU-DB

15-445/645 (Fall 2023)

) S ——.

BASIC T/O - EXAMPLE #2

Schedule Database
,"";""";""\ ATAQ= ==L o mms S —— -
| ! 2 : Mobject R-TS W-TS
| | BEGIN | N 1 2
1| R(A) : I B 0 0
: BEGIN i :

i m_p (1) ! j
: COMMIT " S e e e e
1w :

1| R(A) :

| | coMmIT |

!

! |

I i

I i

I i

I i

!]

\\ ______________ P 4

$ZCMU-DB

15-445/645 (Fall 2023)

) S ——.

BASIC T/O - EXAMPLE #2

Schedule Database
N SO e e .
! 1 2 : W object R-Ts w-Ts !
| | BEGIN | I A 1 ™~ i
! I
! BEGIN : | B 0 0 I
I W(A) I I
i COMMLT ! N\ We do not update

' : W-TS(A)
i

Skip doing the actual write and allow
T, to commit. (Do write to the local
 copy if repeatable read is required.))

’-----

$ZCMU-DB

15-445/645 (Fall 2023)

BASIC T/O

Generates a schedule that is conflict serializable if you

do not use the Thomas Write Rule.

— No deadlocks because no txn ever waits.
— Possibility of starvation for long txns if short txns keep causing

conflicts.

Not aware of any DBMS that uses the basic T/O

protocol described here.
— It provides the building blocks for OCC / MVCC.

$ZCMU-DB

15-445/645 (Fall 2023)

https://en.wikipedia.org/wiki/Thomas_write_rule

BASIC T/O - PERFORMANCE ISSUES

High overhead from copying data to txn’s workspace

and from updating timestamps.

— Every read requires the txn to write to the database.

Long running txns can get starved.
— The likelihood that a txn will read something from a newer txn

Increases.

$ZCMU-DB

15-445/645 (Fall 2023)

OBSERVATION

[f you assume that conflicts between txns are rare and
that most txns are short-lived, then forcing txns to
acquire locks or update timestamps adds unnecessary

overhead.

A better approach is to optimize for the no-conflict

case.

$ZCMU-DB

15-445/645 (Fall 2023)

OPTIMISTIC CONCURRENCY CONTROL

The DBMS creates a private workspace for each

txn.
— Any object read is copied into workspace.
— Modifications are applied to workspace.

When a txn commits, the DBMS compares
workspace write set to see whether it conflicts
with other txns.

If there are no conflicts, the write set is installed
into the “global” database.

$ZCMU-DB

15-445/645 (Fall 2023)

On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON
Carnegie-Mellon University

Most current approaches to concurrency control in database systems rely on locking of data objects
as 1 control mechanism. [n this paper, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflcts between transactions will not. occur. Applications for
which these methods should be more efficient than locking are discussed.

Key Words and Phrases: databases, concurrency controls, transaction processing

CR Categorics: 4.32, 4.33

1. INTRODUCTION
Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the
roots, are always present and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable,

(1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, so that it is necessary to
swap parts of the database from secondary memory as needed.

(2) Even if the entire database can be present in primary memory, there may be
multiple processors.

In both cases the hardware will be underutilized if the degree of concurrency
is too low.

However, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to be lost. Most current

‘Permission to copy without fee all or part of this material is granted provided that the copies are not
‘made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
‘permission.

This research was supported in part by the National Science Foundation under Grant MCS 78-236-76
and the Office of Naval Research under Contract N00OI4-76-C-0370.

Authors' address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA

15213
©1981 ACM 0362-5915/81/0600-0213 $00.75
ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 213-226.

OCC PHASES

#1 — Read Phase:

— Track the read/write sets of txns and store their writes in a private

workspace.

#2 — Validation Phase:

— When a txn commits, check whether it conflicts with other txns.

#3 — Write Phase:

— If validation succeeds, apply private changes to database. Otherwise
abort and restart the txn.

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database

,- ------------- ~ L B N BN &N B B B B _ B B B B B B B |
A f/ b)

: T1 Tj | 1] |
I @ Object Value W-TS) 1

: BEGIN i 1[5 123 % U

1 ||READ BEGIN : e - - !

: R(A) READ I I i

1 R(A) : e e e e S e e

: VALIDATE | | |

I WRITE i

| COMMIT | |

Dl wea) i

| |[VALIDATE :

: WRITE i
i

I

|| commIT :

']

\ P 4

$2CMU-DB S ————— -

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
NN /([-\ 1 P e Nty i bk ke ey \
: T; Tj | |) I
1 I @ Object Value W-TS I
1B : n 123 0 I
| ((REaD)| BEea | ! Hn - - :
I READ)| | 1 I i
I I AEN N N BN NN N BN BN BN BN EEN BN BN N B B . 4
I R
I ALED :

: (wrITE I
| COmP :
Dl i
1 (VALIDAT. :
i
: !
: COMMIT :
']
\

£2CMU-DB N e e ’

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database

COMMIT

,- ------------- ~J L 8 N B N N N B N B N N N N B _§N |
roT T,) 1 :
1 1 J | | . |
I @ Object Value W-TS I
1| BEGIN i iR - . I
m) rEAD BEGIN : s - - !
: R(A) READ I I i
i R(A) : S e ST e e e e e e e
: VALIDATE | | |
i WRITE i T1 Workspace
1 COMMIT : f TET——)
: W(A) i 1 ObJect Value W-TS i
| |[VALIDATE : : - - - :
| |[WRITE i] S S I
' I
- i
- i
I
[
‘\ V4

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - EXAMPLE

COMMIT

Schedule Database

N N / [-\ ~\ £y N =TT TmETTRNNTTY

I T T' | | |

1 1] . -

1 I @ Object Value W-TS i

| | BEGIN i 1 [, o . I

1 ||READ BEGIN : e - - !
) R(A) READ I I ,

i R(A) : S gy S e e e e S e e e e

l VALIDATE | | |

: WRITE i T, Workspace

1 COMMIT : f TET——)

: W(A) i 1 ObJect Value W-TS i

| |[VALIDATE : : A 123 o :

| |[WRITE i] S S I

' :

- i

- i

I

[
‘\ 4

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
’- ------------- ~ L 8 N B N N N B N B N N N N B _§N |
\Y [4 \
: T; Tj I I . I
I I (@ Object Value W-TS I
| | BEGIN i R 123 0 I
1 | |READ BEGIN : e - - !
: R(A) READ I I 0
i R(A) ! Nl £ ity ity el
I VALIDATE | | |
: WRITE I T, Workspace T, Workspace
| COMMIT '] R it bl)
! : ' I :
I W(A) I I I I~ 3 3 I
| |[VALIDATE : ! A 123 |0 ! : !
: WRITE I | L - - R - - :
I I T T . L T T - T P Ly -
|| commIT :
: i
\ V4

$2CMU-DB S ————— -

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
’- ------------- ~J NN BN BN BN BN BN BN B B BN B B B S S . -
\Y [4 \
. T; g i 1 pe i
I I @ Object Value W-TS i
| | BEGIN i iR - . I
1 ||READ BEGIN : e - - !
D I[RCA) READ i I I
1 R(A) : m———y
I VALIDATE | | |
: WRITE I T, Workspace T, Workspace
| COMMIT ' O e S T
! lia) I - voroc vrs TR oo ec: varue v-rs |
I
1 |[VALIDATE : : A 123 0 : : A 123 0
v\ [WRITE]) S S T I
: l T L L T T - NN BN NN N N B B B B -
|| commIT I
']
‘ V4

$2CMU-DB S ————— -

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
N N / (-\ ~\ £y N =TT Ny
{ T; g i 1 pe i
I @ Object Value W-TS I
| | BEGIN i iR - . I
1 ||READ BEGIN : e - - !
i
AT Al (TS I Ser——
l) (VALIDATE | |
: WRITE I T, Workspace T, Workspace
| COMMIT ! T ——— | S et b endnly \
H lweay : ! e, o !
i
1 |[VALIDATE : : A 123 0 : : A 123 0 :
| |[WRITE [| _ _ 1 L _ ' I
I I T T . L T T - T P Ly -
|| commIT I
[
I
\)

£2CMU-DB N -

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
N N / (-\ ~\ £y N =TT Ny
{ T; g i 1 pe i
I @ Object Value W-TS I
| | BEGIN i iR - . I
1 ||READ BEGIN : e - - !
i
AT Al (TS I Se—
I VALIDATE | |
: W) /RITE I T, Workspace T, Workspace
| COMMIT ! T ——— | S et b endnly \
H lweay : ! e, o !
i
1 |[VALIDATE : : A 123 0 : : A 123 0 :
| |[WRITE [| _ _ 1 L _ ' I
I I T T . L T T - T P Ly -
|| commIT I
i
i
\)

£2CMU-DB N -

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
e\ N /0T T ~\ e e e e
: T; TJ' | |)
1 @ Object Value W-TS
| | BEGIN | an o .
1 | |READ BEGIN ! e - -
i
AT Al (TS I Serss— 4
l VALIDATE] .'
: WRITE i T, Workspace
I COMMIT : C —— H
: W(A) i i ObJect Value W-TS I
| |[VALIDATE : ! A 125 [0 !
| |[WRITE [gl - I I
I T T . L T T -
i
|| commIT :
' }
\ V4

’

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database

ST\ N TSRS ~\ e e e e
: T; TJ' | |)
1 1 @ Object Value W-TS
i | BECIN ! LA 123 o
1 | [READ BEGIN I e - -
I
AT Al (TS I Serss— 4
I VALIDATE] :
| WRITE T, Workspace
I COMMIT I’“ """"" ‘I

WCA) i ObJect Value W-TS "

VALIDATE : A 123 |0 :

WRITE | L - - :

COMMIT

\-------

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
e\ N /0T T ‘\ e e e e
: T; TJ' | |)
1 @ Object Value W-TS
| | BEGIN | an 123 2
1 | |READ BEGIN ! AN - -
i
[el B C0) S B (R S —— A
I VALIDATE T |
: WRITE
I COMMIT A
|
W(CA) I
VALIDATE | !
WRITE I :

COMMIT

\-------

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
s N N 2T T ~\ e e e e
: T; TJ' | |)
1 @ Object Value W-TS
| | BEGIN | an o .
1 | |READ BEGIN ! e - -
|
AT Al (TS I Serss— 4
l VALIDATE] .'
: WRITE | T, Workspace
[(aminnianis e Snlnnl saine)
oo 0SD=2) 11 1 ey
WA phiding [| |
W)y (VAL IDAT, : A 186 = Hi
|| [WRITE [gl - I I
I] -
|
|| commIT :
i
|
=] \ /'
$2CMU-DB S ——————

15-445/645 (Fall 2023)

OCC - EXAMPLE

Schedule Database
'l -------------- ‘\ [————
T T;
1 - J : : Object Value W-TS
| | BEGIN i iR e 5
1 ||READ BEGIN : e - -
I
RO (e (TS | :
I VALIDATE | |
: WRITE | T, Workspace
 (iiesls vl Slenley tesian)
gy So=2] | ey
1 | WA — [I I
1 | [VALIDAT. : :A 456 |~ :
W (/RITE I il S S SR
I T T . L T T -
I
|| commIT I
' }
‘\ V4

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - READ PHASE

Track the read/write sets of txns and store their writes

in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure

repeatable reads.

— We can ignore for now what happens if a txn reads/writes

tuples via indexes.

$ZCMU-DB

15-445/645 (Fall 2023)

OCC: THREE PHASES

When to assign the transaction number? At the end of the read phase.

Tk. R oo—\/ eo W —e

T. o— R|—eo— V|—ee{W o T R ooV |-oo{ W |—o

1

| Time — >

1. READ phase: Read and write objects, making local copies.

2. VALIDATION Phase: Check for serializable schedule-related anomalies.

3. WRITE Phase: It is safe. Write the local objects, making them permanent.

$ZCMU-DB

15-445/645 (Fall 2023)

OCC: VALIDATION (T; < T;)

Case 1: T; completes its write phase before T; starts its read phase.

Tio—R—oo—V—oo—W—o

Time — >

No conflict as all of T’s actions happen before T;’s.

$ZCMU-DB

15-445/645 (Fall 2023)

OCC: VALIDATION (T; < T;)

Case 2: T; completes its write phase before T, starts its write phase.

T.O—R

1

——) @——

Vv

——co—

W

—0

T. e— R{—ee—\/ —oo— \\\ —

)

Time — >

Check that the write set of T, does not intersect the read

set of T;, namely: WriteSet(T;) N ReadSet(T;) =@

$ZCMU-DB

15-445/645 (Fall 2023)

OCC: VALIDATION (T; < T;)

Case 3: T, completes its read phase before T; completes its read phase.

Tio—R—oo—V—oo—W—o

Tj. R o0— \/ —oo— \\/ —o

Time — >

Check that the write set of T, does not intersect the read or

write sets of T;, namely: WriteSet(T;) N ReadSet(T;) =0
AND WriteSet(T;) NWriteSet(T;) =90

$ZCMU-DB

15-445/645 (Fall 2023)

OCC: VALIDATION (T; < T;)

T. ~ WriteSet(T;)

18 W*\Ti E AN = -V

ReadSet(T)

L . WriteSet(T;) WriteSet(T})

 ReadSet(T)) = WriteSet(T))

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - WRITE PHASE

Propagate changes in the txn’s write set to database to make them

visible to other txns.

Serial Commits:
— Use a global latch to limit a single txn to be in the Validation/Write phases

at a time.

Parallel Commits:
— Use fine-grained write latches to support parallel Validation/Write phases.

— Txns acquire latches in primary key order to avoid deadlocks.

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - OBSERVATIONS

OCC works well when the # of conflicts is low:
— All txns are read-only (ideal).

— Txns access disjoint subsets of data.

[f the database is large and the workload is not skewed,
then there is a low probability of conflict, so again

locking is wasteful.

$ZCMU-DB

15-445/645 (Fall 2023)

OCC - PERFORMANCE ISSUES

High overhead for copying data locally.
Validation/Write phase bottlenecks.

Aborts are more wasteful than in 2PL because they only

occur after a txn has already executed.

£2CMU-DB
15-445/645 (Fall 2023)

DYNAMIC DATABASES

Recall that so far, we have only dealt with transactions

that read and update existing objects in the database.

But now if txns perform insertions, updates, and

deletions, we have new problems...

$ZCMU-DB

15-445/645 (Fall 2023)

THE PHANTOM PROBLEM
Schedule

S e e e s S e e e ~ |CREATE TABLE people (
T, T, id SERIAL,
BEGIN BEGIN name VARCHAR,
age INT,
SE e O age) = status VARCHAR
FROM 1
WHERE Eigi’ul-m- 99);

INSERT INTO people
(age=30, status='lit')

COMMIT
SELECT COUNT(age)

FROM people -‘] 00 ’Q'

WHERE status='lit'

COMMIT

‘----------\
----------_/

$ZCMU-DB

15-445/645 (Fall 2023)

$ZCMU-DB

15-445/645 (Fall 2023)

OOPS?

How did this happen?

— Because T, locked only existing records and not ones under way!

Conflict serializability on reads and writes of individual

items guarantees serializability only if the set of objects is
fixed.

$ZCMU-DB

THE PHANTOM PROBLEM

Approach #1: Re-Execute Scans

— Run queries again at commit to see whether they produce a different result

to identify missed changes.

Approach #2: Predicate Locking

— Logically determine the overlap of predicates before queries start running.

Approach #3: Index Locking

— Use keys in indexes to protect ranges.

15-445/645 (Fall 2023)

RE-EXECUTE SCANS

The DBMS tracks the WHERE clause for all queries that

the txn executes.

— Retain the scan set for every range query in a txn.

Upon commit, re-execute just the scan portion of each

query and check whether it generates the same result.
— Example: Run the scan for an UPDATE query but do not modify

matching tuples.

$ZCMU-DB

15-445/645 (Fall 2023)

PREDICATE LOCKING

Proposed locking scheme from System R.
— Shared lock on the predicate in a WHERE clause of a SELECT query.

— Exclusive lock on the predicate in a WHERE clause of any UPDATE,
INSERT, or DELETE query.

[t is rarely implemented in systems; an example of a system that

uses it is HyPer (precision locking).

$ZCMU-DB

15-445/645 (Fall 2023)

https://hyper-db.de/
http://www-db.in.tum.de/~muehlbau/papers/mvcc.pdf

PREDICATE LOCKING

SELECT COUNT (age)
FROM people , VALUES

WHERE status='lit'

Records in Table "people”

astatus='lit'

age=30 A
status="1lit'

$ZCMU-DB

15-445/645 (Fall 2023)

INDEX LOCKING SCHEMES

Key-Value Locks
Gap Locks
Key-Range Locks

Hierarchical Locking

£2CMU-DB
15-445/645 (Fall 2023)

KEY-VALUE LOCKS

Locks that cover a single key-value in an index.

Need “virtual keys” for non-existent values.

B+Tree Leaf Node

Key
[14, 14]

o] |1 16

$ZCMU-DB

15-445/645 (Fall 2023)

GAP LOCKS

Each txn acquires a key-value lock on the single key that

it wants to access. Then get a gap lock on the next key

gap.
B+Tree Leaf Node
10 |{Gapl| 12 |{Gap}| 14 - 16
Gap
(14, 16)

$ZCMU-DB

15-445/645 (Fall 2023)

KEY-RANGE LOCKS

A txn takes locks on ranges in the key space.

— Each range is from one key that appears in the relation, to the
next that appears.

— Define lock modes so conflict table will capture commutativity

of the operations available.

$ZCMU-DB

15-445/645 (Fall 2023)

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the next key

value in a single index.

— Need “virtual keys” for artificial values (infinity)

B+Tree Leaf Node

Next Key [14, 16)

Prior Key (12, 14]

£CMU-DB

15-445/645 (Fall 2023)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with

different locking modes.

— Reduces the number of visits to lock manager.

ree LeatDNade

[10, 16)

£CMU-DB

15-445/645 (Fall 2023)

LOCKING WITHOUT AN INDEX

[f there is no suitable index, then to avoid phantoms the

txn must obtain:

— A lock on every page in the table to prevent a record’s
status='lit' from being changed to 1it.

— The lock for the table itself to prevent records with

status='1lit' from being added or deleted.

$ZCMU-DB

15-445/645 (Fall 2023)

WEAKER LEVELS OF ISOLATION

Serializability is useful because it allows programmers

to 1gnore concurrency issues.

But enforcing it may allow too little concurrency and

limit performance.

We may want to use a weaker level of consistency to

improve scalability.

$ZCMU-DB

15-445/645 (Fall 2023)

ISOLATION LEVELS

Controls the extent that a txn is exposed to the actions

of other concurrent txns.

Provides for greater concurrency at the cost of exposing

txns to uncommitted changes:
— Dirty Reads
— Unrepeatable Reads

— Phantom Reads

$ZCMU-DB

15-445/645 (Fall 2023)

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable, no
dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms and unrepeatable reads
may happen.

READ UNCOMMITTED: All of them may happen.

(Y8IH—mo17) uoijpjosj

£CMU-DB

15-445/645 (Fall 2023)

SERIALIZAB
dirty reads.

REPEATABLE

READ COMMIT
may happen.

READ UNCOM

(4Y81H—Mmo7) uoijpjosj

United States Department of Justice

THE UNITED STATES ATTORNEY’S OFFICE

SOUTHERN DIS'I'RI(’J'I’(;:/)I\'EW YORK

ABOUT

PRIORITIES NEWS

U.S. Attorneys » Southern District of New York » News » Press Releases

U.S. Attorney’s Office

Southern District of New York

FOR IMMEDIATE RELEASE Monday, November 7, 2022

U.S. Attorney Announces Historic $3.36 Billion Cryptocurrency
Seizure And Conviction In Connection With Silk Road Dark
Web Fraud

In November 2021, Law Enforcement Seized Over 50,676 Bitcoin Hidden in Devices
in Defendant JAMES ZHONG’s Home; ZHONG Has Now Pled Guilty to Unlawfully
Obtaining that Bitcoin From the Silk Road Dark Web in 2012

Damian Williams, the United States Attorney for the Southern District of New York, and Tyler Hatcher,
the Special Agent in Charge of the Internal Revenue Service, Criminal Investigation, Los Angeles Field
Office (“IRS-CI”), announced today that JAMES ZHONG pled guilty to committing wire fraud in
September 2012 when he unlawfully obtained over 50,000 Bitcoin from the Silk Road dark web internet
marketplace. ZHONG pled guilty on Friday, November 4, 2022, before United States District Judge Paul
G. Gardephe.

On November 9, 2021, pursuant to a judicially authorized premises search warrant of ZHONG’s
Gainesville, Georgia, house, law enforcement seized approximately 50,676.17851897 Bitcoin, then valued
at over $3.36 billion. This seizure was then the largest cryptocurrency seizure in the history of the U.S.
Department of Justice and today remains the Department’s second largest financial seizure ever. The
Government is seeking to forfeit, collectively: approximately 51,680.32473733 Bitcoin; ZHONG’s 80%
interest in RE&D Investments, LLC, a Mempbhis-based company with substantial real estate holdings;
$661,900 in cash seized from ZHONG’s home; and various metals also seized from ZHONG’

$ZCMU-DB

15-445/645 (Fall 2023)

s home.

Department of Justice SHARE (

Offices of the United States Attorneys

Search

SEARCH

RESOURCES PROGRAMS EMPLOYMENT CONTACT

Click here to report information
on Amazon warehouses.

ISOLATION LEVELS

0 Unrepeatable !
: Dirty Read Read Phantom !
|
1 |
! SERIALIZABLE No No No |
| |
| |
|
| REPEATABLE READ| No No Maybe |
| |
| |
! READ COMMITTED No Maybe Maybe E
i :
1 |
| READ UNCOMMITTED| Maybe Maybe Maybe |
| |
A N A B D A DN . J

$ZCMU-DB

15-445/645 (Fall 2023)

$ZCMU-DB

15-445/645 (Fall 2023)

ISOLATION LEVELS

SERIALIZABLE: Obtain all locks first; plus index locks, plus
strong strict 2PL.

REPEATABLE READS: Same as above, but no index locks.
READ COMMITTED: Same as above, but S locks are released

immediately.

READ UNCOMMITTED: Same as above but allows dirty reads
(no S locks).

$ZCMU-DB

15-445/645 (Fall 2023)

SQL-92 ISOLATION LEVELS

You set a txn’s isolation level before

you execute any queries in that txn.

Not all DBMS support all isolation

levels in all execution scenarios

— Replicated Environments

SET TRANSACTION ISOLATION LEVEL
<isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL

<isolation-level>;

The default depends on implementation...

ISOLATION LEVELS

Actian Ingres

IBM DB2
CockroachDB
Google Spanner
MSFET SQL Server
MySQL

Oracle
PostgreSQL

SAP HANA
VoltDB

YugaB
£2CMU-DB ugabyte

15-445/645 (Fall 2023)

Default Maximum
SERIALIZABLE SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
STRICT SERIALIZABLE STRICT SERIALIZABLE
READ COMMITTED SERIALIZABLE
REPEATABLE READS SERIALIZABLE
READ COMMITTED SNAPSHOT ISOLATION J
(__READ COMMITTED SERIALIZABLE
READ COMMITTED SERIALIZABLE
SERIALIZABLE | SERIALIZABLE
SNAPSHOT ISOLATION SERIALIZABLE

STRICT SERIALIZABLE

SERIALIZABLE

REPEATABLE READS

CURSOR STABILITY

SNAPSHOT ISOLATION

READ COMMITTED

READ UNCOMMITTED

$ZCMU-DB

15-445/645 (Fall 2023)

DATABASE ADMIN SURVEY

What isolation level do transactions execute at on this DBMS?

B None Few m Most mAll
30 T
o 22
g
3 20
7 12
e 100 ¢
o 4
3= 2
0 - Read Read Committed | CursorStability Repeatable Read Snapshot Isolation Serializable
Uncommitted

£CMU-DB

15-445/645 (Fall 2023)

CONCLUSION

Every concurrency control can be broken down into the

basic concepts that have been described in the last two

lectures.

Every protocol has pros and cons.

$ZCMU-DB

15-445/645 (Fall 2023)

5" CRITIQUE OF SQL ISOLATION LEVELS

A Crlthue of ANSI SQL Isolation Levels

“ANSI SQL-92 ... defines Isolation Levels in terms of
phenomena: Dirty Reads, Non-Repeatable Reads, and
Phantoms. ... these phenomena and the ANSI SQL

definitions fail to characterize several popular isolation | Serializable== Degree 3= - pate, DB@:;tabie Read
levels, including the standard locking implementations PO P8 napshot
of the levels. Investigating the ambiguities of the o2/ Repeatablepzead e
phenomena leads to clearer definitions; in addition new ggzz‘“ﬁ; CC‘"S” S:Z"“Y £s. nsn. pa
phenomena that better characterize isolation types are Read Committed == Degrese 2
introduced. An important multiversion isolation type, | P

Read Uncommitted == Degree 1

Snapshot Isolation, is defined.”

ac} o republish, requires a fee onclusions.
and/c
g CMU.DB “A Critique of ANSI SQL Isolation Levels,” Proc. ACM SIGMOD 95, pp. 1-10, San Jose CA, June 1995, © ACM. -1-
-

15-445/645 (Fall 2023)

NEXT CLASS

Multi-Version Concurrency Control

£CMU-DB

15-445/645 (Fall 2023)

