gﬁﬂggie Intro to Database
University Systems (15-445/645)

Lecture #21

Intro to
Distributed

Databases

FALL 2023)) Prof.Andy Pavio ® Prof.Jignesh Patel

§\ NS \‘\ \
\ W'

/f ~\1§:g\ = W ‘ AN \
1 ’ = \§\ T I

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

ADMINISTRIVIA

Homework #5 is due Sunday Dec 3" @ 11:59pm
Project #4 is due Sunday Dec 10 @ 11:59pm

Upcoming Special Lectures:
— SingleStore (Monday Dec 4™ over Zoom)
— Systems Speedrun Lecture (Wednesday Dec 6)

Final Exam is Tuesday Dec 12th @ 8:30am.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

UPCOMING EVENTS

pgVector (ML2DB Seminar) POS’[QF@SQL

— Monday November 20® @ 4:30pm

Chroma (ML2DB Seminar) ¢ Chroma

— Monday November 27% @ 4:30pm

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://db.cs.cmu.edu/events/ml-db-2023-pgvector-stylish-hierarchical-navigable-small-world-indexes-jonathan-katz/
https://db.cs.cmu.edu/events/ml-db-2023-chroma-vector-database-straight-from-the-tenderloin-jeff-huber/

COURSE STATUS

Databases are hard. Query Planning

Distributed databases are harder. Concurrency Control

Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

COURSE STATUS

Databases are hard.

Distributed databases are harder.

, SN 2NN 2

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PARALLEL VS. DISTRIBUTED

Parallel DBMSs:

— Nodes are physically close to each other.
— Nodes connected with high-speed LAN.
— Communication cost is assumed to be small.

Distributed DBMSs:

— Nodes can be far from each other.
— Nodes connected using public network.
— Communication cost and problems cannot be ignored.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction
processing and query execution in distributed

environments.

— Optimization & Planning
— Concurrency Control

— Logging & Recovery

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TODAY'S AGENDA

System Architectures

Design Issues

Partitioning Schemes

Distributed Concurrency Control

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies

what shared resources are directly accessible to
CPUs.

This affects how CPUs coordinate with each other
and where they retrieve/store objects in the
database.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SYSTEM ARCHITECTURE

Shared Shared . Shared - Shared
Everything Nothing Disk Memory

0CMU -DB

1111111111111111111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED NOTHING

Each DBMS node has its own CPU,
memory, and local disk.

Network

Nodes only communicate with each

other via network.

— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.

“f TigerBeetle o etcd

S . Yellowbrickeg .mEmEHEHED c lasti
klﬂ:FICO Y f N?si/;xitgs /W T Cock iy eha[s)|I3c Exasol @C“Uquiq
8SciDB auna) Dgraph 7 ockroac 0 MongoDB.
S —= == FOUNDATIONDB)
Comdba %::\‘ GEODE' rbit 4. ClickHouse cassandra ﬂ]-Store VOLTDB CrateDB
YugaByte db i e Greenplum) SingleStore '
o YugaBy O sing VERTION

$2CMU-DB mTiDB ﬁ redis [ERADATA OCEANBASE (@ couchbase

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED NOTHING EXAMPLE

Catalog
Meta-Data

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

Node

Cele

=

]

P1>ID:1-150

)

Node

CEl°

=

]

P2>ID:151-300

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED NOTHING EXAMPLE

Catalog
Meta-Data

“‘
N

Get 1d=200

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

Node

Cele

=

]

P1>ID:1-150

)

Node

CEl°

=

]

P2>ID:151-300

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED NOTHING EXAMPLE

Catalog
Get Id=100 @

Get 1d=200

1

P1éID 1-150

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

thld=200

Id—200

Node

#E%ﬂ

P29ID 151-300

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED NOTHING EXAMPLE

Catalog
Meta-Data

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

Node]
P1>ID:1-150

AR =

r Node |

0fd &

Node]

P2>ID:151-300

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED NOTHING EXAMPLE

Catalog
Meta-Data

Ay T E

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

Node

]

P1>ID:1-100

)

]

P3->ID:101-200

)

]

P2>ID:201-300

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED DISK

Nodes access a single logical disk via
an interconnect, but each have their ‘% % %

Oown private memories.

—> Scale execution layer independently from Network
the storage layer. Distributed File Systems]

— Nodes can still use direct attached storage Object Stores} . .
as a slower/larger cache. ettt

— This architecture facilitates data lakes < databricks FIREBOLT @ dremio

and serverless systems.
| HERSE QT
@ YDB LY yugabyteDB -_Dj druid "\Z

ORACLE & < cloudera ezl W nUoDE I
R OCKSET . .sqfrl presto .. IMPALA SpQrK -

I ortonworks A P A c HE Mk
souos U RAC D FM)Ilce) Fiwcir HBRSE ><snowflake Spanner & Amazon

ACHINE Aurora

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED DISK EXAMPLE

Catalog
Meta-Data

Get 1d=101

......

Node | r N

#% Page ABC Storage

AR
o i i
7
7
Application
Server Vol |
of @

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED DISK EXAMPLE

Catalog
Meta-Data Node - Storage ~

o-H
AR
s d d
Get I1d=102
m Page XYZ
Application
Server Node
g g

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED DISK EXAMPLE

Catalog
Meta-Data Node] - Storage N
AR _ . \
Get Id=101 Node PageABC a Q
ZZEn — % = _
Application ’
Server Node | @
\ % y _ Y,

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED DISK EXAMPLE

Catalog
Meta-Data

Update 101

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SHARED MEMORY

Nodes access a common memory

address space via a fast interconnect.

— Each node has a global view of all the in-
memory data structures.

— Can still use local memory / disk for
intermediate results.

This looks a lot like shared-
everything. Nobody does this.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EARLY DISTRIBUTED DATABASE SYSTEMS

MUFFIN - UC Berkeley (1979)
SDD-1 - CCA (1979)

System R* — IBM Research (1984)
Gamma — Univ. of Wisconsin (1986)

NonStop SQL - Tandem (1987)

£=CMU-DB Gray

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?

— Push query to data.
— Pull data to query.

| How does the DBMS ensure correctness? | Next Class
How do we divide the database across resources?

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

HOMOGENOUS VS. HETEROGENOUS

Approach #1: Homogenous Nodes

— Every node in the cluster can perform the same set of
tasks (albeit on potentially different partitions of data).

— Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes

— Nodes are assigned specific tasks.

— Can allow a single physical node to host multiple "virtual”
node types for dedicated tasks.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

DATA TRANSPARENCY

Applications should not be required to know

where data is physically located in a distributed

DBMS.

— Any query that run on a single-node DBMS should
produce the same result on a distributed DBMS.

In practice, developers need to be aware of the
communication costs of queries to avoid
excessively "expensive" data movement.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DATABASE PARTITIONING

Split database across multiple resources:

— Disks, nodes, processors.
— Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce
a single answer.

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space
for an entire table.

[deal if queries never join data across tables stored
on different nodes and access patterns are uniform.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

S S
SES

Ideal Query:
SELECT * FROM tablel

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

- 7

Ideal Query:

-
Table2

SELECT * FROM tablel

~

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tupleit attri attr2 attr3 attr4
Tuple#2 attri attr2 attr3 attr4
Tuplei3 attri attr2 attr3 attr4
Tuplei4 attri attr2 attr3 attr4

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

Partition #1
Tupleit attri attr2 attr3
Tuple#2 attri attr2 attr3
Tuplei3 attri attr2 attr3
Tupleit4 attri attr2 attr3

£CMU-DB

15-445/645 (Fall 2023)

CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tupleiti
Tuple#2
Tupleit3

Tuplei#4

Partition #2

attr4

attr4

attr4

attr4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on

some partitioning key and scheme.
— Choose column(s) that divides the database equally in
terms of size, load, or usage.

Partitioning Schemes:
— Hashing

— Ranges

— Predicates

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HORIZONTAL PARTITIONING

Partitioning Key Table
101 Ja XXX 12022-11-29
102 |b XXY 12022-11-28
103 |c XYZ [2022-11-29
104 {d XYX [2022-11-27
105 |e XYY [2022-11-29
Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB

15-445/645 (Fall 2023)

Partitions

S S
SES

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HORIZONTAL PARTITIONING

Partitioning Key oy
<_<Table Partitions

R O ~
%@&\k***% ‘*{\:‘:“* %\\%\\\Xﬁ%\ hash(a)%4 = P2

RN N

R N R A A A 7 A A o
B 7% hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2

)| hash(e)%4 = P1 @ @

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 [a |XXX [2022-11-29| hash(a)%4 = P2

Partitions

102 |b XXY |2022-11-28| hash(b)%4 = P4

103 |c XYZ |2022-11-29| hash(c)%4 = P3

104 |d XYX |2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 [a |XXX [2022-11-29| hash(a)%4 = P2

Partitions

102 |b XXY |2022-11-28| hash(b)%4 = P4

103 |c XYZ |2022-11-29| hash(c)%4 = P3

104 |d XYX |2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

Ideal Query:
SELECT * FROM table

WHEREIpartitionKey = ?!
£2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOGICAL PARTITIONING

Get Id=1

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

Id=1
Id=2

Id=3
Id=4

f

Storage

d lid

Id=1
Id=2
Id=3
Id=4

=

~N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOGICAL PARTITIONING

Node |

Id=1

Id=2

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

Id=3

Id=4

f

Storage

d lid

Id=1
Id=2
Id=3
Id=4

~N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

LOGICAL PARTITIONING

Id=1

Id=2

Id=3

Id=4

f

Storage

d lid

Id=1
Id=2
Id=3
Id=4

~N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PHYSICAL PARTITIONING

Node —
Get Id=1 #%ﬂ

e
Application
Id=3
o

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PHYSICAL PARTITIONING

Node
Id=1
Id=2

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX |2022-11-27

105 |e XYY |2022-11-29

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB

15-445/645 (Fall 2023)

Partitions
<

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX |2022-11-27

105 |e XYY |2022-11-29

Ideal Query:

hash(a)%5 = P4
hash(b)%5 = P3
hash(c)%5 = P5
hash(d)%5 = P1
hash(e)%5 = P3

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB

15-445/645 (Fall 2023)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
1,0

P1

P3

P2

$2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
1.0 hash(keyl)

S

P1

P3

P2

$2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING

1.0 hash(keyl)

hash(key2)

$2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
1,0

P1

P3

P2

New Partition » P4

$2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
1,0

=
N—

If hash(key)=P4

New Partition » P4

S2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
1,0

New Partition » P5

S2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING

1,0
P5

P1

P3

P6 « New Partition

P2

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
1,0

P5 Replication Factor = 3
P1

P3

P2

$2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
hash(keyl)

Replication Factor = 3

1,0

S2CMU-DB 0.5

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Q Couchbase

db
3 snowflake

<EROSPIKE

. MEMCHACHED

N & cassandra

sriak

SCYLLA.

$CMU-DB

15-445/645 (Fall 2023)

CONSISTENT HASHING
hash(keyl)

Replication Factor = 3

1,0

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

TP MONITORS

A TP Monitor is an example of a centralized
coordinator for distributed DBMSs.

Originally developed in the 1970-80s to provide

txns between terminals and mainframe databases.
— Examples: ATMs, Airline Reservations.

Standardized protocol from 1990s: X/Open XA

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/Teleprocessing_monitor
https://en.wikipedia.org/wiki/X/Open_XA

CENTRALIZED COORDINATOR

- »)
2

Coordinator

Lock Request Partitions

O||TO||TO
W |IN

||

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CENTRALIZED COORDINATOR

Lock Request

AR
7
ZZ
7
Application
Server

£CMU-DB

15-445/645 (Fall 2023)

Coordinator

S

Acknowledgement

- »)
2

||

O||TO||TO
W |IN

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CENTRALIZED COORDINATOR

- »)
2

Coordinator

Commit Request Partitions

O||TO||TO
W |IN

||

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CENTRALIZED COORDINATOR

Commit Request

Coordinator

_—Z

Application

Server

Safe to commit?

£CMU-DB

15-445/645 (Fall 2023)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CENTRALIZED COORDINATOR

A P1
Coordinator P2 .

Commit Request A P3 Partitions

~ S :
AR Acknowledgement
e -
m_ N POPPPRRRRRRR .

Application —Z

Server Safe to commit?

099 °
2% TRANSARC®
: ™ Making ?&.‘c'fm.:rfr;;_:;: v il '.-'._rrA
E’? CMU'DB " e a : Across Your Enterprisc

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CENTRALIZED COORDINATOR

Query Requests

AR
7
ZZ
7
Application
Server

£CMU-DB

15-445/645 (Fall 2023)

31eMma|ppIN

P1>ID:1-100

P2>ID:101-200

P3»>ID:201-300

P4>1ID:301-400

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CENTRALIZED COORDINATOR

Query Requests

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

31eMma|ppIN

P1-ID:1-100 @

P2>ID:101-200

P3+1D:201-300 @

P4>1ID:301-400 @

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CENTRALIZED COORDINATOR

AR
7
ZZ
7
Application
Server

£CMU-DB

15-445/645 (Fall 2023)

Safe to commit?

31eMma|ppIN

P1->ID:1-100 e

P2>ID:101-200

P3+1D:201-300 @

P4>1ID:301-400 @

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DECENTRALIZED COORDINATOR

W | eader Node

Begin Request
e ——
7
[Tl
Application
Server

£CMU-DB

15-445/645 (Fall 2023)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DECENTRALIZED COORDINATOR

W Jeader Node | Partitions

l I
y__ N 2
ZZax -’
I ———_ LvJ
m Query Request
Server @

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DECENTRALIZED COORDINATOR

W | eader Node

Commit Request
Iz ——
R .
Iz Safe to commit?
Application T
Server

£CMU-DB

15-445/645 (Fall 2023)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different
DBMSs in their applications.

[t would be nice if we could have a single interface
for all our data.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

FEDERATED DATABASES

Distributed architecture that connects disparate

DBMSs into a single logical system.
— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

FEDERATED DATABASE EXAMPLE

Back-end DBMSs

a4 4 Y

Query Requests

Connectors :
| —~—> 0 MongoDB.

31eMma|ppIN

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute

simultaneously across multiple nodes.

— Many of the same protocols from single-node DBMSs
can be adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISTRIBUTED 2PL

AR
7
Set A=2 Set B=7 Iz
Application Application

1
|
1
|
1
|
1
|
:
Server ! Server
1
|
1
|
1
|
1
|
1
|

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISTRIBUTED 2PL

AR
7
Set A=2 Set B=7 Iz
Application Application

1
|
1
|
1
|
1
|
:
Server ! Server
1
|
1
|
1
|
1
|
1
|

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DISTRIBUTED 2PL

AR
7
o]
Application Application
Server Server

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

DISTRIBUTED 2PL

o]
Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

DISTRIBUTED 2PL

W aits-For Graph

o]
Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONCLUSION

We have barely scratched the surface on
distributed database systems...

[t is hard to get this right.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

NEXT CLASS

Distributed OLTP Systems
Replication

CAP Theorem
Real-World Examples

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: Intro to Distributed Databases
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING EVENTS
	Slide 4: COURSE STATUS
	Slide 5: COURSE STATUS
	Slide 6: PARALLEL VS. DISTRIBUTED
	Slide 7: DISTRIBUTED DBMSs
	Slide 8: TODAY'S AGENDA

	System Architectures
	Slide 9: SYSTEM ARCHITECTURE
	Slide 10: SYSTEM ARCHITECTURE
	Slide 11: SHARED NOTHING
	Slide 12: SHARED NOTHING EXAMPLE
	Slide 13: SHARED NOTHING EXAMPLE
	Slide 14: SHARED NOTHING EXAMPLE
	Slide 15: SHARED NOTHING EXAMPLE
	Slide 16: SHARED NOTHING EXAMPLE
	Slide 17: SHARED DISK
	Slide 18: SHARED DISK EXAMPLE
	Slide 19: SHARED DISK EXAMPLE
	Slide 20: SHARED DISK EXAMPLE
	Slide 21: SHARED DISK EXAMPLE
	Slide 22: SHARED MEMORY
	Slide 23: EARLY DISTRIBUTED DATABASE SYSTEMS

	Design Issues
	Slide 24: DESIGN ISSUES
	Slide 25: HOMOGENOUS VS. HETEROGENOUS
	Slide 26: DATA TRANSPARENCY

	Partitioning
	Slide 27: DATABASE PARTITIONING
	Slide 28: NAÏVE TABLE PARTITIONING
	Slide 29: NAÏVE TABLE PARTITIONING
	Slide 30: NAÏVE TABLE PARTITIONING
	Slide 31: VERTICAL PARTITIONING
	Slide 32: VERTICAL PARTITIONING
	Slide 33: HORIZONTAL PARTITIONING
	Slide 34: HORIZONTAL PARTITIONING
	Slide 35: HORIZONTAL PARTITIONING
	Slide 36: HORIZONTAL PARTITIONING
	Slide 37: HORIZONTAL PARTITIONING
	Slide 38: LOGICAL PARTITIONING
	Slide 39: LOGICAL PARTITIONING
	Slide 40: LOGICAL PARTITIONING
	Slide 41: PHYSICAL PARTITIONING
	Slide 42: PHYSICAL PARTITIONING
	Slide 43: HORIZONTAL PARTITIONING
	Slide 44: HORIZONTAL PARTITIONING
	Slide 45: CONSISTENT HASHING
	Slide 46: CONSISTENT HASHING
	Slide 47: CONSISTENT HASHING
	Slide 48: CONSISTENT HASHING
	Slide 49: CONSISTENT HASHING
	Slide 50: CONSISTENT HASHING
	Slide 51: CONSISTENT HASHING
	Slide 52: CONSISTENT HASHING
	Slide 53: CONSISTENT HASHING
	Slide 54: CONSISTENT HASHING

	Distributed Concurrency Control
	Slide 55: SINGLE-NODE VS. DISTRIBUTED
	Slide 56: TRANSACTION COORDINATION
	Slide 57: TP MONITORS
	Slide 58: CENTRALIZED COORDINATOR
	Slide 59: CENTRALIZED COORDINATOR
	Slide 60: CENTRALIZED COORDINATOR
	Slide 61: CENTRALIZED COORDINATOR
	Slide 62: CENTRALIZED COORDINATOR
	Slide 63: CENTRALIZED COORDINATOR
	Slide 64: CENTRALIZED COORDINATOR
	Slide 65: CENTRALIZED COORDINATOR
	Slide 66: DECENTRALIZED COORDINATOR
	Slide 67: DECENTRALIZED COORDINATOR
	Slide 68: DECENTRALIZED COORDINATOR

	Federated Databases
	Slide 69: OBSERVATION
	Slide 70: FEDERATED DATABASES
	Slide 71: FEDERATED DATABASE EXAMPLE

	Distributed Concurreny Control
	Slide 72: DISTRIBUTED CONCURRENCY CONTROL
	Slide 73: DISTRIBUTED 2PL
	Slide 74: DISTRIBUTED 2PL
	Slide 75: DISTRIBUTED 2PL
	Slide 76: DISTRIBUTED 2PL
	Slide 77: DISTRIBUTED 2PL

	Conclusion
	Slide 78: CONCLUSION

	Project #4
	Slide 84: NEXT CLASS

