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ADMINISTRIVIA

Homework #5 is due Sunday Dec 3" @ 11:59pm
Project #4 is due Sunday Dec 10 @ 11:59pm

Upcoming Special Lectures:
— SingleStore (Monday Dec 4™ over Zoom)
— Systems Speedrun Lecture (Wednesday Dec 6)

Final Exam is Tuesday Dec 12th @ 8:30am.
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UPCOMING EVENTS

pgVector (ML2DB Seminar) POS’[QF@SQL

— Monday November 20® @ 4:30pm

Chroma (ML2DB Seminar) ¢ Chroma

— Monday November 27% @ 4:30pm
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https://db.cs.cmu.edu/events/ml-db-2023-chroma-vector-database-straight-from-the-tenderloin-jeff-huber/

COURSE STATUS

Databases are hard. Query Planning

Distributed databases are harder. Concurrency Control

Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager
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PARALLEL VS. DISTRIBUTED

Parallel DBMSs:

— Nodes are physically close to each other.
— Nodes connected with high-speed LAN.
— Communication cost is assumed to be small.

Distributed DBMSs:

— Nodes can be far from each other.
— Nodes connected using public network.
— Communication cost and problems cannot be ignored.
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DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction
processing and query execution in distributed

environments.

— Optimization & Planning
— Concurrency Control

— Logging & Recovery
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TODAY'S AGENDA

System Architectures

Design Issues

Partitioning Schemes

Distributed Concurrency Control
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SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies

what shared resources are directly accessible to
CPUs.

This affects how CPUs coordinate with each other
and where they retrieve/store objects in the
database.
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SYSTEM ARCHITECTURE

Shared  Shared . Shared - Shared
Everything Nothing Disk Memory
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SHARED NOTHING

Each DBMS node has its own CPU,
memory, and local disk.

Network

Nodes only communicate with each

other via network.

— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.
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SHARED NOTHING EXAMPLE
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SHARED NOTHING EXAMPLE
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SHARED NOTHING EXAMPLE
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SHARED DISK

Nodes access a single logical disk via
an interconnect, but each have their ‘% % %

Oown private memories.

—> Scale execution layer independently from Network
the storage layer. Distributed File Systems ]

— Nodes can still use direct attached storage Object Stores} . .
as a slower/larger cache. ettt

— This architecture facilitates data lakes < databricks FIREBOLT @ dremio

and serverless systems.
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SHARED DISK EXAMPLE

Catalog
Meta-Data
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SHARED MEMORY

Nodes access a common memory

address space via a fast interconnect.

— Each node has a global view of all the in-
memory data structures.

— Can still use local memory / disk for
intermediate results.

This looks a lot like shared-
everything. Nobody does this.
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EARLY DISTRIBUTED DATABASE SYSTEMS

MUFFIN - UC Berkeley (1979)
SDD-1 - CCA (1979)

System R* — IBM Research (1984)
Gamma — Univ. of Wisconsin (1986)

NonStop SQL - Tandem (1987)
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DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?

— Push query to data.
— Pull data to query.

| How does the DBMS ensure correctness? | Next Class
How do we divide the database across resources?
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HOMOGENOUS VS. HETEROGENOUS

Approach #1: Homogenous Nodes

— Every node in the cluster can perform the same set of
tasks (albeit on potentially different partitions of data).

— Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes

— Nodes are assigned specific tasks.

— Can allow a single physical node to host multiple "virtual”
node types for dedicated tasks.
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DATA TRANSPARENCY

Applications should not be required to know

where data is physically located in a distributed

DBMS.

— Any query that run on a single-node DBMS should
produce the same result on a distributed DBMS.

In practice, developers need to be aware of the
communication costs of queries to avoid
excessively "expensive" data movement.
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DATABASE PARTITIONING

Split database across multiple resources:

— Disks, nodes, processors.
— Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce
a single answer.

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).
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NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space
for an entire table.

[deal if queries never join data across tables stored
on different nodes and access patterns are uniform.
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NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

S S
SES

Ideal Query:
SELECT * FROM tablel
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NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

- 7

Ideal Query:

-
Table2

SELECT * FROM tablel

~
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VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tupleit attri attr2 attr3 attr4
Tuple#2 attri attr2 attr3 attr4
Tuplei3 attri attr2 attr3 attr4
Tuplei4 attri attr2 attr3 attr4

£CMU-DB
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VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

Partition #1
Tupleit attri attr2 attr3
Tuple#2 attri attr2 attr3
Tuplei3 attri attr2 attr3
Tupleit4 attri attr2 attr3
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CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tupleiti
Tuple#2
Tupleit3

Tuplei#4

Partition #2

attr4

attr4

attr4

attr4
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HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on

some partitioning key and scheme.
— Choose column(s) that divides the database equally in
terms of size, load, or usage.

Partitioning Schemes:
— Hashing

— Ranges

— Predicates

£CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key Table
101 Ja XXX 12022-11-29
102 |b XXY 12022-11-28
103 |c XYZ [2022-11-29
104 {d XYX [2022-11-27
105 |e XYY [2022-11-29
Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key oy
<_<Table Partitions

R O ~
%@&\k\\***% ‘*{\:‘:“\* %\\%\\\Xﬁ%\ hash(a)%4 = P2

RN N

R N R A A A 7 A A o
B 7% hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2

)| hash(e)%4 = P1 @ @

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?
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HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 [a  |XXX [2022-11-29| hash(a)%4 = P2

Partitions

102 |b XXY |2022-11-28| hash(b)%4 = P4

103 |c XYZ |2022-11-29| hash(c)%4 = P3

104 |d XYX |2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 [a  |XXX [2022-11-29| hash(a)%4 = P2

Partitions

102 |b XXY |2022-11-28| hash(b)%4 = P4

103 |c XYZ |2022-11-29| hash(c)%4 = P3

104 |d XYX |2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

Ideal Query:
SELECT * FROM table

WHEREIpartitionKey = ?!
£2CMU-DB
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LOGICAL PARTITIONING

Get Id=1

Application
Server
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LOGICAL PARTITIONING

Node |

Id=1

Id=2

Application
Server

$CMU-DB

15-445/645 (Fall 2023)

Id=3

Id=4

f

Storage

d lid

Id=1
Id=2
Id=3
Id=4

~N



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Application
Server
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LOGICAL PARTITIONING
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PHYSICAL PARTITIONING

Node —
Get Id=1 #%ﬂ

e
Application
Id=3
o

$CMU-DB

15-445/645 (Fall 2023 )


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PHYSICAL PARTITIONING

Node
Id=1
Id=2

Application
Server
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HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX |2022-11-27

105 |e XYY |2022-11-29

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key
—_ < lable
101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX |2022-11-27

105 |e XYY |2022-11-29

Ideal Query:

hash(a)%5 = P4
hash(b)%5 = P3
hash(c)%5 = P5
hash(d)%5 = P1
hash(e)%5 = P3

SELECT * FROM table
WHERE partitionKey = ?

$CMU-DB
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CONSISTENT HASHING
1,0

P1

P3

P2

$2CMU-DB 0.5
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CONSISTENT HASHING
1.0 hash(keyl)

S

P1

P3

P2

$2CMU-DB 0.5
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CONSISTENT HASHING

1.0 hash(keyl)

hash(key2)

$2CMU-DB 0.5

15-445/645 (Fall 2023 )


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENT HASHING
1,0

P1

P3

P2

New Partition » P4
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CONSISTENT HASHING
1,0

=
N—

If hash(key)=P4

New Partition » P4
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CONSISTENT HASHING
1,0

New Partition » P5

S2CMU-DB 0.5
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CONSISTENT HASHING

1,0
P5

P1

P3

P6 « New Partition

P2
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CONSISTENT HASHING
1,0

P5 Replication Factor = 3
P1

P3

P2

$2CMU-DB 0.5
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CONSISTENT HASHING
hash(keyl)

Replication Factor = 3

1,0

S2CMU-DB 0.5
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CONSISTENT HASHING
hash(keyl)

Replication Factor = 3

1,0

0.5
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SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.
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TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traffic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.

£CMU-DB
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TP MONITORS

A TP Monitor is an example of a centralized
coordinator for distributed DBMSs.

Originally developed in the 1970-80s to provide

txns between terminals and mainframe databases.
— Examples: ATMs, Airline Reservations.

Standardized protocol from 1990s: X/Open XA
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CENTRALIZED COORDINATOR
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CENTRALIZED COORDINATOR

Lock Request
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CENTRALIZED COORDINATOR
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CENTRALIZED COORDINATOR

Commit Request

Coordinator

_—Z

Application

Server

Safe to commit?
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CENTRALIZED COORDINATOR
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OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different
DBMSs in their applications.

[t would be nice if we could have a single interface
for all our data.
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FEDERATED DATABASES

Distributed architecture that connects disparate

DBMSs into a single logical system.
— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).
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FEDERATED DATABASE EXAMPLE

Back-end DBMSs
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DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute

simultaneously across multiple nodes.

— Many of the same protocols from single-node DBMSs
can be adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.
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CONCLUSION

We have barely scratched the surface on
distributed database systems...

[t is hard to get this right.
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NEXT CLASS

Distributed OLTP Systems
Replication

CAP Theorem
Real-World Examples
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