Camegie |ntro to Database «x »
University Systems (15-445/645) ’N (TR IR

\‘\ \ \ N/ T

Distributed & , ()
OLTP o

Databases

FALL 2023)) Prof.Andy Pavio ® Prof.Jignesh Patel

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

ADMINISTRIVIA

Homework #5 is due Sunday Dec 3" @ 11:59pm
Project #4 is due Sunday Dec 10 @ 11:59pm

Upcoming Special Lectures:
— SingleStore (Monday Dec 4™ over Zoom)
— Systems Speedrun Lecture (Wednesday Dec 6)

Final Exam is Tuesday Dec 12th @ 8:30am.

We are looking for Spring 2024 T As!

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2023/schedule.html#dec-04-2023
https://piazza.com/class/ll5n5kglj76qh/post/797

LAST CLASS

System Architectures
— Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding
— Hash, Range, Round Robin

Transaction Coordination
— Centralized vs. Decentralized

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

OLTP VS. OLAP

On-line Transaction Processing (OLTP):
— Short-lived read/write txns.

— Small footprint.

— Repetitive operations.

On-line Analytical Processing (OLAP):
— Long-running, read-only queries.

— Complex joins.

— Exploratory queries.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DECENTRALIZED COORDINATOR

W Primary Node | Partitions

Begin Request

N

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DECENTRALIZED COORDINATOR

W Primary Node | Partitions

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

DECENTRALIZED COORDINATOR

W Primary Node

Commit Request

N

Application
Server

£CMU-DB

15-445/645 (Fall 2023)

Partitions

Safe to commit?

L}
-
.
.
.
.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

OBSERVATION

Recall that our goal is to have multiple physical
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all
nodes agree to commit a txn and then to make

sure it does commit if the DBMS decides it should.

— What happens if a node fails?

— What happens if messages show up late?

— What happens if the system does not wait for every node
to agree to commit?

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

IMPORTANT ASSUMPTION

W e will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.

— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault

Tolerant protocol for txns (blockchain).
— This is stupid. The real world doesn't work this way.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

TODAY'S AGENDA

Replication
Atomic Commit Protocols

Consistency Issues (CAP / PACELC)
Google Spanner

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

REPLICATION

The DBMS can replicate a database across

redundant nodes to increase availability.

— Partitioned vs. Non-Partitioned
— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas without an
atomic commit protocol.

— Read-only txns may be allowed to access replicas.

— [f the primary goes down, then hold an election to select
a new primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an
atomic commit protocol.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

REPLICA CONFIGURATIONS

Primary-Replica Multi-Primary
Writes Reads | a
Reads » T,
. N’/
—E
Primary v’/
Replicas

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

[f the number of replicas goes below this

threshold, then the DBMS halts execution and
takes itself offline.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PROPAGATION SCHEME

Approach #1: Synchronous @

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PROPAGATION SCHEME

Flush!

Approach #1: Synchronous @

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the <«
changes.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

£CMU-DB

15-445/645 (Fall 2023)

Flush!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it
generates them.

— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the
replicas once the txn is commits.

— Do not waste time sending log records for aborted txns.

— Assumes that a txn's log records fits entirely in memory.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

ACTIVE VS. PASSIVE

Approach #1: Active-Active

— A txn executes at each replica independently.

— Need to check at the end whether the txn ends up with
the same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across
nodes in a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

— Two-Phase Commit (1970s)

— Three-Phase Commit (1983)

— Viewstamped Replication (1988)
— Paxos (1989)

—» ZAB (2008?)

— Raft (2013)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)

TWO-PHASE COMMIT (SUCCESS)

Application
Server

A

Coordinator

— 7 —

Commit Request

"Node 1

$CMU-DB

15-445/645 (Fall 2023)

Node 2 ~

|
uvdinging

|
juvdidnguvg

Node 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TWO-PHASE COMMIT (SUCCESS)

Commit Request -

= — - <

=

-8

Application “§

Server | =
Phasel: Prepare Node 2

§ OK I, 3

= K

3 k)

S :

@ L] -
Node 1 Node 3

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

$CMU-DB

15-445/645 (Fall 2023)

TWO-PHASE COMMIT (SUCCESS)

Application

Server

Coordinator

——r—

Commit Request

Phasel: Prepare

vV~ ~

Phase2: Commit

A

OK

"Node 1

v

uvdinging

v

juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TWO-PHASE COMMIT (SUCCESS)

AR
7
7
o
Application
Server

A

Coordinator

Success!

—

"Node 1

$CMU-DB

15-445/645 (Fall 2023)

Node 2 ~

|
uvdinging

|
juvdidnguvg

Node 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TWO-PHASE COMMIT (ABORT)

Application
Server

A

Coordinator

Commit Request

£

Phasel: Prepare

W

<

ABORT!

"Node 1

$CMU-DB

15-445/645 (Fall 2023)

Node 2 ~

v

juvdidnguvg

Node 3

|
uvdinging

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TWO-PHASE COMMIT (ABORT)

Aborted

AR
73
7

Application
Server

A

Coordinator

$CMU-DB

15-445/645 (Fall 2023)

|
uvdinging

Node 2 ~

|
juvdidnguvg

Node 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TWO-PHASE COMMIT (ABORT)

AR
7
7
o
Application
Server

A

Coordinator

Aborted

—

Phase2: Abort

ABORT!

OK

"Node 1

£CMU-DB

15-445/645 (Fall 2023)

v

juvdidnguvg

|
uvdinging

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TWO-PHASE COMMIT

Each node records the inbound/outbound
messages and outcome of each phase in a non-
volatile storage log.

On recovery, examine the log for 2PC messages:

— If local txn in prepared state, contact coordinator.

— If local txn not in prepared, abort it.

— If local txn was committing and node is the coordinator,
send COMMIT message to nodes.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

TWO-PHASE COMMIT FAILURES

What happens if coordinator crashes?

— Participants must decide what to do after a timeout.
— System is not available during this time.

What happens if participant crashes?

— Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

— Again, nodes use a timeout to determine whether a
participant is dead.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query to a remote node that you know will
be the last one you execute there, then that node will also
return their vote for the prepare phase with the query
result.

Early Ack After Prepare (Common)

— If all nodes vote to commit a txn, the coordinator can
send the client an acknowledgement that their txn was
successful before the commit phase finishes.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EARLY ACKNOWLEDGEMENT

Application
Server

A

Coordinator

Commit Request -
= — - <
2
Lzo
hg.
)
=

Phasel: Prepare Node 2 °
OK | -
3
é.
)
=

“Node 1 Node 3

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EARLY ACKNOWLEDGEMENT

ﬁ Success! - -
—_— ¥
ZZZ3 S
7 - &
Application “§
Server | =
Phasel: Prepare Node 2
§ oK L S
= 3.
-h 5
S o
S ~
Node 1 Node 3

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

$CMU-DB

15-445/645 (Fall 2023)

EARLY ACKNOWLEDGEMENT

AR
7
7
o
Application
Server

A

Coordinator

Success!

—

Phasel: Prepare

T~

Phase2: Commit

OK

"Node 1

v

uvdinging

v

juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS

Consensus protocol where a
coordinator proposes an outcome
(e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has

provably minimal message delays in
the best case.

$CMU-DB

15-445/645 (Fall 2023)

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

This submiméon was receatly discovered bebind a Gling cabinet in the TOCS editorial
offce. Despite its age, the editce-in-chief fet that it was worth publishing Because the
author s currently doing field work in the Greek isles and cannot be reached, 1 was asked
for publication.

w appears to be an archeclogist with caly & passing interest in computer sc-
ha describes

by De Prisco et al. (1997, 1 have added further comments
ancient protocols and more recont work at the end 4

Keith Marzullo
University of California, San Diego

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf

PAXOS

Consensus on Transaction Commit
JIM GRAY and LESLIE LAMPORT
Microsoft Research

The distributed transaction commi Problem requires reaching agreement on whether g transaction
Pasprmitted or aborted. The classic Tywg, Phase Commit protocol blocks if the coordinator fails
Fault-tolerant consensus algorithms also reach agreement, but do not block whenever any majority
of the processes are working, The Paxos Commit algorithm runs q Paxos consensus algorithm on the
commit/abart decision of each participant to obtain a transaction commit Protacol that uses 25 4 |
coordinators and makes Progress if at least F 4 1 of them are working properly. Paxos Commit
has the same stable-storage write ge d can be implemented to haye the same message delay
in the fault-free case ‘wo-Phase Commit, but it uses more messages. The classic Two-Phase
Commit algorithm is obtained a the Special F = 0 case of the Paxos Commit algorithm,

Consensus protocol where a

coordinator proposes an outcomfhe
e.g., commit or abort) and then
g.,

participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has

provably minimal message delays in
the best case.

Categories and Subject Descriptors: D.4,1 [Operating Systems|: Procegs Management—(op.
currency; D.4.6 [Opers ing Systems| k(-lmbxl1(_\‘»F’ault-lo{e-mnwv D47 [Operating Systems]
Organization and Design, ~Distributed systems

General Terms. Algorithms, Reliability

Additional Key Words and Phrases. Consensus, Paxos, two. phase commit

1. INTRODUCTION

Adistributed transaction consists of a number of operations, performed at muyl-
tiple sites, terminateq by a request to commit or abort th,
sites then use a transaction commit Protocol to decide wh,
tion is committed or aborted. The transaction can be committed only

are willing to commit it. Achieving this all-nr-nothing atomicity property
distributed sy, tem is not trivial, The requirements for transaction commit are
stated precisely in Section 2,

The class transaction commit protocol is Two-Phage Commit [Gray 1978),
described in Section 3, I¢ uses a single coordinator to reach agreement, The faj).
ure of that coordinator can cause the protocol to block, with no Process knowing
the outcome, uni] the coordinator is repaired. In Section 4, we use the Paxog
consensus algorithm [Lamport 1998] to obtain a transaction commit Pprotocol

Authors' addresses: J. Gray, Microsoft Research, 455 Market St., San Francisco, CA 94106; email:
oin.Oraytmicrosott. con; L, Lamport, Microsoft Research, 1065 La Avenidy, Mountain View, CA
043,

Permission to make digital or harg Sopies of part or all of this work for personal or classroom use is
#ranted without fee Provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this pprie, on the first page or initial serpen
with the full citation, Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with creuit is Permitted. To copy otherwise, to republial 1. Post on servers,
to redistribute to lists, or to use any S maanent of this work in other warks requipie prior specific
Permission and/or g fee. Permissions may be requested from Publications Dept., ACM, Inc, 1515

ACM Transactions an Database Systems, Vol. 31, Na_1, March 2005, Pages 133-160,

£2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
https://dl.acm.org/doi/10.1145/1132863.1132867

PAXOS]
AR Commit Request
I
- I Node 2 -
Application
Server
Propose

[Node 3 -

- ‘

2-

-y

“Node 1

$2CMU-DB Node 4 -

15-445/645 (Fall 2023)

w
~N

| |
401d220y

401d220y

|

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS]

Commit Request

—— 7 —

Application
Server

Propose

Proposer
A

“Node 1
£CMU-DB Node 4 -

15-445/645 (Fall 2023)

w
(o]

| |
401d220y

401d220y

|

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS]

AR :
Gr] wzt Request
R
R
Application
Server
Propose
- v

Proposer
A

|

401d220y

“Node 1
£CMU-DB Node 4 -

15-445/645 (Fall 2023)

w
O

401d220y

|

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS
AR Commit Request
73
- B
ZZ3
Application
Server
Propose

Proposer
A

£CMU-DB

15-445/645 (Fall 2023)

| |
401d220y

401d220y

|

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Acceptor

Acceptor
A

Acceptor

PAXOS

quest

Commit Re
Z—

N
Accept

.E

Application
Server

&8&9&

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS

Proposer

) >
<
S
< v_\n/ >
@
Q j
< 1%
on
<
| Fif--— 2
)
E
)
S
S|
gl 8 1
& e >
&~
&
od
=k
=) @
= 3
O g
ma

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Proposer
5

Propose(n+1)

S 1<)
O s \
X S=\ B >
< < |F
o 5,
<
| fh---- - >
~
5| & m\
S| £ fH---a § Lo -
S

15-445/645 (Fall 2023)

£CMU-DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS

Proposer Acceptors Proposer
Propose(n) | (= — — —
; Agree(n) ;T’ T
L 4;'477:' 1: Propose(n+1)
Commit(n) i ! E‘7Z’
™\ Reject(n,n+1)

|

€ e el

1\7\

€

€ e e

€

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS

Proposer Acceptors Proposer
Propose(n) | (= — — —
; Agree(n) ;T’ T
L 4;'477:' 1: Propose(n+1)
Commit(n) i ! E‘7Z’
™\ Reject(n,n+1)

Agree(n+1)
I\

L.

e

/

€mmmm—m———
€mmm—m———

I
I
I
I
I
I
I
I
I

v

€

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS

Proposer Acceptors Proposer
Propose(n) | (= — — —
; Agree(n) ;T’ T
L 4;'477:' 1: Propose(n+1)
Commit(n) i ! E‘7Z’
™\ Reject(n,n+1)

€

£CMU-DB

15-445/645 (Fall 2023)

Xwi

Agree(n+1)

L.

; | Commit(n+1)
1 1
1 1

D Sy
1

|

€=——
€=——

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PAXOS

Proposer Acceptors Proposer
Propose(n) | (= — — —
; Agree(n) ;T’ T
L 4;'477:' 1: Propose(n+1)
Commit(n) i ! E‘7Z’
™\ Reject(n,n+1) !
——>

Xwi

Agree(n+1)

Commit(n+1)

|
S
&
=
)
-1 X
~

|

€

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

MULTI-PAXOS

[f the system elects a single leader that oversees
proposing changes for some period, then it can
skip the Propose phase.

— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known

as a lease) using another Paxos round.

— Nodes must exchange log entries during leader election
to make sure that everyone is up-to-date.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

2PC VS. PAXOS VS. RAFT

Two-Phase Commit

— Blocks if coordinator fails after the prepare message is
sent, until coordinator recovers.

Paxos

— Non-blocking if a majority participants are alive,
provided there is a sufficiently long period without
further failures.

Raft:

— Similar to Paxos but with fewer node types.
— Only nodes with most up-to-date log can become leaders.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CAP THEOREM

Proposed in the late 1990s that is impossible for a

distributed database to always be:
— Consistent

— Always Available

— Network Partition Tolerant

Extended in 2010 (PACELC) to include

consistency vs. latency trade-offs:
— Partition Tolerant
— Always Available
— Consistent
— Else, choose during normal operations
— Latency

£2CMU-DB — Consistency

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://en.wikipedia.org/wiki/PACELC_theorem

CONSISTENCY

Set A=2 g
Application Application
Server Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENCY

Set A=2 g
Application Application
Server Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONSISTENCY

AR
7
Iz Set A=2
Application Application
Server ACK Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

AR
73
—
73
7

Application
Server

CONSISTENCY

Read A

Primary

£CMU-DB

15-445/645 (Fall 2023)

7
L

o]
Application
Server

Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

V

If Primary says the txn committed,
then it should be immediately visible

ﬁ on replicas.
Iz | A
ZZzZan Set A=2 Read A
Application Application
Server ACK AS2 Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

AVAILABILITY

Application Application
Server Server

Primary Replica

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

AVAILABILITY

Read B g
Application Application
Server Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

AVAILABILITY

Read B g
Application Application
Server B=3 Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

AVAILABILITY

g Read A
Application Application
Server Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

AVAILABILITY

>
g Read A
Application Application
Server A=1 Server

Primary Replica

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PARTITION TOLERANCE

Application Application
Server Server

—

Primary

Primary
£=CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PARTITION TOLERANCE

Set A=2 Set A=3
Application Application
Server Server

Primary Primary

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PARTITION TOLERANCE

AR AR
7 Set A=2 Set A=3 ZZ
Application Application
Server ACK ACK Server

Primary Primary

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

PARTITION TOLERANCE

—

A
ZZ
I
ZZ
Application
Server

Set A=2

ACK

Primary

£CMU-DB

15-445/645 (Fall 2023)

ﬁ

Application
Server

Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATENCY VS. CONSISTENCY

Set A=2

Application

Server Replica
(us-west)

Primary Replica
SCMUDB (us-east) (eu-east)

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATENCY VS. CONSISTENCY

Application
Server

Set A=2

Replica

(us-west)

Primary
SCMU-DB (us-east)

15-445/645 (Fall 2023)

Replica

(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATENCY VS. CONSISTENCY

ACK -

Set A=2 . g

Application :
Server Replica

&l
((2)

Primary

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATENCY VS. CONSISTENCY

ACK

AR

7

ZZ Set A=2
Application

Server ACK

Replica

(us-west)

Primary
SCMU-DB (us-east)

15-445/645 (Fall 2023)

Replica

(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CAP/PACELC FOR OLTP DBMSs

How a DBMS handles failures determines which
elements of the CAP theorem they support.

Distributed Relational DBMSs

— Stop allowing updates until a majority of nodes are
reconnected.

NoSQL DBMSs

— No multi-node consistency. Last update wins (common).
— Provide client-side API to resolve conflicts after nodes
are reconnected (rare).

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

GOOGLE SPANNER

Google’s geo-replicated DBMS (>2011)
Schematized, semi-relational data model.
Decentralized shared-disk architecture.
Log-structured on-disk storage.

Concurrency Control:

— Strict 2PL + MVCC + Multi-Paxos + 2PC

— Externally consistent global write-transactions with
synchronous replication.

— Lock-free read-only transactions.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SPANNER: CONCURRENCY CONTROL

MV CC + Strict 2PL with Wound-Wait Deadlock
Prevention

DBMS ensures ordering through globally unique
timestamps generated from atomic clocks and GPS
devices.

Database is broken up into tablets (partitions):
— Use Paxos to elect leader in tablet group.
— Use 2PC for txns that span tablets.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SPANNER TABLETS

Writes + Reads

Tablet A Tablet A Tablet A

Q
S
&~
O
(7
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SPANNER TABLETS

N TabletB-Z
pl>leitiiiud Paxos Groups

Snapshot Reads Writes + Reads :-"“Snapshot Reads

§:‘ Tablet A Tablet A Tablet A
&~
O
(7
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

SPANNER: TRANSACTION ORDERING

DBMS orders transactions based on physical "wall-

clock" time.
— This is necessary to guarantee strict serializability.
— If T, finishes before T,, then T, should see the result of T,.

Each Paxos group decides in what order
transactions should be committed according to the

timestamps.
— If T, commits at time, and T, starts at time, > time,,
then T,'s timestamp should be less than T,'s.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.

Blockchain databases assume that the nodes are
adversarial. You must use different protocols to
commit transactions. This is stupid.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://aphyr.com/tags/jepsen

NEXT CLASS

Distributed OLAP Systems

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: Distributed OLTP Databases
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: OLTP VS. OLAP
	Slide 5: DECENTRALIZED COORDINATOR
	Slide 6: DECENTRALIZED COORDINATOR
	Slide 7: DECENTRALIZED COORDINATOR
	Slide 8: OBSERVATION
	Slide 9: IMPORTANT ASSUMPTION
	Slide 10: TODAY'S AGENDA

	Replication
	Slide 11: REPLICATION
	Slide 12: REPLICA CONFIGURATIONS
	Slide 13: REPLICA CONFIGURATIONS
	Slide 14: K-SAFETY
	Slide 15: PROPAGATION SCHEME
	Slide 16: PROPAGATION SCHEME
	Slide 17: PROPAGATION SCHEME
	Slide 18: PROPAGATION SCHEME
	Slide 19: PROPAGATION TIMING
	Slide 20: ACTIVE VS. PASSIVE

	Atomic Commit Protocol
	Slide 21: ATOMIC COMMIT PROTOCOL
	Slide 22: TWO-PHASE COMMIT (SUCCESS)
	Slide 23: TWO-PHASE COMMIT (SUCCESS)
	Slide 24: TWO-PHASE COMMIT (SUCCESS)
	Slide 25: TWO-PHASE COMMIT (SUCCESS)
	Slide 26: TWO-PHASE COMMIT (ABORT)
	Slide 27: TWO-PHASE COMMIT (ABORT)
	Slide 28: TWO-PHASE COMMIT (ABORT)
	Slide 29: TWO-PHASE COMMIT
	Slide 30: TWO-PHASE COMMIT FAILURES
	Slide 31: 2PC OPTIMIZATIONS
	Slide 32: EARLY ACKNOWLEDGEMENT
	Slide 33: EARLY ACKNOWLEDGEMENT
	Slide 34: EARLY ACKNOWLEDGEMENT

	Paxos
	Slide 35: PAXOS
	Slide 36: PAXOS
	Slide 37: PAXOS
	Slide 38: PAXOS
	Slide 39: PAXOS
	Slide 40: PAXOS
	Slide 41: PAXOS
	Slide 42: PAXOS
	Slide 43: PAXOS
	Slide 44: PAXOS
	Slide 45: PAXOS
	Slide 46: PAXOS
	Slide 47: PAXOS
	Slide 48: MULTI-PAXOS
	Slide 49: 2PC VS. PAXOS VS. RAFT

	CAP
	Slide 50: CAP THEOREM
	Slide 51: CONSISTENCY
	Slide 52: CONSISTENCY
	Slide 53: CONSISTENCY
	Slide 54: CONSISTENCY
	Slide 55: CONSISTENCY
	Slide 56: AVAILABILITY
	Slide 57: AVAILABILITY
	Slide 58: AVAILABILITY
	Slide 59: AVAILABILITY
	Slide 60: AVAILABILITY
	Slide 61: PARTITION TOLERANCE
	Slide 62: PARTITION TOLERANCE
	Slide 63: PARTITION TOLERANCE
	Slide 64: PARTITION TOLERANCE
	Slide 65: LATENCY VS. CONSISTENCY
	Slide 66: LATENCY VS. CONSISTENCY
	Slide 67: LATENCY VS. CONSISTENCY
	Slide 68: LATENCY VS. CONSISTENCY
	Slide 69: CAP/PACELC FOR OLTP DBMSs

	Spanner
	Slide 70: GOOGLE SPANNER
	Slide 71: SPANNER: CONCURRENCY CONTROL
	Slide 72: SPANNER TABLETS
	Slide 73: SPANNER TABLETS
	Slide 74: SPANNER: TRANSACTION ORDERING

	Conclusion
	Slide 75: CONCLUSION
	Slide 76: NEXT CLASS

