
—

CONFIDENTIAL

SingleStore: Do you need a
specialized vector database?
CMU 15-445/645 (Fall 2023)

Cheng Chen
Dec 2023

2

—

CONFIDENTIAL

Specialized Database Systems

● Transaction processing

● Data warehousing

● Time series analysis

● Fulltext search

● …

● Vector search

3

—

CONFIDENTIAL

Outline

● SingleStore Overview

● Vector Search Overview

● Vector Index at SingleStore

● Vector Search at SingleStore

—

4 CONFIDENTIAL

#

SingleStore Overview

5

—

CONFIDENTIAL

What is SingleStore?

● SingleStore is a distributed general-purpose SQL database

● HTAP

○ Operational and analytical workloads

○ Can run TPC-H and TPC-DS competitively with data warehouses

○ Can run TPC-C competitively with operational databases

● Cloud-native

● Scale out to efficiently utilize 100s of hosts, 1000s of cores and 10s of
TBs of RAM

●

6

—

CONFIDENTIAL

Benchmarks

7

—

CONFIDENTIAL

Streaming
ingestion

Three-tier
architecture

Universal
Storage Multi-model Shared-nothing

Cloud object store
Unlimited storage

Persistent cache
Fast queries

Memory
Fast ingestion

Data
pipeline

Users
Skiplist

indexing

Data nodes

Query
aggregator

Product Overview

8

—

CONFIDENTIAL

Cluster Architecture

● SingleStore is a horizontally-partitioned, shared-nothing DBMS with
an optional shared storage for cold data

● Aggregators

○ Clients connect to aggregators

○ Handle query optimization and planning

○ Coordinate distributed query

● Leaves

○ Perform most computation

■
○

9

—

CONFIDENTIAL

Distributed Query Processing

● Tables are hash partitioned by shard key

● Distributed Join

○ Shard key matching, push down execution to individual partitions

○ Otherwise, redistribute data via broadcast or reshuffle

● Optimizer needs to take into account data movement cost

● Certain queries need to be transformed in order to be efficiently
executed

10

—

CONFIDENTIAL

Distributed Query Processing

11

—

CONFIDENTIAL

Hybrid Workloads

● Analytical workloads

○ Scan 100s of millions to trillions of rows in a second

● Transactional workloads

○ Write or update millions of rows per second

● Real-time analytical workloads

○ Running analytics concurrently with high-concurrency point
reads and writes

12

—

CONFIDENTIAL

Unified Table Storage For Hybrid Workload

● Efficient for analytical workloads

● Efficient for transactional workloads

○ Operational-Optimized Columnstore

13

—

CONFIDENTIAL

Operational-Optimized Columnstore

● On-disk columnstore LSM + in-memory rowstore segment

● Rows are first written into in-memory rowstore segment

● Flusher flushes a new segment when in-memory rowstore segment is full

● Merger merges segments

● Columnstore segments are immutable

○ DELETE/UPDATE mark rows as deleted in the segment

14

—

CONFIDENTIAL

Optimized For Tiered Storage

● Immutable blobs

● No blob writes are on commit (no files either, only WAL)

● Out-of-order replication

15

—

CONFIDENTIAL

Optimized for Analytical Workloads

● Vectorized execution

● Encoded execution

● Late materialization

16

—

CONFIDENTIAL

Optimized for Operational Workloads

● Seekable encoding

● Segment Elimination

○ In-memory metadata (MIN/MAX/deleted bits/…)

○ Sort key

● Secondary index

● Row-level locking

17

—

CONFIDENTIAL

Full-Query Code Generation

● Queries are parametrized

○ SELECT a + 1 AS x FROM t WHERE b = “abc”

○ SELECT a + @ AS x FROM t WHERE b = ^

● Parameterized queries are compiled to MBC bytecodes

● Interpret MBC while compiling MBC to machine code in the background

● Switch to machine code when compilation completes

18

—

CONFIDENTIAL

Secondary Indexes

● Common indexing approaches for LSM tree

○ External index: extra LSM tree lookup per matched row

○ Per-segment index: O(logn) write amplification

● Index generally have sub-linear search complexity

○ Searching a larger index is cheaper than several small ones

● Index LSM tree

○ Per-segment index + index merger

○ Index merger builds cross-segment indexes on multiple segments

19

—

CONFIDENTIAL

Secondary Hash Index

● Two-level indexes

● Per-segment index

○ Posting lists: value -> [row offset]

● Cross-segment index

○ hash(value) -> [(segment id, posting list offset)]

20

—

CONFIDENTIAL

21

—

CONFIDENTIAL

Unified Way To Identify A Row Efficiently

● Everything identifies a row by (segment id, row offset)

○ Columnar storage

○ Deleted bits

○ Secondary indexes

■ Hash index

■ Fulltext index

■ Row index

■ Vector index

● Can correlate between them efficiently

22

—

CONFIDENTIAL

Adaptive Table Scan

● Hybrid workloads needs to combine different access methods and
apply them in the optimal order

● Static decision made by optimizer doesn’t always work

○ Cost depends highly on query parameters and encodings used

23

—

CONFIDENTIAL

Adaptive Table Scan

● Per-partition segment selection

○ segment elimination with index or MIN/MAX

● Per-segment row selection

○ filter reordering in next slide

● Per-block row projection

○ Seek or scan?

○ Use column group?

○ Selective column decoding or send encoded values upstream to
AGGREGATE or JOIN

24

—

CONFIDENTIAL

Filter Tree

25

—

CONFIDENTIAL

Filtering

● Different ways to evaluate filters each with different tradeoffs

○ Regular filter

○ Encoded filter

○ Group filter

○ Index filter

● Adaptive filter reordering for each block

○ Each segment estimates the cost of each strategy by timing it on
a small number of rows

○ Each block reorders the filters based on the cost estimate and
selectivity from previous block

—

26 CONFIDENTIAL

#

Vector Search Overview

27

—

CONFIDENTIAL

Vector Search

● Given n vectors and another query vector

● Find k nearest neighbors to the query vector

● Dense vectors in d-dimensional space

● Distance metrics

● Approximate nearest neighbors (ANN)

28

—

CONFIDENTIAL

Representation Learning

● Learn to represent objects with vector embeddings

● Semantic similar objects are closer to each other

29

—

CONFIDENTIAL

Retrieval Augmented Generation (RAG)

● LLMs are inefficient and costly to

train/fine-tune

● RAG as a cost-efficient approach to GenAI

○ Up-to-date knowledge

○ Domain-specific knowledge

○ Source citation

30

—

CONFIDENTIAL

Vector Search vs Fulltext Search

● Fulltext search relies on keyword matching and can’t capture
semantics

○ I like apple

○ I don’t like apple

○ I don’t dislike the fruit company

● Vector search can be multimodal: text, image, audio, video etc

● Vector search is more computationally costly

31

—

CONFIDENTIAL

Vector Index Algorithms

● Tree-Based: KD-Tree

● Hash-Based

● Quantization-Based: IVF, SPANN

● Graph-Based: HNSW, DiskANN, CAGRA

32

—

CONFIDENTIAL

Inverted File (IVF)

● Partition vectors into clusters

● Use the centroids to represent each cluster

33

—

CONFIDENTIAL

Inverted File (IVF)

● Build an inverted index from clusters to vectors

34

—

CONFIDENTIAL

Inverted File (IVF): Search

● Find nearby centroids to the query vector

● Only search within nearby clusters

35

—

CONFIDENTIAL

Hierarchical Navigable Small World (HNSW)

● Skiplist over proximity graph

● Each node is only connected to a small number of neighbors

● Greedy search starts from coarsest layer and refine with finer layers

36

—

CONFIDENTIAL

IVF vs HNSW

● HNSW has higher recall

● HNSW is faster to search

○ O(logn) vs O(sqrt(n))

● IVF is faster to build

● IVF has much smaller index size

37

—

CONFIDENTIAL

Product Quantization (PQ)

● Vector compression technique that applies to various algorithms

○ IVF_PQ

○ HNSW_PQ

● Not only saves space, but also speeds up distance computation

● Even faster with PQ Fast Scan

● Compression is lossy so need to refine the results for better recall

38

—

CONFIDENTIAL

Index Composition

● In IVF, searching nearest centroids is yet another ANN

● Can build another vector index on centroids: IVF + HNSW

○ Centroids are much smaller

○ Searching nearest centroids requires very high recall

39

—

CONFIDENTIAL

Vector Search Offerings (08/19/2023)

—

40 CONFIDENTIAL

#

Vector Index at SingleStore

41

—

CONFIDENTIAL

Overview

● On-disk columnstore LSM + in-memory rowstore segment

● In-memory rowstore segment is small

○ No vector index, just full scan

● Build vector index for on-disk columnstore LSM

○ Per-segment vector index + vector index merger

42

—

CONFIDENTIAL

Per-Segment Vector Index

● Background flusher/merger create a new vector index for each new
segment created

● ALTER TABLE creates a new vector index for each segment

● If too many rows are deleted in a segment, its vector index gets rebuild

43

—

CONFIDENTIAL

Vector Index Merger

● Vector indexes have sub-linear search complexity

○ Searching a larger index is cheaper than several small indexes

● Vector index LSM tree

○ Build cross-segment vector indexes on multiple segments

● Vector index is expensive to build so O(logn) write amplification due
to merge can be significant

○ Merge only cold data

44

—

CONFIDENTIAL

Pluggable Vector Index Algorithms

● We are using vector index algorithm as a black box

● This allows us to plug in any vector index algorithm

● In 8.5, we support many popular in-memory vector index algorithms:

○ IVF_FLAT, IVF_PQ, IVF_PQFS

○ HNSW_FLAT, HNSW_PQ

● Post 8.5, we are planning to support on-disk vector index algorithms

● Vector index can be built in an external service

○ Build vector index on GPU

45

—

CONFIDENTIAL

Auto Vector Index

● It’s hard for average users to pick which vector index algorithm to use
and to tune various parameters for the given algorithm

● Note that our vector index is always build on immutable data

● We can make smart decision for the users

● The user just need to tell us what the requirements are

○ High-recall

○ Cost-effective

—

46 CONFIDENTIAL

#

Vector Search at SingleStore

47

—

CONFIDENTIAL

SELECT

 t.v <-> vector AS d

FROM t

ORDER BY d

LIMIT k;

Example 1: ANN

48

—

CONFIDENTIAL

ORDER BY … LIMIT Pushdown

● Agg already pushes down ORDER BY … LIMIT to leaves

○ Currently Merge TopSort, but we can prob do better

● Leaf pushes down ORDER BY … LIMIT to table scan as a Top filter

49

—

CONFIDENTIAL

Project [t.v <-> vector AS d]

TopSort limit:k [t.v <-> vector]

ColumnStoreFilter [Top(t.v <-> vector, k) index]

ColumnStoreScan t

Example 1: ANN

50

—

CONFIDENTIAL

Example 1: ANN

● Per-partition segment selection

○ Scan all vector indexes within the partition and select top-k for
the entire partition

○ Select segments that contain these top-k rows

● Per-segment row selection

○ Top filter evaluates to true iff the row is selected above

● Per-block row projection

51

—

CONFIDENTIAL

SELECT

 t.v <-> vector AS d

FROM t

WHERE <filters>

ORDER BY d

LIMIT k;

Example 2: Pre-Filtered ANN

52

—

CONFIDENTIAL

Pre-Filters

● If <filters> are executed after vector index scan

○ There will be less rows after filters

○ We can let vector index scan to output more rows at the
beginning, but in practice it’s very hard to predict

● <filters> need to be executed before vector index scan

○ Make vector index filter aware of its pre-filters

53

—

CONFIDENTIAL

Project [t.v <-> vector AS d]

TopSort limit:k [t.v <-> vector]

ColumnStoreFilter [Top(t.v <-> vector, <filters>, k) index]

ColumnStoreScan t

Example 2: Pre-Filtered ANN

54

—

CONFIDENTIAL

Example 2: Pre-Filtered ANN

● Per-partition segment selection

a. Segment elimination with pre-filters

b. Scan all vector indexes within the filtered segments and select
top-l for the entire partition

c. Run pre-filters on these top-l rows

■ If there are at least k output rows, select top-k.

■ If there are less than k output rows

● Either retry b with a larger l

● Or fall back to not using vector index scan

55

—

CONFIDENTIAL

Top Filter

● Top(expr, <filters>, k) is true iff expr of this row ranks within
the top-k among all the rows that pass <filters>

● Top filter is just a regular leaf node in the filter tree

● Can have many Top filters in the filter tree with different pre-filters

● Filters outside of Top filter are post-filters

● Filter reordering can happen within

pre-filter tree and post-filter tree

● Retry happens within Top filter

56

—

CONFIDENTIAL

SELECT

 t.v <-> vector AS d

FROM t JOIN s

ON t.id = s.id

WHERE <s.filters>

ORDER BY d

LIMIT k;

Example 3: Join

57

—

CONFIDENTIAL

Project [t.v <-> vector AS d]

TopSort limit:k [t.v <-> vector]

HashJoin

|---HashTableProbe [t.id = s.id]

| HashTableBuild alias s

| ColumnStoreFilter [<s.filter>]

| ColumnStoreScan s

ColumnStoreFilter [Top(t.v <-> vector, t.id = s.id, k) join index]

ColumnStoreScan t

Example 3: Join

58

—

CONFIDENTIAL

● Each query contains multiple subqueries

● Each subquery has its own type: fulltext or knn

● For a given row

○ Each subquery produces a score

○ The final score is a weighted sum of all individual scores

● The query selects rows with the highest final score

Example 4: Combining Fulltext and Vector Search

59

—

CONFIDENTIAL

● Execute each subquery individually as a filter to select rows that have
a positive score for that subquery

● Union all rows selected by each subquery

● Compute the final score for all rows in Step 2 and output the highest
ones

Example 4: Combining Fulltext and Vector Search

60

—

CONFIDENTIAL

SELECT

 MATCH(t.s) AGAINST (‘pattern’) AS score1,

 t.v <-> vector AS score2

FROM t

WHERE <filters>

ORDER BY weight1 * score1 + weight2 * score2

LIMIT k;

Example 4: Combining Fulltext and Vector Search

61

—

CONFIDENTIAL

Project [

 MATCH(t.s) AGAINST (‘pattern’) AS score1,

 t.v <-> vector AS score2]

TopSort limit:k [weight1 * score1 + weight2 * score2]

ColumnStoreFilter [

 (<filters> AND MATCH(t.a) AGAINST (‘pattern’) index) OR

 Top(t.v <-> vector, <filters>, k) index]

ColumnStoreScan t

Example 4: Combining Fulltext and Vector Search

62

—

CONFIDENTIAL

More Examples

● Vector index join

● Cross apply

○ Batched workload, good for GPU

63

—

CONFIDENTIAL

● Vector range search

○ t.v <-> vector > threshold

● Maximal Marginal Relevance (MMR)

○ Representatives of nearest neighbors

○ New neighbor can’t be too close to previously selected neighbors

Other Vector Index Filters

—

64

Thank You

CONFIDENTIAL

