) SingleStore

SingleStore: Do you need a

specialized vector database?
CMU 15-445/645 (Fall 2023)

Specialized Database Systems

e Transaction processing
e Datawarehousing
e Time series analysis

e Fulltext search

e Vectorsearch

2 CONFIDENTIAL Q sSingleStore

Outline

e SingleStore Overview
e Vector Search Overview
e Vector Index at SingleStore

e Vector Search at SingleStore

3 CONFIDENTIAL Q sSingleStore

#
SingleStore Overview

4 CONFIDENTIAL Q SingleStore

What is SingleStore?

e SingleStore is a distributed general-purpose SQL database

o HTAP
o Operational and analytical workloads
o Canrun TPC-H and TPC-DS competitively with data warehouses
o Canrun TPC-C competitively with operational databases

e Cloud-native

e Scale out to efficiently utilize 100s of hosts, 1000s of cores and 10s of
TBs of RAM

5 CONFIDENTIAL Q sSingleStore

Benchmarks

Product | vCPU | Size Throughput | Throughput
(warehouses) | (tpmC) (% of max)
CDB 32 1000 12,582 97.8%
S2DB 32 1000 12,556 97.7%
S2DB 256 10000 121,432 94.4%

Table 1: TPC-C results (higher is better, up to the limit of
12.86 tpmC/warehouse)

Product | Cluster TPC-H TPC-H TPC-H
price per | geomean geomean throughput
hour (sec) (cents) (QPS)

S2DB $16.50 8.57 s 392¢ 0.078

CDW1 $16.00 10.31s 4.58 ¢ 0.069

CDW2 $16.30 10.06 s 455¢ 0.082

CDB $13.92 Did not finish within 24 hours

6 CONFIDENTIAL

Table 2: Summary of TPC-H (1TB) results

Q sSingleStore

Product Overview

Data Sttt Memory
TS - - - S ; : I S S
pipeline SR Fast ingestion
indexing | | ‘
Persistent cache

Fast queries

Cloud object store ap
Unlimited storage @

%ﬂ % Streaming Three-tier Universal
ingestion architecture Storage

7 CONFIDENTIAL

Multi-model

Query
aggregator

Data nodes

Shared-nothing

Q sSingleStore

Cluster Architecture

e SingleStore is a horizontally-partitioned, shared-nothing DBMS with

an optional shared storage for cold data
e Aggregators

o Clients connect to aggregators

Master Agg

Child Agg 1

Child Agg 2

o Handle query optimization and planning

o Coordinate distributed query

Leaf 1

e Leaves

o Perform most computation

8 CONFIDENTIAL

Leaf 2

Leaf 3

Blob Storage

Q sSingleStore

Distributed Query Processing

e Tables are hash partitioned by shard key

e Distributed Join
o Shard key matching, push down execution to individual partitions
o Otherwise, redistribute data via broadcast or reshuffle

e Optimizer needs to take into account data movement cost

e Certain queries need to be transformed in order to be efficiently
executed

9 CONFIDENTIAL Q sSingleStore

Distributed Query Processing

SELECT AV6(a)
FROM db.t

v

Agg

il g

SELECT SUM(a), COUNT(a) SELECT SUM(a), COUNT(a) SELECT SUM(a), COUNT(a)

FROM db_0.t FROM db_1.t FROM db_2.t

Leaf O Leaf 1 Leaf 2

10 CONFIDENTIAL Q SingleStore

Hybrid Workloads

e Analytical workloads

o Scan 100s of millions to trillions of rows in a second
e Transactional workloads

o Write or update millions of rows per second
e Real-time analytical workloads

o Running analytics concurrently with high-concurrency point
reads and writes

11 CONFIDENTIAL Q sSingleStore

Unified Table Storage For Hybrid Workload

e Efficient for analytical workloads
e Efficient for transactional workloads

o Operational-Optimized Columnstore

12 CONFIDENTIAL Q sSingleStore

Operational-Optimized Columnstore

e On-disk columnstore LSM + in-memory rowstore segment

e Rows are first written into in-memory rowstore segment

e Flusher flushes a new segment when in-memory rowstore segment is full
e Merger merges segments

e Columnstore segments are immutable

o DELETE/UPDATE mark rows as deleted in the segment

13 CONFIDENTIAL Q sSingleStore

Optimized For Tiered Storage

e |Immutable blobs
e No blob writes are on commit (no files either, only WAL)

e Out-of-order replication

14 CONFIDENTIAL Q sSingleStore

Optimized for Analytical Workloads

e Vectorized execution
e Encoded execution

e Late materialization

15 CONFIDENTIAL Q sSingleStore

Optimized for Operational Workloads

e Seekable encoding

e Segment Elimination
o In-memory metadata (MIN/MAX/deleted bits/...)
o Sort key

e Secondary index

e Row-level locking

16 CONFIDENTIAL Q sSingleStore

Full-Query Code Generation

e Queries are parametrized
o SELECTa+ 1ASxFROMtWHEREDb = “abc”
o SELECTa+@ASxFROMtWHEREb=*"
e Parameterized queries are compiled to MBC bytecodes
e Interpret MBC while compiling MBC to machine code in the background

e Switch to machine code when compilation completes

Asse_mbl
Parawmetr ze,ci Execution
Que_m/ Plaoa Mach ne Code

17 CONFIDENTIAL Q sSingleStore

Secondary Indexes

e Common indexing approaches for LSM tree

o External index: extra LSM tree lookup per matched row

o Per-segment index: O(logn) write amplification
e Index generally have sub-linear search complexity

o Searching alarger index is cheaper than several small ones
e IndexLSM tree

o Per-segmentindex + index merger

o Index merger builds cross-segment indexes on multiple segments

18 CONFIDENTIAL Q sSingleStore

Secondary Hash Index

e Two-level indexes
e Per-segmentindex

o Posting lists: value -> [row offset]
e Cross-segment index

o hash(value) -> [(segment id, posting list offset)]

19 CONFIDENTIAL Q sSingleStore

Data segments Global index

— ESM NG 575 LSMN_ "\

. Segmentsl Hash table
e d ! 2 | 0x01 |sl: offset 7| s2: ...
Em_verte foo: 1,3]...|bar: 2,99,100] ... | :
' index :
T ; SR S S N S
1 2 3 99 100 :

: 0x24 |s1: offset 1| s3: ...
. index foo |bar|foo bar|bar
i column :

other :
- column 100101105 - 1994200 ;

Figure 3: Two-level secondary mdex structure. A segment
and a global hash table from the corresponding LSM trees
are shown here

20 CONFIDENIIAL W SingleStore

Unified Way To Identify A Row Efficiently

e Everything identifies a row by (segment id, row offset)
o Columnar storage
o Deleted bits
o Secondary indexes
m Hashindex
m Fulltext index
m Rowindex
m Vectorindex

&bl correlate between them efficiently O singlestore

Adaptive Table Scan

e Hybrid workloads needs to combine different access methods and
apply them in the optimal order

e Static decision made by optimizer doesn’t always work

o Cost depends highly on query parameters and encodings used

22 CONFIDENTIAL Q sSingleStore

Adaptive Table Scan

e Per-partition segment selection

o segment elimination with index or MIN/MAX
e Per-segment row selection

o filter reordering in next slide
e Per-block row projection

o Seekorscan?

o Use column group?

o Selective column decoding or send encoded values upstream to
AGGREGATE or JOIN

23 CONFIDENTIAL Q sSingleStore

Filter Tree

24 CONFIDENTIAL

SO < "g" °

10<=8

10<10<=12

SO LIKE "%d%"

SO LIKE "%b%"

Q SingleStore

Filtering

e Different ways to evaluate filters each with different tradeoffs
o Regular filter
o Encoded filter
o Group filter
o Index filter
e Adaptive filter reordering for each block

o Each segment estimates the cost of each strategy by timing it on
a small number of rows

o Each block reorders the filters based on the cost estimate and
25 CONFIDENTIAL . o . Q SingleStore
selectivity from previous block

#
Vector Search Overview

Q SingleStore

Vector Search

e Given nvectors and another query vector

e Find k nearest neighbors to the query vector
e Dense vectors in d-dimensional space

e Distance metrics

e Approximate nearest neighbors (ANN)

27 CONFIDENTIAL

o
s ®
e o)
o, o
ee”o
0
o@@ (9]
. o

x query vector
@ vectors
o) ne_is,hbors

Q sSingleStore

Representation Learning

e Learn torepresent objects with vector embeddings

e Semanticsimilar objects are closer to each other

The quick brown Fox jumps N
over the lazt/ Jog

"o o

Al —

28 CONFIDENTIAL

Representation

Leam?ng

—=[0.59, 0.92, 0.64, ...]

—=>10.61, 0.8%, 0.63, ...

—=[0.93, 0.09, 0.4%, ...]

\% 2

Q sSingleStore

Retrleval Augmented Generation (RAG)

. Documents H @
e LLMs are inefficient and costly to Question S !
. : [Embedding Model]
train/fine-tune P
° § Document uestion
e RAG as a cost-efficient approach to GenAl P | erbetings @
o Up-to-date knowledge (Qt\ ey ([)
o Domain-specific knowledge :
. Relevant
o Source citation —
g [Generative Model J
Answer E
 ®
Q sSingleStore

29 CONFIDENTIAL

Vector Search vs Fulltext Search

e Fulltext search relies on keyword matching and can’t capture
semantics

o |like apple
o ldon’tlike apple
o ldon'tdislike the fruit company
e Vector search can be multimodal: text, image, audio, video etc

e Vector search is more computationally costly

30 CONFIDENTIAL Q sSingleStore

Vector Index Algorithms

e Tree-Based: KD-Tree

e Hash-Based

e Quantization-Based: IVF, SPANN

e Graph-Based: HNSW, DiskANN, CAGRA

31 CONFIDENTIAL Q sSingleStore

Inverted File (IVF)

e Partition vectors into clusters

e Use the centroids to represent each cluster

@ Fortition centroid

® Database vector

32 CONFIDENTIAL Q sSingleStore

Credit: Pinecone

Inverted File (IVF)

e Build aninverted index from clusters to vectors

oy e e
0 o L s [T
* N dwstes NG

LR}
33333333333333 Q sSingleStore

Inverted File (IVF): Search

e Find nearby centroids to the query vector

e Only search within nearby clusters

Posting List
s gt

I
& | rA
,’ .\\ —-"“'?:Q USte
I

'© ' O
Y -x J! \:clusters

NNNNNNNNNNNNNN Q sSingleStore

Hierarchical Navigable Small World (HNSW)

e Skiplist over proximity graph
e Each nodeis only connected to a small number of neighbors

e Greedy search starts from coarsest layer and refine with finer layers

entry point
| ag@V‘\

(av\tVU /
\ .
/

35 CONFIDENTIAL Q sSingleStore

Credit: Pinecone

IVF vs HNSW

e HNSW has higher recall
e HNSW: s faster to search

o Of(logn) vs O(sqgrt(n))
e |VFisfaster to build

e |IVF has much smaller index size

36 CONFIDENTIAL Q sSingleStore

Product Quantization (PQ)

e Vector compression technique that applies to various algorithms
o IVF_PQ
o HNSW_PQ

e Notonly saves space, but also speeds up distance computation

e Even faster with PQ Fast Scan

e Compression is lossy so need to refine the results for better recall

37 CONFIDENTIAL Q sSingleStore

Index Composition

e InIVF, searching nearest centroids is yet another ANN
e Can build another vector index on centroids: IVF + HNSW
o Centroids are much smaller

o Searching nearest centroids requires very high recall

38 CONFIDENTIAL Q sSingleStore

Vector Search Offerings (08/19/2023)

&3 Pinecone -+« cooeee Proprietary composite index
/Hziliz --eeeee Flat, Amoy, IVF, HNSW/RHNSW (Flat/PQ), DiskAVN

W) Weaviate --ceoeeececiaen. Customized HNSW, HNSW (PQ), DiskANN (in progress...)
Qdrant e Customized HNSW

@ chroma ------cooeeeees HNSW

LanceDB = oscrrereseses IVF (PQ), DiskAWN (n progress...)

N vespa cooeeeeeeeees HNSW + BM25 hybrid

% il SevavssssR e el NGT

- elasticsearch ---..... Flat (brute force), HVSW

é redis: «-sesesa Flat (brute force), HNSW

@ POVECIOr «»=-ssvsessss IVF (Flat), IVF (PQ) in progress...

39 CONFIDENTIAL Credit: Wttpsi//thedataauarty.com/posts/vector-db-4/ Q singleStore

#
Vector Index at SingleStore

Q SingleStore

Overview

e On-disk columnstore LSM + in-memory rowstore segment
e In-memory rowstore segment is small

o No vector index, just full scan
e Build vector index for on-disk columnstore LSM

o Per-segment vector index + vector index merger

41 CONFIDENTIAL Q sSingleStore

Per-Segment Vector Index

e Background flusher/merger create a new vector index for each new
segment created

e ALTER TABLE creates a new vector index for each segment

e Iftoo many rows are deleted in a segment, its vector index gets rebuild

r Partition
7 %
Segme_n‘tJ Se,gmen‘tﬂ
_
/ ry
Q sSingleStore

42 CONFIDENTIAL k

Vector Index Merger

e Vector indexes have sub-linear search complexity

o Searching alarger index is cheaper than several small indexes
e Vector index LSM tree

o Build cross-segment vector indexes on multiple segments

e Vector index is expensive to build so O(logn) write amplification due
to merge can be significant

o Merge only cold data

43 CONFIDENTIAL Q sSingleStore

Pluggable Vector Index Algorithms

e We are using vector index algorithm as a black box
e This allows us to plug in any vector index algorithm
e In 8.5, we support many popular in-memory vector index algorithms:
o IVF_FLAT, IVF_PQ, IVF_PQFS
o HNSW_FLAT, HNSW_PQ
e Post 8.5, we are planning to support on-disk vector index algorithms
e Vector index can be built in an external service

o Build vector index on GPU

44 CONFIDENTIAL Q sSingleStore

Auto Vector Index

e It's hard for average users to pick which vector index algorithm to use
and to tune various parameters for the given algorithm

e Note that our vector index is always build on immutable data
e We can make smart decision for the users
e Theuser just need to tell us what the requirements are

o High-recall

o Cost-effective

45 CONFIDENTIAL Q sSingleStore

#
Vector Search at SingleStore

Q SingleStore

Example 1: ANN

SELECT
t.v <-> vector AS d
FROM t
ORDER BY d
LIMIT k;

47 CONFIDENTIAL Q sSingleStore

ORDERBY ...LIMIT Pushdown

e Agg already pushes down ORDER BY .. LIMIT toleaves
o Currently Merge TopSort, but we can prob do better

e Leaf pushes down ORDER BY .. LIMIT totablescanasa Top filter

48 CONFIDENTIAL Q sSingleStore

Example 1: ANN

Project [t.v <-> vector AS d]
TopSort limit:k [t.v <-> vector]
ColumnStoreFilter [Top(t.v <-> vector, k) 1index]

ColumnStoreScan t

49 CONFIDENTIAL Q sSingleStore

Example 1: ANN

Top

e Per-partition segment selection

o Scan all vector indexes within the partition and select top-k for
the entire partition

o Select segments that contain these top-k rows
e Per-segment row selection
o Top filter evaluates to true iff the row is selected above

e Per-block row projection

50 CONFIDENTIAL Q sSingleStore

Example 2: Pre-Filtered ANN

SELECT
t.v <-> vector AS d
FROM t
WHERE <filters>
ORDER BY d
LIMIT k;

51 CONFIDENTIAL Q sSingleStore

Pre-Filters

e If <filters> are executed after vector index scan
o There will be less rows after filters

o We can let vector index scan to output more rows at the
beginning, but in practice it’s very hard to predict

e <filters> needto be executed before vector index scan

o Make vector index filter aware of its pre-filters

52 CONFIDENTIAL Q sSingleStore

Example 2: Pre-Filtered ANN

Project [t.v <-> vector AS d]
TopSort limit:k [t.v <-> vector]
ColumnStoreFilter [Top(t.v <-> vector, <filters>, k) 1index]

ColumnStoreScan t

53 CONFIDENTIAL Q sSingleStore

Example 2: Pre-Filtered ANN Top

e Per-partition segment selection Pre-Filters

a. Segment elimination with pre-filters

b. Scan all vector indexes within the filtered segments and select
top-| for the entire partition

c. Run pre-filters on these top-l rows
m Ifthere are at least k output rows, select top-k.
m Ifthere areless than k output rows
e Eitherretry bwithalargerl

e Or fall back to not using vector index scan

54 CONFIDENTIAL Q sSingleStore

Top Filter

e Top(expr, <filters>, k) istrueiff expr of this row ranks within
the top-k among all the rows that pass <filters>

e Top filteris just aregular leaf node in the filter tree

e Can have many Top filters in the filter tree with different pre-filters

e Filters outside of Top filter are post-filters

e Filter reordering can happen within

pre-filter tree and post-filter tree Topl Top2

re—Filters\ re—Filters}\

e Retry happens within Top filter

Attribute| | Fulltext
55 CONFIDENTIAL

Example 3: Join

SELECT

t.v <-> vector AS d
FROM t JOIN s
ON t.id = s.1id
WHERE <s.filters>
ORDER BY d
LIMIT k;

56 CONFIDENTIAL Q sSingleStore

Example 3: Join

Project [t.v <-> vector AS d]
TopSort limit:k [t.v <-> vector]
HashJoin

| -——HashTableProbe [t.id = s.1id]

| HashTableBuild alias s

| ColumnStoreFilter [<s.filter>]

| ColumnStoreScan s

ColumnStoreFilter [Top(t.v <-> vector, t.id

ColumnStoreScan t

57 CONFIDENTIAL

s.id, k) join 1index]

Q sSingleStore

Example 4: Combining Fulltext and Vector Search

e Each query contains multiple subqueries
e Each subquery has its own type: fulltext or knn
e Foragivenrow
o Each subquery produces a score
o The final score is a weighted sum of all individual scores

e The query selects rows with the highest final score

58 CONFIDENTIAL Q sSingleStore

Example 4: Combining Fulltext and Vector Search

e Execute each subquery individually as a filter to select rows that have
a positive score for that subquery

e Union all rows selected by each subquery

e Compute the final score for all rows in Step 2 and output the highest
ones

59 CONFIDENTIAL Q sSingleStore

Example 4: Combining Fulltext and Vector Search

SELECT
MATCH(t.s) AGAINST (‘pattern’) AS scorel,
t.v <-> vector AS score2

FROM t

WHERE <filters>

ORDER BY weightl * scorel + weight2 * score2

LIMIT K;

60 CONFIDENTIAL Q sSingleStore

Example 4: Combining Fulltext and Vector Search

Project [
MATCH(t.s) AGAINST (‘pattern’) AS scorel,
t.v <-> vector AS score2]
TopSort limit:k [weightl *x scorel + weight2 * score2]
ColumnStoreFilter [
(<filters> AND MATCH(t.a) AGAINST (‘pattern’) -1index) OR
Top(t.v <-> vector, <filters>, k) index]

ColumnStoreScan t

61 CONFIDENTIAL Q sSingleStore

More Examples

e Vectorindex join
e Cross apply
o Batched workload, good for GPU

62 CONFIDENTIAL Q sSingleStore

Other Vector Index Filters

e Vector range search

o t.v <-> vector > threshold
e Maximal Marginal Relevance (MMR)

o Representatives of nearest neighbors

o New neighbor can’t be too close to previously selected neighbors

63 CONFIDENTIAL Q sSingleStore

() SingleStore

Thank You

