
Intro to Database
Systems (15-445/645)

FALL 2023 Prof. Andy Pavlo Prof. Jignesh Patel

Lecture #25

Final Review &

Systems
Potpourri

Final Review + Systems Potpourri

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

15-445/645 (Fall 2023)

A D M I N I S T R I V I A

Project #4 is due Sunday Dec 10th @ 11:59pm
→ Extra Office Hours: Saturday Dec 9th @ 3:00-5:00pm
→ Location: GHC 4407

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S P R I N G 2 0 2 4

Jignesh is recruiting impressionable TAs for 15-
445/645 in Spring 2024.
→ All BusTub projects will remain in C++.
→ You are not expected to be like Chi.

Sign up here:

https://www.ugrad.cs.cmu.edu/ta/S24/

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://www.ugrad.cs.cmu.edu/ta/S24/

15-445/645 (Fall 2023)

C O U R S E E VA L S

Your feedback is strongly needed:
→ https://cmu.smartevals.com
→ https://www.ugrad.cs.cmu.edu/ta/F23/feedback/

Things that we want feedback on:
→ Homework Assignments
→ Projects
→ Reading Materials
→ Lectures

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://cmu.smartevals.com/
https://www.ugrad.cs.cmu.edu/ta/F23/feedback/

15-445/645 (Fall 2023)

O F F I C E H O U R S

Andy:
→ Monday Dec 11th @ 9:30-10:30am
→ Zoom: https://cmudb.io/pavlo-zoom

Jignesh:
→ Monday Dec 11th @ 1:00-2:00pm ET
→ Zoom: https://cmu.zoom.us/my/jignesh

TAs will have their regular office hours up to and
including Friday Dec 8th

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://cmudb.io/pavlo-zoom
https://cmu.zoom.us/my/jignesh

15-445/645 (Fall 2023)

F I N A L E X A M

Who: You

What: Final Exam

Where: POS 153

When: Tuesday Dec 12th @ 8:30am
Why: https://youtu.be/8tuoIO4CxOw

Email instructors if you need special accommodations.

https://15445.courses.cs.cmu.edu/fall2023/final-guide.html

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://youtu.be/8tuoIO4CxOw
https://15445.courses.cs.cmu.edu/fall2022/final-guide.html
https://15445.courses.cs.cmu.edu/fall2023/final-guide.html

15-445/645 (Fall 2023)

F I N A L E X A M

Everyone should come to POS 153.

You will then be assigned a random location.
→ POS 153, HOA 160, HOA 107

There will be TAs stationed in each room to give
you the exam and to handle questions.

Instructors will bounce around the rooms during
the exam time.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

F I N A L E X A M

What to bring:
→ CMU ID
→ Pencil + Eraser (!!!)
→ Calculator (cellphone is okay)
→ One 8.5x11" page of handwritten notes (double-sided)

What not to bring:
→ NFT-themed Clothing

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S T U F F B E F O R E M I D -T E R M

SQL

Buffer Pool Management

Data Structures (Hash Tables, B+Trees)

Storage Models

Query Processing Models

Inter-Query Parallelism

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

Q U E R Y O P T I M I Z AT I O N

Heuristics
→ Predicate Pushdown
→ Projection Pushdown
→ Nested Sub-Queries: Rewrite and Decompose

Statistics
→ Cardinality Estimation
→ Histograms

Cost-based search

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

T R A N S AC T I O N S

ACID

Conflict Serializability:
→ How to check for correctness?
→ How to check for equivalence?

View Serializability
→ Difference with conflict serializability

Recoverable Schedules

Isolation Levels / Anomalies

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

T R A N S AC T I O N S

Two-Phase Locking
→ Rigorous vs. Non-Rigorous
→ Cascading Aborts Problem
→ Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks
→ Understanding performance trade-offs
→ Lock Escalation (i.e., when is it allowed)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

T R A N S AC T I O N S

Timestamp Ordering Concurrency Control
→ Thomas Write Rule

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection
→ Index Maintenance

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

C R A S H R E C OV E R Y

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Write-Ahead Logging

Logging Schemes
→ Physical vs. Logical

Checkpoints

ARIES Recovery
→ Analyze, Redo, Undo phases
→ Log Sequence Numbers
→ CLRs

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

D I S T R I B U T E D DATA B A S E S

System Architectures

Replication

Partitioning Schemes

Two-Phase Commit

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

TO P I C S N OT O N E X A M !

SingleStore

Details of specific database systems (e.g., Postgres)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://redis.io/

15-445/645 (Fall 2023)

R E D I S (2 0 0 9)

Remote Dictionary Server

Key-value DBMS written in C with specialized
value types:
→ Values can be strings, hashes, lists, sets and sorted sets.
→ Specific commands for each value type.
→ Single-threaded execution engine.

Mostly used as an in-memory cache.

Lots of clones (commercial, hobbyist).

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

R E D I S – DATA M O D E L

22

STRING
page:index.html → "<html><head>..."

view_count → 12345

SET
users_logged_in → {1, 2, 3, 4, 5}

latest_post_ids → {111, 112, 119, …}
LIST

HASH
user:999:session → time => 1430086922

username => tupac
SORTED SET
current_scores → odb ~ 11

tupac ~ 12
biggie ~ 19
eazye ~ 20

K
ey

s
V

alu
es

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

R E D I S – I N T E R N A L S

In-memory storage:
→ Periodic Snapshots + WAL for persistence.
→ No buffer pool.

Single-threaded execution engine using a chained
hash table to store databases.
→ No secondary indexes.
→ No schema / constraints

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

R E D I S – I N T E R N A L S

Supports some notion of transactions:
→ Operations are batched together and executed serially on

server side.
→ Allows for compare-and-swap.
→ Does not support rollback!

Asynchronous primary-replica replication:
→ Master sends oplog to downstream replicas.
→ Primary waits until at least some replicas are available

before accepting writes but still not check whether they
received those writes.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

C O C K ROAC H D B (2 0 1 5)

Distributed relational/SQL DBMS written in Go.
→ Decentralized homogenous shared-nothing architecture

using range partitioning.
→ Postgres SQL + wire protocol compatible.
→ Open-source (BSL – MariaDB)

Log-structured on-disk storage.

Pull-based vectorized query processing model.

MVCC + OCC Concurrency Control
→ All txns run with Serializable isolation level (!!!)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

C O C K ROAC H D B – A RC H I T E C T U R E

Multi-layer architecture on top of a
replicated key-value store.
→ All tables and indexes are store in a giant

sorted map in the k/v store.

Custom Pebble storage manager at
each node (previously RocksDB).

Raft protocol (variant of Paxos) for
replication and consensus.

SQL Layer

Transactional
Key-Value

Router

Replication

Storage

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/cockroachdb/pebble

15-445/645 (Fall 2023)

C O C K ROAC H D B – C O N C U R R E N C Y C O N T RO L

DBMS uses hybrid clocks (physical + logical) to
order transactions globally.
→ Synchronized wall clock with local counter.

Txns stage writes as "intents" and then checks for
conflicts on commit.

All meta-data about txns state resides in the key-
value store.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
http://www.cse.buffalo.edu/tech-reports/2014-04.pdf

15-445/645 (Fall 2023)

C O C K ROAC H D B – C O N C U R R E N C Y C O N T RO L

Node 1 Node 2 Node 3

Application

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

…

Node n

30

ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

Catalog

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

UPDATE xxx SET val = 123
 WHERE id = 50;

C O C K ROAC H D B – C O N C U R R E N C Y C O N T RO L

Node 1 Node 2 Node 3

Leader

Application

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

…

Node n

Id=50

31

ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

Catalog

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

UPDATE xxx SET val = 123
 WHERE id = 50;

C O C K ROAC H D B – C O N C U R R E N C Y C O N T RO L

Node 1 Node 2 Node 3

Leader

Application

Raft

Raft

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

Update Id=50

…

Node n

32

ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

Catalog

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

SELECT * FROM xxx
 WHERE id = 150;

C O C K ROAC H D B – C O N C U R R E N C Y C O N T RO L

Node 1 Node 2 Node 3

Application

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

…

Node n

Id=150

Leader

33

ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

Catalog

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

SELECT * FROM xxx
 WHERE id = 150;

C O C K ROAC H D B – C O N C U R R E N C Y C O N T RO L

Node 1 Node 2 Node 3

Application

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

Get Id=150

…

Node n

Leader

34

ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

Catalog

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

SELECT * FROM xxx
 AS OF SYSTEM TIME
 with_max_staleness('10s')
 WHERE id = 150;

C O C K ROAC H D B – C O N C U R R E N C Y C O N T RO L

Node 1 Node 2 Node 3

Application

1-100

101-200

201-300

1-100

101-200

201-300

1-100

101-200

201-300

…

Node n

Leader

35

ID:1-100 →Node1

ID:101-200 →Node2

ID:201-300 →Node3

Catalog

Get Id=150

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S N O W F L A K E (2 0 1 3)

Cloud-native OLAP DBMS written in C++.

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S N O W F L A K E – A RC H I T E C T U R E

Data Storage: Cloud-hosted object store
→ Amazon S3, MSFT Azure Store, Google Cloud Storage

Virtual Warehouses: Worker Nodes
→ VM instances running Snowflake software with locally

attached disks for caching.
→ Customer specifies the compute capacity.
→ Added support for serverless deployments in 2022 (?).

Cloud Services: Coordinator/Scheduler/Catalog
→ Transactional key-value store (FoundationDB)

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S N O W F L A K E – E X E C U T I O N A RC H I T E C T U R E

Worker Node (e.g., EC2 Instance)
→ Maintains a local cache of files + columns that previous

Worker Processes have retrieved from storage.
→ Simple LRU replacement policy.
→ Optimizer assigns individual table files to worker nodes

based on consistent hashing. This ensures that files are
only cached in one location.

Worker Process (e.g., Unix Process)
→ Spawned for the duration of a query.
→ Can push intermediate results to other Worker Processes

or write to storage.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S N O W F L A K E – Q U E R Y P RO C E S S I N G

Snowflake is a push-based vectorized engine that
uses precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different

vector data types.
→ Only uses codegen (via LLVM) for tuple

serialization/deserialization between workers.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

S N O W F L A K E – F L E X I B L E C O M P U T E

If a query plan fragment will process a
large amount of data, then the DBMS
can temporarily deploy additional
worker nodes to accelerate its
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

41

Source: Libo Wang

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

Large
Scan

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://youtu.be/xnuv6vr8USE

15-445/645 (Fall 2023)

S N O W F L A K E – F L E X I B L E C O M P U T E

If a query plan fragment will process a
large amount of data, then the DBMS
can temporarily deploy additional
worker nodes to accelerate its
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

41

Source: Libo Wang

Filter

JoinFilter

GroupBy

TableScan

Insert

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

TableScan

GroupBy

UnionAll

Scale Out on
Flexible Compute

Materialize
Result to Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://youtu.be/xnuv6vr8USE

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/dcramer/mangodb

15-445/645 (Fall 2023)

M A N G O D B (2 0 1 2)

Single-node satirical implementation of MongoDB
written in Python.
→ Only supports MongoDB wire protocol v2
→ https://github.com/dcramer/mangodb

All data is written to /dev/null

The joke is that original version of MongoDB
would send write acknowledgements back to client
before writing updates to disk.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/dcramer/mangodb

15-445/645 (Fall 2023)

M A N G O D B (2 0 1 2)

Single-node satirical implementation of MongoDB
written in Python.
→ Only supports MongoDB wire protocol v2
→ https://github.com/dcramer/mangodb

All data is written to /dev/null

The joke is that original version of MongoDB
would send write acknowledgements back to client
before writing updates to disk.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/dcramer/mangodb
https://github.com/dcramer/mangodb/blob/master/server.py

15-445/645 (Fall 2023)

M A N G O D B (2 0 1 2)

Single-node satirical implementation of MongoDB
written in Python.
→ Only supports MongoDB wire protocol v2
→ https://github.com/dcramer/mangodb

All data is written to /dev/null

The joke is that original version of MongoDB
would send write acknowledgements back to client
before writing updates to disk.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/dcramer/mangodb
https://github.com/dcramer/mangodb/blob/master/server.py

15-445/645 (Fall 2023)

M A N G O D B (2 0 1 2)

Single-node satirical implementation of MongoDB
written in Python.
→ Only supports MongoDB wire protocol v2
→ https://github.com/dcramer/mangodb

All data is written to /dev/null

The joke is that original version of MongoDB
would send write acknowledgements back to client
before writing updates to disk.

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/dcramer/mangodb
https://github.com/dcramer/mangodb/blob/master/server.py

15-445/645 (Fall 2023)

M A N G O D B (2 0 1 2)

Single-node satirical implementation of MongoDB
written in Python.
→ Only supports MongoDB wire protocol v2
→ https://github.com/dcramer/mangodb

All data is written to /dev/null

The joke is that original version of MongoDB
would send write acknowledgements back to client
before writing updates to disk.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://github.com/dcramer/mangodb
https://github.com/dcramer/mangodb/blob/master/server.py

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://tabdb.io/

15-445/645 (Fall 2023)

TA B D B (2 0 1 9)

TabDB is a relational DBMS that stores data in
your browser's tab title fields.

It uses Emscripten to convert SQLite's C code into
JavaScript.

It then splits the SQLite database file into strings
and stores them in your browser tabs.

https://tabdb.io/

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://emscripten.org/
https://tabdb.io/

15-445/645 (Fall 2023)

C O N C L U D I N G R E M A R K S

Where does the name "BusTub" come from?

Why is the relational model superior?

Why do tech companies sell multiple DBMSs?

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

15-445/645 (Fall 2023)

C O N C L U D I N G R E M A R K S

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good
understanding how these systems work.

This will allow you to make informed decisions
throughout your entire career.
→ Avoid premature optimizations.

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: Final Review & Systems Potpourri
	Slide 2: ADMINISTRIVIA
	Slide 3: SPRING 2024
	Slide 4: COURSE EVALS
	Slide 5: OFFICE HOURS

	Final Exam Review
	Slide 6: FINAL EXAM
	Slide 7: FINAL EXAM
	Slide 8: FINAL EXAM
	Slide 9: STUFF BEFORE MID-TERM
	Slide 10: QUERY OPTIMIZATION
	Slide 11: TRANSACTIONS
	Slide 12: TRANSACTIONS
	Slide 13: TRANSACTIONS
	Slide 14: CRASH RECOVERY
	Slide 15: DISTRIBUTED DATABASES
	Slide 16: TOPICS NOT ON EXAM!

	Redis
	Slide 20
	Slide 21: REDIS (2009)
	Slide 22: REDIS – DATA MODEL
	Slide 23
	Slide 24: REDIS – INTERNALS
	Slide 25: REDIS – INTERNALS

	CockroachDB
	Slide 26
	Slide 27: COCKROACHDB (2015)
	Slide 28: COCKROACHDB – ARCHITECTURE
	Slide 29: COCKROACHDB – CONCURRENCY CONTROL
	Slide 30: COCKROACHDB – CONCURRENCY CONTROL
	Slide 31: COCKROACHDB – CONCURRENCY CONTROL
	Slide 32: COCKROACHDB – CONCURRENCY CONTROL
	Slide 33: COCKROACHDB – CONCURRENCY CONTROL
	Slide 34: COCKROACHDB – CONCURRENCY CONTROL
	Slide 35: COCKROACHDB – CONCURRENCY CONTROL

	Snowflake
	Slide 36
	Slide 37: SNOWFLAKE (2013)
	Slide 38: SNOWFLAKE – ARCHITECTURE
	Slide 39: SNOWFLAKE – EXECUTION ARCHITECTURE
	Slide 40: SNOWFLAKE – QUERY PROCESSING
	Slide 41: SNOWFLAKE – FLEXIBLE COMPUTE
	Slide 42: SNOWFLAKE – FLEXIBLE COMPUTE

	MangoDB
	Slide 43
	Slide 44: MANGODB (2012)
	Slide 45: MANGODB (2012)
	Slide 46: MANGODB (2012)
	Slide 47: MANGODB (2012)
	Slide 48: MANGODB (2012)

	TabDB
	Slide 49
	Slide 50: TABDB (2019)

	Conclusion
	Slide 51: CONCLUDING REMARKS
	Slide 52: CONCLUDING REMARKS

