
CARNEGIE MELLON UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

15-445/645 – DATABASE SYSTEMS (FALL 2024)
PROF. ANDY PAVLO

Homework #2 (by William and Prashanth) – Solutions
Due: Sunday September 22, 2024 @ 11:59pm

IMPORTANT:
• Enter all of your answers into Gradescope by 11:59pm on Sunday September 22, 2024.
• Plagiarism: Homework may be discussed with other students, but all homework is to be

completed individually.
For your information:

• Graded out of 100 points; 3 questions total
• Rough time estimate: ≈4-6 hours (1-1.5 hours for each question)
Revision : 2024/09/28 15:29

Question Points Score

Slotted Pages and Log-Structured 30

Storage Models 35

Database Compression 35

Total: 100

1

https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024) Homework #2 Page 2 of 8

Question 1: Slotted Pages and Log-Structured [30 points]
Graded by:
(a) [10 points] Which problems are associated with the slotted-page storage in a database

system? Select all that apply.
■ Fragmentation
2 Write Amplification
■ Increased Random Writes
■ Increased Random Reads
2 None of the above

Solution: The Slotted-Page Design often leads to fragmentation, as deletion of tuples
can leave gaps in the pages, making them not fully utilized.
Since tuples can be stored across separate pages, it may increase the amount of random
I/O that the DBMS has to incur when both reading data and when writing out dirty
pages.

(b) [10 points] Which problems are associated with the log-structured storage in a database
system? Select all that apply.
2 Fragmentation
■ Write Amplification
2 Increased Random Writes
2 Increased Random Reads
2 None of the above

Solution: Log-structure storage is particularly beneficial for write-intensive workloads,
such as append-only data. But it incurs write amplification due to compaction.
Although a log-structured DBMS may have to read multiple pages to find a tuple, these
will be sequential I/Os and not random reads.

(c) [10 points] You are asked to compare log-structured storage to slotted-page storage for
a new system. Ignore any indexes and overhead from metadata. Select all true statements.
2 Log-structured storage requires less disk space.
2 Only log-structured storage supports variable length tuples.
■ For an append-only workload, both achieve comparable performance.
2 After lots of insert/update/deletes, only log-structured benefits from maintenance.
2 Log-structured storage is not suitable for systems with limited memory.
2 None of the above are true.

Solution: In absence of indexes + metadata, then slotted-page for append-only work-
load becomes the log-structured storage architecture. Hence, this is the only correct
statement.
After lots of inserts/updates/deletes, slotted-page may also benefit from maintenance to
reclaim any empty space or compact partially empty pages.

Homework #2 continues. . .

15-445/645 (Fall 2024) Homework #2 Page 3 of 8

Question 2: Storage Models . [35 points]
Graded by:
Consider a database with a single table E(event id,event name,host id,duration
number of events), where event id is the primary key, and all attributes are the same fixed
width. Suppose E has 10,000 tuples that fit into 100 pages. You should ignore any additional
storage overhead for the table (e.g., page headers, tuple headers). Additionally, you should
make the following assumptions:

• The DBMS does not have any additional meta-data.

• E does not have any indexes (including for primary key event id).

• None of E’s pages are already in memory. The DBMS can store an infinite number of
pages in memory.

• Content-wise, the tuples of E will always make each query run the longest possible and
do the most page accesses.

• The tuples of E can be in any order (keep this in mind when computing minimum versus
maximum number of pages that the DBMS will potentially have to read and think of all
possible orderings)

(a) Consider the following query:

SELECT MAX(number of events) FROM E
WHERE duration > 15445 AND host id == 15645 ;

i. [5 points] Suppose the DBMS uses the decomposition storage model (DSM) with
implicit offsets. How many pages will the DBMS potentially have to read from disk
to answer this query?
Be sure to keep in mind the assumption about the contents of E.
2 1-40 ■ 41-60 2 61-80 2 81-100 2 ≥ 101 2 Not possible to
determine

Solution: 60 pages. There are 20 pages per attribute. 20 pages to find duration
and another 20 to find host id for all tuples. In the worst-case scenario for E’s
content, number of events for all tuples must be accessed as well. Hence, another
20 pages must be read.

ii. [5 points] Suppose the DBMS uses the N-ary storage model (NSM). How many
pages will the DBMS potentially have to read from disk to answer this query?
Be sure to keep in mind the assumption about the contents of E.
2 1-40 2 41-60 2 61-80 ■ 81-100 2 ≥ 101 2 Not possible to
determine

Question 2 continues. . .

15-445/645 (Fall 2024) Homework #2 Page 4 of 8

Solution: 100 pages. To find duration and host id for all tuples, all pages must
be accessed.

Question 2 continues. . .

15-445/645 (Fall 2024) Homework #2 Page 5 of 8

(b) Now consider the following query:

SELECT event name, host id FROM E
WHERE event id = 15445 OR event id = 15645

i. Suppose the DBMS uses the decomposition storage model (DSM) with implicit off-
sets.
α) [5 points] What is the minimum number of pages that the DBMS will poten-

tially have to read from disk to answer this query?
■ 1-3 2 4-6 2 7-9 2 10-100 2 ≥ 101 2 Not possible to
determine

Solution: 3 pages. Suppose all two primary keys appear on the first page.
Since all attributes are of the same fixed width, each attribute of event id=15445
and event id=15645 will also appear on the same page. We’ll thus need to
read 1 page to find the two primary keys and read 2 pages to access event name,
host id at their corresponding offsets.

β) [5 points] What is the maximum number of pages that the DBMS will poten-
tially have to read from disk to answer this query?
2 1-20 ■ 21-40 2 41-60 2 61-80 2 81-100 2 ≥ 101
2 Not possible to determine

Solution: 24 pages. There are 20 pages per attribute. In the worst case, we
scan through all 20 pages to find the two primary keys. In the worst case, the
two primary keys will be located on different pages. Since all attributes are of
the same fixed width, each attribute of event id=15445 and event id=15645
will also appear on different pages. Hence we must read 2 pages to access each
attribute at their corresponding offsets. Thus, we read 4 pages in total to access
event name, host id.

ii. Suppose the DBMS uses the N-ary storage model (NSM).
α) [5 points] What is the minimum number of pages that the DBMS will poten-

tially have to read from disk to answer this query?
■ 1 2 2-3 2 4-6 2 7-9 2 10-100 2 ≥ 101 2 Not possible
to determine

Solution: We find the tuples of all two primary keys on the first page. No need
to look in other pages since all attributes are stored together.

β) [5 points] What is the maximum number of pages that the DBMS will poten-
tially have to read from disk to answer this query?
2 1 2 2-3 2 4-6 2 7-9 ■ 10-100 2 ≥ 101 2 Not possible
to determine

Question 2 continues. . .

15-445/645 (Fall 2024) Homework #2 Page 6 of 8

Solution: 100 pages. At least one tuple with matching primary key is located
on the last page. We must thus scan through every page.

(c) Finally consider the following query:

SELECT event id FROM E
WHERE duration = (SELECT MIN(duration) FROM E);

Suppose the DBMS uses the decomposition storage model (DSM) with implicit offsets.
i. [5 points] What is the minimum number of pages that the DBMS will potentially

have to read from disk to answer this query?
2 1-20 ■ 21-40 2 41-60 2 61-80 2 81-100 2 ≥ 101 2 Not
possible to determine

Solution: 40 pages. 20 pages for the inner select, and 20 pages to get the event id
since the buffer pool will have the duration pages from the inner select. Remember
content-wise the tuples make the queries always run for the longest time, you can
only consider different orderings of the tuples.

Homework #2 continues. . .

15-445/645 (Fall 2024) Homework #2 Page 7 of 8

Question 3: Database Compression . [35 points]
Graded by:
(a) [5 points] Suppose that the DBMS has a VARCHAR column storing the following values:

[Museum of Art, Andy Warhol Museum, Museum of Natural
History, Children’s Museum, Solders & Sailors]

Which of the following are valid encodings (uint32) for this column under dictionary
compression as discussed in lecture that will support both point queries and range queries?
Select all the valid encodings.
■ [3,1,4,2,5]
2 [10,20,30,40,50]
2 [31,15,92,32,196]
■ [32,15,92,31,196]
■ [30,10,40,20,50]

Solution: To support range queries, the DBMS must use an order-preserving encoding
scheme. The values of the dictionary codes do not matter as long as they preserve the
same ordering of the original data.

(b) [15 points] Suppose the DBMS wants to compresses a table R(a) using columnar com-
pression. Which of the following compression schemes will not benefit from sorting the
table before compressing column a? Select all that apply.
Hint: “Benefit” means that the efficacy of the compression scheme improves on sorted
data. You should not make any assumptions about the column type or its distribution of
values.
2 Run-length Encoding
■ Bit-packing Encoding
■ Mostly Encoding
■ Bitmap Encoding
2 Delta Encoding
■ Dictionary Encoding
2 All of the above will not benefit.

Solution: Sorting only benefits Run-length encoding and Delta encoding for the below
reasons. All other encodings do not benefit from sorting the table first.

• Run-length Encoding: Sorting improves the potential compression ratio for RLE
because there could potentially be more consecutive values in a column.

• Delta Encoding: For numeric data types with a small range of values, the differ-
ence between consecutive values in the column after sorting could be smaller than
the original value. Therefore, the compression ratio could improve.

Question 3 continues. . .

15-445/645 (Fall 2024) Homework #2 Page 8 of 8

(c) [15 points] A colleague approaches with a list of true and false statements about run-
length encoding, delta encoding, bitmap encoding, and dictionary encoding. The col-
league wants your assistance in identifying the true statements. Select all that apply.
2 Run-length Encoding is effective for compressing any integer column.
■ Bitmap Encoding on high cardinality columns hurts inserts and updates.
2 Delta Encoding is good at compressing large text values.
■ For point lookup-only workload, order-preserving dictionary encoding is unnec-
essary.
■ For a heavy update workload, dictionary performs better than delta encoding.
2 None of the above.

Solution:

• Run-length Encoding is effective for compressing any integer column: F. Run-
length encoding is not effective for high cardinality values that vary significantly
(e.g., primary key, stock ticker data).

• Bitmap Encoding on high cardinality columns hurts inserts and updates: T. On
high cardinality columns with bitmap encoding, each insert/update would need to
edit all the bitmaps which would generate extra writes.

• Delta Encoding is good at compressing large text values: F. Large text values
in theory have large differences; hence delta encoding may not be an effective
choice.

• For point lookup-only workload, order-preserving dictionary encoding is unnec-
essary: T. Since we are only looking up an exact value, we only require the dic-
tionary’s hash properties.

• For a heavy update workload, dictionary performs better than delta encoding: T.
In the worst case, order-preserving dictionary encoding and delta encoding both
require re-encoding the entire column. However, for non order-preserving dictio-
nary encodings, you don’t have to re-encode.

In the case where the new value is different, delta encoding will have to re-encode,
whereas order-preserving dictionary may not (i.e., dictionary already contains the
target value or can assign an encoding without re-computing).

End of Homework #2

