
CARNEGIE MELLON UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

15-445/645 – DATABASE SYSTEMS (FALL 2024)
PROF. ANDY PAVLO

Homework #5 (by William)
Due: Sunday November 17, 2024 @ 11:59pm

IMPORTANT:
• Enter all of your answers into Gradescope by 11:59pm on Sunday November 17, 2024.
• Plagiarism: Homework may be discussed with other students, but all homework is to be

completed individually.
For your information:

• Graded out of 100 points; 3 questions total
• Rough time estimate: ≈ 2 - 4 hours (0.5 - 1 hours for each question)
Revision : 2024/11/16 13:07

Question Points Score

Serializability, 2PL, Deadlock Prevention 42

Hierarchical Locking 28

Optimistic Concurrency Control 30

Total: 100

1

https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024) Homework #5 Page 2 of 9

Question 1: Serializability, 2PL, Deadlock Prevention [42 points]
(a) True/False Questions:

i. [2 points] Cascading aborts is possible under Strong strict Two-Phase Locking (2PL).
2 True 2 False

ii. [2 points] Using 2PL guarantees a conflict-serializable schedule.
2 True 2 False

iii. [2 points] For a schedule following strong strict 2PL, the dependency graph is guar-
anteed to be acyclic.
2 True 2 False

iv. [2 points] A schedule that is view-serializable is also conflict-serializable.
2 True 2 False

v. [2 points] Dirty reads are possible under conflict-serializable schedules.
2 True 2 False

Question 1 continues. . .

15-445/645 (Fall 2024) Homework #5 Page 3 of 9

(b) Serializability:
Consider the schedule of 4 transactions in Table 1. R(·) and W(·) stand for ‘Read’ and
‘Write’, respectively, and time increases from left to right. (This is in contrast to the
diagrams in class, where time proceeded downward.)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

T1 R(A) R(B) W(B)
T2 R(E) W(E) R(D) W(C) W(A)
T3 R(B) W(C) W(A)
T4 R(B) R(D) W(D)

Table 1: A schedule with 4 transactions

i. [2 points] Is this schedule serial?
2 Yes 2 No

ii. [6 points] Compute the conflict dependency graph for the schedule in Table 1, se-
lecting all edges that appear in the graph.

2 T1 → T2
2 T1 → T3
2 T1 → T4

2 T2 → T1
2 T2 → T3
2 T2 → T4

2 T3 → T1
2 T3 → T2
2 T3 → T4

2 T4 → T1
2 T4 → T2
2 T4 → T3

iii. [2 points] Is this schedule conflict-serializable?
2 Yes 2 No

iv. [2 points] Is this schedule possible under regular 2PL?
2 Yes 2 No

v. [4 points] Is this schedule view-serializable?
2 Yes 2 No

Question 1 continues. . .

15-445/645 (Fall 2024) Homework #5 Page 4 of 9

(c) Deadlock Prevention:
Consider the following lock requests in Table 2.
Like before,

• S(·) and X(·) stand for ‘shared lock’ and ‘exclusive lock’, respectively.
• T1, T2, T3, and T4 represent four transactions.
• LM represents a ‘lock manager’.
• Transactions will never release a granted lock.

time t1 t2 t3 t4 t5 t6 t7 t8

T1 X(A)
T2 X(C)
T3 X(A) S(C) X(B) X(D)
T4 S(B) X(C)
LM g

Table 2: Lock requests of four transactions

i. To prevent deadlock, we use a lock manager (LM) that adopts the Wait-Die policy.
We assume that in terms of priority: T1 > T2 > T3 > T4. Here, T1 > T2 because T1
is older than T2 (i.e., older transactions have higher priority). Determine whether the
lock request is granted (‘g’), blocked (‘b’), aborted (‘a’), or already dead(‘–’).
α) [1 point] At t2: 2 g 2 b 2 a 2 –
β) [1 point] At t3: 2 g 2 b 2 a 2 –
γ) [1 point] At t4: 2 g 2 b 2 a 2 –
δ) [1 point] At t5: 2 g 2 b 2 a 2 –
ε) [1 point] At t6: 2 g 2 b 2 a 2 –
ζ) [1 point] At t7: 2 g 2 b 2 a 2 –
η) [1 point] At t8: 2 g 2 b 2 a 2 –

ii. Now we use a lock manager (LM) that adopts the Wound-Wait policy. We assume
that in terms of priority: T1 > T2 > T3 > T4. Here, T1 > T2 because T1 is older than
T2 (i.e., older transactions have higher priority). Determine whether the lock request
is granted (‘g’), blocked (‘b’), granted by aborting another transaction (‘k’), or the
requester is already dead(‘–’). Follow the same format as the previous question.
α) [1 point] At t2: 2 g 2 b 2 k 2 –
β) [1 point] At t3: 2 g 2 b 2 k 2 –
γ) [1 point] At t4: 2 g 2 b 2 k 2 –
δ) [1 point] At t5: 2 g 2 b 2 k 2 –
ε) [1 point] At t6: 2 g 2 b 2 k 2 –
ζ) [1 point] At t7: 2 g 2 b 2 k 2 –
η) [1 point] At t8: 2 g 2 b 2 k 2 –

Question 1 continues. . .

15-445/645 (Fall 2024) Homework #5 Page 5 of 9

iii. [2 points] If a transaction is aborted because of the DBMS’s deadlock prevention
policy, then that transaction keeps its original timestamp when restarting.
2 True 2 False

Homework #5 continues. . .

15-445/645 (Fall 2024) Homework #5 Page 6 of 9

Question 2: Hierarchical Locking . [28 points]
Consider a database D consisting of two tables A (which stores information about musical
artists) and R (which stores information about the artists’ releases). Specifically:

• R(rid, name, artist credit, language, status, genre, year, number sold)

• A(id, name, type, area, gender, begin date year)

Table R spans 1000 pages, which we denote R1 to R1000. Table A spans 50 pages, which we
denote A1 to A50. Each page contains 100 records. We use the notation R3.20 to denote the
twentieth record on the third page of table R. There are no indexes on these tables.

Suppose the database supports shared and exclusive hierarchical intention locks (S, X, IS, IX
and SIX) at four levels of granularity: database-level (D), table-level (R and A), page-level (e.g.,
R10), and record-level (e.g., R10.42). We use the notation IS(D) to mean a shared database-
level intention lock, and X(A2.20-A3.80) to mean a set of exclusive locks on the records from
the 20th record on the second page to the 80th record on the third page of table A.

For each of the following operations below, what sequence of lock requests should be gener-
ated to maximize the potential for concurrency while guaranteeing correctness?

(a) [4 points] Edit the begin_date_year for the 24th record on A40.
2 IX(D), IX(A), IX(A40), X(A40.24)
2 IX(D), IX(A), SIX(A40), X(A40.24)
2 IS(D), IS(A), IS(A40), S(A40.24)
2 IX(D), IX(A), S(A40), X(A40.24)

(b) [4 points] Fetch the records of all releases in R with genre = 'Metal'.
2 SIX(D), S(R)
2 IS(D), S(R)
2 S(D)
2 IX(D), S(R)

(c) [4 points] Update the status for all release records with year = 2023 to 'Finished'.
2 IX(D), IX(R)
2 IX(D), SIX(R)
2 IX(D), X(R)
2 SIX(D), X(R)

(d) [4 points] Modify the 29th record on R42.
2 IS(D), IS(R), IS(R42), X(R42.29)
2 SIX(D), IX(R), IX(R42), X(R42.29)
2 IX(D), IX(R), IX(R42), X(R42.29)
2 IX(D), IX(R), IX(R42), IX(R42.29)

(e) [4 points] Scan all records on pages R1 to R10 and modify the 12th record on R17.
2 IX(D), S(R), X(R17)
2 SIX(D), IX(R), IX(R17), X(R17.12)
2 IX(D), IX(R), IX(R1-R10), IX(R17), X(R17.12)
2 IX(D), SIX(R), IX(R17), X(R17.12)

Question 2 continues. . .

15-445/645 (Fall 2024) Homework #5 Page 7 of 9

(f) [4 points] Two users are trying to access data. User A is scanning all the records in A to
read, while User B is trying to modify the 27th record in R3. Which of the following sets
of locks are most suitable for this scenario?
2 User A: SIX(D), S(A), User B: SIX(D), IX(R), IX(R3), X(R3.27)
2 User A: S(D), User B: X(D)
2 User A: IS(D), S(A), User B: SIX(D), IX(R), IX(R3), X(R3.27)
2 User A: IS(D), S(A), User B: IX(D), IX(R), IX(R3), X(R3.27)

(g) [4 points] Delete records in A if type='Orchestra'.
2 IX(D), X(A)
2 IX(D), IX(A)
2 SIX(D), X(A)
2 SIX(D), SIX(A)

Homework #5 continues. . .

15-445/645 (Fall 2024) Homework #5 Page 8 of 9

Question 3: Optimistic Concurrency Control [30 points]
Consider the following set of transactions accessing a database with object A, B, C, D. You
should make the following assumptions:

• The transaction manager is using optimistic concurrency control (OCC).

• A transaction begins its read phase with its first operation and switches from the READ
phase immediately into the VALIDATION phase after its last operation executes.

• The DBMS is using the serial validation protocol discussed in class where only one
transaction can be in the validation phase at a time.

• Each transaction is doing backwards validation (i.e. Each transaction, when validating,
checks whether it intersects its read/write sets with any transactions that have already
committed).

• There are no other transactions in addition to the ones shown below.

Note: VALIDATION may or may not succeed for each transaction. If validation fails, the
transaction will get immediately aborted.

time T1 T2 T3

1 READ(C)
2 READ(A) READ(A)
3 WRITE(B) WRITE(A)
4 WRITE(C)
5 READ(C)
6 WRITE(B) READ(D)
7
8 VALIDATE?
9 WRITE?

10 WRITE(D)
11 VALIDATE? WRITE(C)
12 WRITE? VALIDATE?
13 WRITE?

Figure 1: An execution schedule

(a) [4 points] When is each transaction’s timestamp assigned in the transaction process?
2 The start of the read phase.
2 The start of the validation phase.
2 The start of the write phase.
2 Timestamps are not necessary for OCC.

(b) [4 points] When time = 5, will T2 read C written by T1?
2 Yes 2 No

(c) [4 points] Will T1 abort?
2 Yes
2 No

Question 3 continues. . .

15-445/645 (Fall 2024) Homework #5 Page 9 of 9

(d) [4 points] Will T2 abort?
2 Yes
2 No

(e) [4 points] Will T3 abort?
2 Yes
2 No

(f) [3 points] OCC works best when concurrent transactions access disjoint sets of data in
a database.
2 True 2 False

(g) [3 points] Transactions can suffer from phantom reads in OCC.
2 True 2 False

(h) [2 points] Aborts are less wasteful in OCC than under 2PL.
2 True 2 False

(i) [2 points] Transactions can perform dirty reads in OCC.
2 True 2 False

End of Homework #5

