
Lecture #02: Modern SQL
15-445/645 Database Systems (Fall 2024)

https://15445.courses.cs.cmu.edu/fall2024/
Carnegie Mellon University

Andy Pavlo

1 SQL History
Declarative query language for relational databases. It was originally developed in the 1970s as part of
the IBM System R project. IBM originally called it “SEQUEL” (Structured English Query Language). The
name changed in the 1980s to just “SQL” (StructuredQuery Language).
SQL is not a dead language. It is being updated with new features every couple of years. SQL-92 is the
minimum that a DBMS has to support to claim they support SQL. Each vendor follows the standard to a
certain degree but there are many proprietary extensions.
Some of the major updates released with each new edition of the SQL standard are shown below.

• SQL:1999 Regular Expressions, Triggers
• SQL:2003 XML, Windows, Sequences
• SQL:2008 Truncation, Fancy Sorting
• SQL:2011 Temporal DBs, Pipelined DML
• SQL:2016 JSON, Polymorphic tables
• SQL:2023 Property GraphQueries, Multi-Dimensional Arrays

The minimum language syntax a system needs to say that it supports SQL is SQL-92.

2 Relational Languages
The language is comprised of different classes of commands:

1. Data Manipulation Language (DML): SELECT, INSERT, UPDATE, and DELETE statements.
2. Data Definition Language (DDL): Schema definitions for tables, indexes, views, and other objects.
3. Data Control Language (DCL): Security, access controls.
4. It also includes view definition, integrity and referential constraints, and transactions.

Relational algebra is based on sets (unordered, no duplicates). SQL is based on bags (unordered, allows
duplicates).

https://15445.courses.cs.cmu.edu/fall2024/
https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/

Fall 2024 – Lecture #02 Modern SQL

3 Example Database
Here is the schema of a database we will use in our examples:

CREATE TABLE student (
sid INT PRIMARY KEY,
name VARCHAR(16),
login VARCHAR(32) UNIQUE,
age SMALLINT,
gpa FLOAT

);

CREATE TABLE course (
cid VARCHAR(32) PRIMARY KEY,
name VARCHAR(32) NOT NULL

);

CREATE TABLE enrolled (
sid INT REFERENCES student (sid),
cid VARCHAR(32) REFERENCES course (cid),
grade CHAR(1)

);

Figure 1: Example database used for lecture

4 Aggregates
An aggregation function takes in a bag of tuples as its input and then produces a single scalar value as its
output. Aggregate functions can (almost) only be used in a SELECT output list.

• AVG(COL): The average of the values in COL
• MIN(COL): The minimum value in COL
• MAX(COL): The maximum value in COL
• SUM(COL): The sum of the values in COL
• COUNT(COL): The number of tuples in the relation

Example: Get # of students with a ‘@cs’ login.
The following three queries are equivalent:

SELECT COUNT(*) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(login) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(1) FROM student WHERE login LIKE '%@cs';

Some aggregate functions (e.g. COUNT, SUM, AVG) support the DISTINCT keyword:
Example: Get # of unique students and their average GPA with a ‘@cs’ login.

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs';

15-445/645 Database Systems
Page 2 of 8

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #02 Modern SQL

A single SELECT statement can contain multiple aggregates:
Example: Get # of students and their average GPA with a ‘@cs’ login.

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs';

Output of other columns outside of an aggregate is undefined (e.cid is undefined below).
Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid;

The SQL:2023 standard now supports the ANY VALUE aggregation function.
Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), ANY_VALUE(e.cid)
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid;

Non-aggregated values in SELECT output clause must appear in the GROUP BY clause.
Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
WHERE e.sid = s.sid
GROUP BY e.cid;

The HAVING clause filters output results based on aggregation computation. This makes HAVING behave
like a WHERE clause for a GROUP BY.
Example: Get the set of courses in which the average student GPA is greater than 3.9.

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

The above query syntax is supported by many major database systems, but is not compliant with the SQL
standard. To make the query standard compliant, we must repeat use of AVG(S.GPA) in the body of the
HAVING clause.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

15-445/645 Database Systems
Page 3 of 8

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #02 Modern SQL

5 String Operations
The SQL standard says that strings are case sensitive and single-quotes only. There are functions to
manipulate strings that can be used in any part of a query.
Pattern Matching: The LIKE keyword is used for string matching in predicates.

• “%” matches any substrings (including empty).
• “ ” matches any one character.

String Functions SQL-92 defines string functions. Many database systems implement other functions in
addition to those in the standard. Examples of standard string functions include SUBSTRING(S, B, E) and
UPPER(S).
Concatenation: Two vertical bars (“||”) will concatenate two ormore strings together into a single string.

6 Date and Time
Databases generally want to keep track of dates and time, so SQL supports operations to manipulate DATE
and TIME attributes. These can be used as either outputs or predicates.
Specific syntax for date and time operations can vary wildly across systems.

7 Output Redirection
Instead of having the result a query returned to the client (e.g., terminal), you can tell the DBMS to store
the results into another table. You can then access this data in subsequent queries.

• New Table: Store the output of the query into a new (permanent) table.

SELECT DISTINCT cid INTO CourseIds FROM enrolled;

• Existing Table: Store the output of the query into a table that already exists in the database. The
target table must have the same number of columns with the same types as the target table, but the
names of the columns in the output query do not have to match.

INSERT INTO CourseIds (SELECT DISTINCT cid FROM enrolled);

8 Output Control
Since results SQL are unordered, we must use the ORDER BY clause to impose a sort on tuples:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade;

The default sort order is ascending (ASC). We can manually specify DESC to reverse the order:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade DESC;

We can use multiple ORDER BY clauses to break ties or do more complex sorting:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC;

15-445/645 Database Systems
Page 4 of 8

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #02 Modern SQL

We can also use any arbitrary expression in the ORDER BY clause:

SELECT sid FROM enrolled WHERE cid = '15-721'
ORDER BY UPPER(grade) DESC, sid + 1 ASC;

By default, the DBMS will return all of the tuples produced by the query. We can use the LIMIT clause to
restrict the number of result tuples:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10;

We can also provide an offset to return a range in the results:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 20 OFFSET 10;

Unless we use an ORDER BY clause with a LIMIT, the DBMS may produce different tuples in the result on
each invocation of the query because the relational model does not impose an ordering.

9 Window Functions
Awindow function performs “sliding” calculation across a set of tuples that are related. Window functions
are similar to aggregations, but tuples are not collapsed into a singular output tuple.
The conceptual execution for window functions can be imagined as such (note that not all window functions
will behave like this):

1. The table is partitioned
2. Each partition is sorted (if there is an ORDER BY clause)
3. For each record, it creates a window spanning multiple records
4. Finally the output is computed for each window

Functions: The window function can be any of the aggregation functions that we discussed above. There
are also also special window functions:

1. ROW NUMBER: The number of the current row.
2. RANK: The order position of the current row.

Grouping: The OVER clause specifies how to group together tuples when computing the window function.
Use PARTITION BY to specify group.

SELECT cid, sid, ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled ORDER BY cid;

We can also put an ORDER BY within OVER to ensure a deterministic ordering of results even if database
changes internally.

SELECT *, ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled ORDER BY cid;

IMPORTANT:TheDBMS computes RANK after thewindow function sorting, whereas it computes ROW NUMBER
before the sorting.
Example: Find the student with the second highest grade for each course.

15-445/645 Database Systems
Page 5 of 8

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #02 Modern SQL

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid

ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 2;

Note that we order by ASC because the grades are A,B,C instead of number grades.

10 NestedQueries
Nested queries invoke queries inside of other queries to execute more complex logic within a single query.
Nested queries are often difficult to optimize.
The scope of the outer query is included in an inner query (i.e. the inner query can access attributes from
outer query). The opposite is not true.
Inner queries can appear in almost any part of a query:

1. SELECT Output Targets:

SELECT (SELECT 1) AS one FROM student;

2. FROM Clause:

SELECT name
FROM student AS s, (SELECT sid FROM enrolled) AS e
WHERE s.sid = e.sid;

3. WHERE Clause:

SELECT name FROM student
WHERE sid IN (SELECT sid FROM enrolled);

Example: Get the names of students that are enrolled in ‘15-445’.

SELECT name FROM student
WHERE sid IN (

SELECT sid FROM enrolled
WHERE cid = '15-445'

);

Note that sid has a different scope depending on where it appears in the query.
Example: Find student record with the highest id that is enrolled in at least one course.

SELECT student.sid, name
FROM student
JOIN (SELECT MAX(sid) AS sid

FROM enrolled) AS max_e
ON student.sid = max_e.sid;

NestedQuery Results Expressions:

15-445/645 Database Systems
Page 6 of 8

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #02 Modern SQL

• ALL: Must satisfy expression for all rows in sub-query.
• ANY: Must satisfy expression for at least one row in sub-query.
• IN: Equivalent to =ANY().
• EXISTS: At least one row is returned.

Example: Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

);

11 Lateral Joins
The LATERAL operator allows a nested query to reference attributes in other nested queries that precede it.
You can think of lateral joins like a for loop that allows you to invoke another query for each tuple in a
table.
Example: Calculate the number of students enrolled in each course and the average GPA. Sort by enrollment
count in descending order..
Once we have gotten the course records, we can think of this query like below. For each course:

• Compute the number of enrolled students in this course
• Compute the average GPA of the enrolled students in this course

SELECT * FROM course AS c
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1,

LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;

12 Common Table Expressions
Common Table Expressions (CTEs) are an alternative to windows or nested queries when writing more
complex queries. They provide a way to write auxiliary statements for use in a larger query. A CTE can
be thought of as a temporary table that is scoped to a single query.
The WITH clause binds the output of the inner query to a temporary table with the same name.
Example: Generate a CTE called cteName that contains a single tuple with a single attribute set to “1”. Select
all attributes from cteName.

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName;

We can bind output columns to names before the AS:

15-445/645 Database Systems
Page 7 of 8

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #02 Modern SQL

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName;

A single query may contain multiple CTE declarations:

WITH cte1 (col1) AS (SELECT 1), cte2 (col2) AS (SELECT 2)
SELECT * FROM cte1, cte2;

Adding the RECURSIVE keyword after WITH allows a CTE to reference itself. This enables the implementa-
tion of recursion in SQL queries. With recursive CTEs, SQL is provably Turing-complete, implying that it
is as computationally expressive as more general purpose programming languages (ignoring the fact that
it is a bit more cumbersome).
Example: Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION
(SELECT counter + 1 FROM cteSource

WHERE counter < 10)
)
SELECT * FROM cteSource;

15-445/645 Database Systems
Page 8 of 8

https://15445.courses.cs.cmu.edu/fall2024/

	SQL History
	Relational Languages
	Example Database
	Aggregates
	String Operations
	Date and Time
	Output Redirection
	Output Control
	Window Functions
	Nested Queries
	Lateral Joins
	Common Table Expressions

