
Lecture #07: Hash Tables
15-445/645 Database Systems (Fall 2024)

https://15445.courses.cs.cmu.edu/fall2024/
Carnegie Mellon University

Andy Pavlo

1 Data Structures
A DBMS uses various data structures for many different parts of the system internals. Some examples
include:

• Internal Meta-Data: This is data that keeps track of information about the database and the system
state.
Ex: Page tables, page directories

• Core Data Storage: Data structures store the actual tuples (records) in the database.
• Temporary Data Structures: The DBMS can build ephemeral data structures on the fly while
processing a query to speed up execution.
Ex: hash tables for joins

• Table Indices: Additional data structures that help efficiently locate specific tuples.
There are two key design decisions to consider when implementing data structures in a DBMS:

1. Data organization: We need to consider the layout of the data structure and how it impacts per-
formance. For example, a data structure that may be inefficient for memory reads due to poor se-
quential access might perform better in disk-based DBMS systems, where sequential performance is
more crucial.

2. Concurrency: We also need to ensure that multiple threads can access the data structure simultane-
ously without causing conflicts, while maintaining data integrity and correctness.

2 Hash Table
A hash table implements an associative array abstract data type that maps keys to values. It provides on
averageO (1) operation complexity (O (n) in theworst-case) andO (n) storage complexity. Note that even
with O (1) operation complexity on average, there are constant factor optimizations which are important
to consider in the real world. There is no sequential access with respect to other keys, meaning the order
of keys in the hash table is not preserved, and navigating through the elements in any specific sequence
is not possible.
A hash table implementation is comprised of two parts:

• Hash Function: This tells us how to map a large key space into a smaller domain. It is used to
compute an index into an array of buckets or slots. When choosing a hash function, we need to
consider the tradeoff between speed and the chance of collisions (when two keys map to the same
slot). At one extreme, a hash function that always returns the same value is very fast but causes
constant collisions. At the other extreme, a ”perfect” hash function avoids collisions entirely but
is too slow to compute. The best solution lies somewhere in between, balancing speed with a low
collision rate.

https://15445.courses.cs.cmu.edu/fall2024/
https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/


Fall 2024 – Lecture #07 Hash Tables

• Hashing Scheme: This tells how to handle key collisions after hashing. We need to balance the
trade-off between allocating a larger hash table to reduce collisions and performing additional op-
erations when collisions do occur.

3 Hash Functions
A hash function takes in any key as its input. It then returns an integer representation of that key (i.e., the
“hash”). The function’s output is deterministic (i.e., the same key should always generate the same hash
output).
The DBMS need not use a cryptographically secure hash function (e.g., SHA-256) because we do not need
to worry about protecting the contents of keys. These hash functions are primarily used internally by the
DBMS and thus information is not leaked outside of the system. In general, we only care about the hash
function’s speed and collision rate.
The current state-of-the-art hash function is Facebook XXHash3.

4 Static Hashing Schemes
A static hashing scheme is one where the size of the hash table is fixed and known before. This means
that if the DBMS runs out of storage space in the hash table, then it has to rebuild a larger hash table from
scratch, which is very expensive. Typically the new hash table is twice the size of the original hash table.
To reduce the number of wasteful comparisons, it is important to avoid collisions of hashed key. Typically,
we use twice the number of slots as the number of expected elements.
The following assumptions usually do not hold in reality:

1. The number of elements is known ahead of time and fixed.
2. Each key is unique.
3. Perfect hash function guarantees no collisions (if key1 != key2 then hash(key1) != hash(key2))

Therefore, we need to choose the hash function and hashing schema appropriately.

4.1 Linear Probe Hashing
This is the most basic hashing scheme. It is also typically the fastest. It uses a circular buffer of array slots.
The hash function maps keys to slots. Insertion - For insertions, when a collision occurs, we linearly search
the subsequent slots until an open one is found, looping around from the end to the start of the array if
necessary. Lookup - For lookups, we can check the slot the key hashes to, and search linearly until we find
the desired entry. If we reach an empty slot or we iterated over every slot in the hashtable, then the key
is not in the table. Note that this means we have to store both key and value in the slot so that we can
check if an entry is the desired one. Deletion - Deletions are more tricky. We have to be careful about just
removing the entry from the slot, as this may prevent future lookups from finding entries that have been
put below the now empty slot. There are two solutions to this problem:

• The most common approach is to use “tombstones”. Instead of deleting the entry, we replace it with
a “tombstone” entry which tells future lookups to keep scanning. Note that insertions are able to
insert into tombstone indices.

• The other option is to shift the adjacent data after deleting an entry to fill the now empty slot.
However, we must be careful to only move the entries which were originally shifted. This is rarely
implemented in practice as it is extremely expensive when we have a large number of keys.

15-445/645 Database Systems
Page 2 of 4

http://www.xxhash.com/
https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #07 Hash Tables

Storing Keys/Values: Two approaches for storing key/value entries in a hash table:
• Fixed-length Key/Values: These are stored directly within the hash table pages. Optionally, the key’s
hash can be stored alongside for faster comparisons.

• Variable-length Key/Values: These are handled by inserting the key/value data into a separate tem-
porary table. The hash table then stores the hash as the key and a record ID pointing to the corre-
sponding entry in the temporary table as the value.

Non-unique Keys: In the case where the same key may be associated with multiple different values or
tuples, there are two approaches.

• Separate Linked List: Instead of storing the values with the keys, we store a pointer to a separate
storage area that contains a linked list of all the values, which may overflow to multiple pages.

• Redundant Keys: The more common approach is to simply store the same key multiple times in the
table. Everything with linear probing still works even if we do this.

Optimizations: There are several ways to further optimize this hashing scheme:
• Specialized hash table implementations based on the data type or size of keys: These could differ
in the way they store data, perform splits, etc. For example, if we have string keys, we could store
smaller strings in the original hash table and only a pointer or hash for larger strings.

• Storing metadata in a separate array: An example would be to store empty slot/tombstone informa-
tion in a packed bitmap as a part of the page header or in a separate hash table, which would help
us avoid looking up deleted keys.

• Maintaining versions for the hash table and its slots: Since allocating memory for a hash table is
expensive, we may want to reuse the same memory repeatedly. To clear out the table and invalidate
its entries, we can increment the version counter of the table instead of marking each slot as delet-
ed/empty. A slot can be treated as empty if there is a mismatch between the slot version and table
version.

Google’s absl::flat hash map is a state-of-the-art implementation of Linear Probe Hashing.

4.2 Cuckoo Hashing
Instead of using a single hash table, this approach maintains multiple hashtables with different hash func-
tions. The hash functions are the same algorithm (e.g., XXHash, CityHash); they generate different hashes
for the same key by using different seed values.
When we insert, we check every table and choose one that has a free slot (if multiple have one, we can
compare things like load factor, or more commonly, just choose a random table). If no table has a free slot,
we choose (typically a random one) and evict the old entry. We then rehash the old entry into a different
table. In rare cases, we may end up in a cycle. If this happens, we can rebuild all of the hash tables with
new hash function seeds (less common) or rebuild the hash tables using larger tables (more common).
Cuckoo hashing guarantees O (1) lookups and deletions, but insertions may be more expensive.
Professor’s note: The essence of cuckoo hashing is that multiple hash functions map a key to different
slots. In practice, cuckoo hashing is implemented with multiple hash functions that map a key to different
slots in a single hash table. Further, as hashing may not always be O (1), cuckoo hashing lookups and
deletions may cost more than O (1).

15-445/645 Database Systems
Page 3 of 4

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #07 Hash Tables

5 Dynamic Hashing Schemes
The static hashing schemes require the DBMS to know the number of elements it wants to store. Otherwise
it has to rebuild the table if it needs to grow/shrink in size.
Dynamic hashing schemes are able to resize the hash table on demand without needing to rebuild the
entire table. The schemes perform this resizing in different ways that can either maximize reads or writes.

5.1 Chained Hashing
This is the most common dynamic hashing scheme. The DBMS maintains a linked list of buckets for each
slot in the hash table. Keys that hash to the same slot are simply inserted into the linked list for that slot.
To look up an element, we hash to its bucket and then scan through the linked list to find it.

5.2 Extendible Hashing
Extendible hashing is an improved variant of chained hashing that splits buckets instead of allowing chains
to grow indefinitely. This approach allows multiple slot locations in the hash table to point to the same
bucket chain. The core idea behind rebalancing the hash table is to move bucket entries on split and
increase the number of bits examined to find entries in the hash table. This means that the DBMS only has
to move data within the buckets of the split chain; all other buckets remain untouched.

• The DBMS maintains a global and local depth bit counts. These bit counts determine the number of
most significant bits we need to look at to find buckets in the slot array.

• When a bucket is full, the DBMS splits the bucket and re-distributes its elements. If the local depth
of the split bucket is less than the global depth, then the new bucket is just added to the existing slot
array. Otherwise, the DBMS doubles the size of the slot array to accommodate the new bucket and
increments the global depth counter.

5.3 Linear Hashing
Instead of immediately splitting a bucket when it overflows, this schememaintains a split pointer that keeps
track of the next bucket to split. No matter whether this pointer is pointing to the bucket that overflowed,
the DBMS always splits. The overflow criterion is left up to the implementation.

• When any bucket overflows, split the bucket at the pointer location. Add a new slot entry and a new
hash function, and apply this function to rehash the keys in the split bucket.

• If the original hash function maps to a slot that has previously been pointed to by the split pointer,
apply the new hash function to determine the actual location of the key.

• When the pointer reaches the very last slot, delete the original hash function and move the pointer
back to the beginning.

If the highest bucket below the split pointer is empty, we can also remove the bucket and move the split
pointer in the reverse direction, thereby shrinking the size of the hash table.

15-445/645 Database Systems
Page 4 of 4

https://15445.courses.cs.cmu.edu/fall2024/

	Data Structures
	Hash Table
	Hash Functions
	Static Hashing Schemes
	Linear Probe Hashing
	Cuckoo Hashing

	Dynamic Hashing Schemes
	Chained Hashing
	Extendible Hashing
	Linear Hashing


