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1 Table Indexes
There are a several data structures choices in a DBMS for purposes such as internal meta-data, core data
storage, temporary data structures, or table indexes. Our focus in this lecture will be on table indexes. In
the previous lecture we considered hash tables, which is not always the best option for table indexes since
they cannot support range scans nor partial key look-ups.
A table index is a replica of a subset of a table’s columns that is organized and/or sorted for efficient access
using a subset of those attributes. So instead of performing a sequential scan, the DBMS can perform a
lookup on the table index to find certain tuples more quickly. The DBMS ensures that the contents of the
tables and the indexes are always logically in sync.
There exists a trade-off between the number of indexes to create per database. Although more indexes
makes looking up queries faster, indexes also use storage and require maintenance. Plus, there are concur-
rency concerns with respect to keeping them in sync. It is the DBMS’s job to figure out the best indexes
to use to execute queries.

2 B+Tree
A B+Tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential
access, insertion, and deletions in O(log(n)). It is optimized for disk-oriented DBMS’s that read/write
large blocks of data.
Almost every modern DBMS that supports order-preserving indexes uses a B+Tree. There is a specific data
structure called a B-Tree, but people also use the term to generally refer to a class of data structures. The
primary difference between the original B-Tree and the B+Tree is that B-Trees stores keys and values in all
nodes, while B+ trees store values only in leaf nodes. Modern B+Tree implementations combine features
from other B-Tree variants, such as the sibling pointers used in the Blink-Tree.
Formally, a B+Tree is an M -way search tree (where M represents the maximum number of children a
node can have) with the following properties:

• It is perfectly balanced (i.e., every leaf node is at the same depth).
• Every inner node other than the root is at least half full (M/2− 1 <= num of keys <= M − 1).
• Every inner node with k keys has k+1 non-null children.

Every node in a B+Tree contains an array of key/value pairs.
For leaf nodes, the keys are derived from the attribute(s) that the index is based on. Though it is not
necessary according to the definition of the B+Tree, arrays at every node are almost always sorted by the
keys. Two approaches for leaf node values are record IDs and tuple data. Record IDs refer to a pointer
to the location of the tuple, usually the primary key. Leaf nodes that have tuple data store the the actual
contents of the tuple in each node.
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Figure 1: B+ Tree diagram

For inner nodes, the values contain pointers to other nodes, and the keys can be thought of as guide posts.
They guide the tree traversal but do not represent the keys (and hence their values) on the leaf nodes. What
this means is that you could potentially have a key in an inner node (as a guide post) that is not found on
the leaf nodes. Although it must be noted that conventionally inner nodes posses only those keys that are
present in the leaf nodes.
Depending on the index specification, the DBMS will cluster null keys in either the first leaf node (i.e.,
NULL FIRST) or the last leaf node (i.e., NULL LAST).

Insertion
To insert a new entry into a B+Tree, one must traverse down the tree and use the inner nodes to figure
out which leaf node to insert the key into.

1. Find correct leaf L.
2. Add new entry into L in sorted order:

• If L has enough space, the operation is done.
• Otherwise split L into two nodes L and L2. Redistribute entries evenly and copy up the middle
key. Insert an entry pointing to L2 into the parent of L.

3. To split an inner node, redistribute entries evenly, but push up the middle key.

Deletion
Whereas in inserts we occasionally had to split leaves when the tree got too full, if a deletion causes a tree
to be less than half-full, we must merge in order to re-balance the tree.

1. Find correct leaf L.
2. Remove the entry:

• If L is at least half full, the operation is done.
• Otherwise, you can try to redistribute, borrowing from the sibling.
• If redistribution fails, merge L and the sibling.

3. If a merge occurred, you must delete the entry in the parent pointing to L.
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Composite Index
The key is composed of multiple attributes. We can create composite index like:

CREATE INDEX abc_index ON table (a, b, c);

Then we can use the index for queries like:

SELECT a, b, c FROM table
WHERE a = 1 AND b = 2 AND c = 3;

Note that the ‘AND’ operator is mostly necessary. Conditions with ‘OR’ are generally not supported.

Selection Conditions
Because B+Trees are in sorted order, look ups have fast traversal and also do not require the entire key.
The DBMS can use a B+Tree index if the query provides any of the attributes of the search key. This differs
from a hash index, which requires all attributes in the search key.

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*)
A ≤ A

A ≤ B

Figure 2: To perform a prefix search on a B+Tree, one looks at the first attribute on
the key, follows the path down and performs a sequential scan across the leaves to
find all they keys that one wants.

Duplicate Keys
There are two approaches to duplicate keys in a B+Tree.
The first approach is to append record IDs as part of the key. Since each tuple’s record ID is unique, this
will ensure that all the keys are identifiable.
The second approach is to allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
Although no redundant information is stored, this approach is more complex to maintain and modify.

Clustered Indexes
The table is stored in the sort order specified by the primary key, as either heap- or index-organized storage.
Since some DBMSs always use a clustered index, they will automatically make a hidden row id primary
key if a table doesn’t have an explicit one, but others cannot use them at all.

Index Scan Page Sorting
Since directly retrieving tuples from an unclustered index is inefficient, the DBMS can first figure out all
the tuples that it needs and then sort them based on their page id. This way, each page will only need to
be fetched exactly once.
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3 B+Tree Design Choices
3.1 Node Size
Depending on the storage medium, we may prefer larger or smaller node sizes. For example, nodes stored
on hard drives are usually in the order of megabytes in size to reduce the number of seeks needed to find
data and amortize the expensive disk read over a large chunk of data, while in-memory databases may use
page sizes as small as 512 bytes in order to fit the entire page into the CPU cache as well as to decrease data
fragmentation. This choice can also be dependent on the type of workload, as point queries would prefer
as small a page as possible to reduce the amount of unnecessary extra info loaded, while a large sequential
scan might prefer large pages to reduce the number of fetches it needs to do.

3.2 Merge Threshold
While B+Trees have a rule about merging underflowed nodes after a delete, sometimes it may be beneficial
to temporarily violate the rule to reduce the number of deletion operations. For instance, eager merging
could lead to thrashing, where a lot of successive delete and insert operations lead to constant splits and
merges. It also allows for batched merging where multiple merge operations happen all at once, reducing
the amount of time that expensive write latches have to be taken on the tree.
There are merge strategy that keeps small nodes in the tree and rebuilds it later, which made the tree
unbalanced (as in Postgres). We will not discuss this in the lecture.

3.3 Variable Length Keys
Currently we have only discussed B+Trees with fixed length keys. However we may also want to support
variable length keys, such as the case where a small subset of large keys lead to a lot of wasted space. There
are several approaches to this:

1. Pointers
Instead of storing the keys directly, we could just store a pointer to the key. Due to the inefficiency
of having to chase a pointer for each key, the only place that uses this method in production is
embedded devices, where its tiny registers and cache may benefit from such space savings.

2. Variable Length Nodes
We could also still store the keys like normal and allow for variable length nodes. This is generally
infeasible and largely not used due to the significant memory management overhead of dealing with
variable length nodes.

3. Padding
Instead of varying the key size, we could set each key’s size to the size of the maximum key and pad
out all the shorter keys. In most cases this is a massive waste of memory, so you don’t see this used
by anyone either.

4. Key Map/Indirection
The method that nearly everyone uses is replacing the keys with an index to the key-value pair in
a separate dictionary. This offers significant space savings and potentially shortcuts point queries
(since the key-value pair the index points to is the exact same as the one pointed to by leaf nodes).
Some databases (e.g. PostgreSQL) allow overflow within a given node to maintain a fixed number
of keys by storing excess data in overflow pages.

3.4 Intra-Node Search
Once we reach a node, we still need to search within the node (either to find the next node from an inner
node, or to find our key value in a leaf node). While this is relatively simple, there are still some tradeoffs
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to consider:
1. Linear

The simplest solution is to just scan every key in the node until we find our key. On the one hand,
we don’t have to worry about sorting the keys, making insertions and deletes much quicker. On
the other hand, this is relatively inefficient and has a complexity of O(n) per search. This can be
vectorized using SIMD (or equivalent) instructions.

2. Binary
A more efficient solution for searching would be to keep each node sorted and use binary search to
find the key. This is as simple as jumping to the middle of a node and pivoting left or right depending
on the comparison between the keys. Searches are much more efficient this way, as this method only
has the complexity ofO(ln(n)) per search. However, insertions become more expensive as we must
maintain the sort of each node.

3. Interpolation
Finally, in some circumstances we may be able to utilize interpolation to find the key. This method
takes advantage of any metadata stored about the node (such as max element, min element, average,
etc.) and uses it to generate an approximate location of the key. For example, if we are looking for 8
in a node and we know that 10 is the max key and 10− (n+ 1) is the smallest key (where n is the
number of keys in each node), then we know to start searching 2 slots down from the max key, as
the key one slot away from the max key must be 9 in this case. Despite being the fastest method we
have given, this method is only seen in academic databases due to its limited applicability to keys
with certain properties (like integers) and complexity.
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4 Optimizations
4.1 Prefix Compression
Most of the time when we have keys in the same node there will be some partial overlap of some prefix of
each key (as similar keys will end up right next to each other in a sorted B+Tree). Instead of storing this
prefix as part of each key multiple times, we can simply store the prefix once at the beginning of the node
and then only include the unique sections of each key in each slot.

robbed robbing robot

bed bing ot

Prefix:rob

Figure 3: An example of prefix compression. Since the keys are in lexicographic
order, they are likely to share some prefix.

4.2 Deduplication
In the case of an index which allows non-unique keys, we may end up with leaf nodes containing the same
key over and over with different values attached. One optimization of this could be only writing the key
once and then following it with all of its associated values.

4.3 Suffix Truncation
For the most part the key entries in inner nodes are just used as signposts and not for their actual key
value (as even if a key exists in the index we still have to search to the bottom to ensure that it hasn’t been
deleted). We can take advantage of this by only storing the minimum prefix that is needed to correctly
route probes into the correct node.

4.4 Pointer Swizzling
Because each node of a B+Tree is stored in a page from the buffer pool, each time we load a new page we
need to fetch it from the buffer pool, requiring latching and lookups. To skip this step entirely, we could
store the actual raw pointers in place of the page IDs (known as ”swizzling”), preventing a buffer pool
fetch entirely. Rather than manually fetching the entire tree and placing the pointers manually, we can
simply store the resulting pointer from a page lookup when traversing the index normally. Note that we
must track which pointers are swizzled and deswizzle them back to page ids when the page they point to
is unpinned and victimized.

4.5 Bulk Insert
When a B+Tree is initially built, having to insert each key the usual way would lead to constant split
operations. Since we already give leaves sibling pointers, initial insertion of data is much more efficient
if we construct a sorted linked list of leaf nodes and then easily build the index from the bottom up using
the first key from each leaf node. Note that depending on our context we may wish to pack the leaves
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as tightly as possible to save space or leave space in each leaf to allow for more inserts before a split is
necessary.

4.6 Write-Optimized B+ Tree
Split / merge node operation are expensive. Therefore, some variants of B-Tree, such as Bϵ-Tree, logs
changes in the internal node and lazily propagates the updates down to the leaf node later.
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