
Lecture #11: Sorting & Aggregation Algorithms
15-445/645 Database Systems (Fall 2024)

https://15445.courses.cs.cmu.edu/fall2024/
Carnegie Mellon University

Andy Pavlo

1 Query Plan
Up to this point we have talked about access methods. Now we need to actually execute the queries.
The database system will compile SQLs into query plans. The query plan is a tree of operators. We will
cover this later in query execution lectures.
For a disk-oriented database system, we will use the buffer pool to implement algorithms that need to spill
to disk. We want to minimize I/O for an algorithm.

2 Sorting
DBMSs need to sort data because tuples in a table have no specific order under the relation model. Sorting
is (potentially) used in ORDER BY, GROUP BY, JOIN, and DISTINCT operators. If the data that needs to be
sorted fits in memory, then the DBMS can use a standard sorting algorithm (e.g., quicksort). If the data
does not fit, then the DBMS needs to use external sorting that is able to spill to disk as needed and prefers
sequential over random I/O.
Top-N Heap Sort: If a query contains an ORDER BY with a LIMIT, then to find the top-N elements, the
DBMS only needs to scan the data once while maintaining a priority queue of the top-N elements it has
seen so far. The ideal scenario for heapsort is when the top-N elements fit in memory, so the DBMS can
maintain the entire priority queue in-memory.
External merge sort: This is the standard algorithm for sorting data which is too large to fit in memory.
It is a divide-and-conquer sorting algorithm that splits the data set into separate runs and then sorts them
individually. It can spill runs to disk as needed then read them back in one at a time. The algorithm is
comprised of two phases:

• Phase #1 – Sorting: First, the algorithm sorts small chunks of data that fit in main memory, and
then writes the sorted pages back to disk.

• Phase #2 – Merge: Then, the algorithm combines the sorted runs into larger sorted runs.

A sorted run can be early-materialized, which means that the entire tuple is stored in the pages, or can be
late-materialized, which means we only store record IDs in the pages and read them later.

Two-way Merge Sort
Themost basic version of the external merge sort algorithm is the two-way merge sort. During the sorting
phase, the algorithm reads each page, sorts it, and writes the sorted version back to disk. Then, in the
merge phase, it uses three buffer pages. It reads two sorted pages in from disk, and merges them together
into a third buffer page. Whenever the third page fills up, it is written back to disk and replaced with
an empty page. Each set of sorted pages is called a run. The algorithm then recursively merges the runs
together.

https://15445.courses.cs.cmu.edu/fall2024/
https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/


Fall 2024 – Lecture #11 Sorting & Aggregation Algorithms

Let N be the total number of data pages. The algorithm makes 1 + ⌈log2N⌉ total passes through the data
(1 for the first sorting step then ⌈log2N⌉ for the recursive merging). The total I/O cost is 2N× (# of passes)
since each pass performs an I/O read and an I/O write for each page.

General (K-way) Merge Sort
The generalized version of the algorithm allows the DBMS to take advantage of using more than three
buffer pages. LetB be the total number of buffer pages available. Then, during the sort phase, the algorithm
can read and sort B pages at a time, so the DBMS writes

⌈
N
B

⌉
sorted runs of length B pages back to disk.

The merge phase can combine up to B − 1 runs in each pass, using one buffer page per run to read it and
again using one buffer page for the combined data, writing back to disk as needed.
In the generalized version, the algorithm performs 1 +

⌈
logB−1

⌈
N
B

⌉⌉
passes (one for the sorting phase

and
⌈
logB−1

⌈
N
B

⌉⌉
for the merge phase. Then, the total I/O cost is 2N × (# of passes) since it again has to

make a read and write for each page in each pass.

Double Buffering Optimization
One optimization for external merge sort is prefetching the next run in the background and storing it in a
second buffer while the system is processing the current run. This reduces the wait time for I/O requests
at each step by continuously utilizing the disk. However, it reduces effective buffers available by half. This
optimization requires the use ofmultiple threads, since the prefetching should occurwhile the computation
for the current run is happening.

Comparison Optimizations
Code specialization is often used to speedup sorting comparisions. Instead of providing the comparator
as a function pointer to the sorting algorithm, the sorting function can be hard-coded to the specific key
type. An example of this is template specialization in C++. Another optimization (for string based com-
parisons) is suffix truncation, wherein the binary prefix of long VARCHAR keys can be compared for
equality checks with a fallback to the slower string comparison if the prefixes are equal.

Using B+Trees
It is sometimes advantageous for the DBMS to use an existing B+tree index to aid in sorting rather than
using the external merge sort algorithm. Some DBMSs support prefix key scans for sorting. In particular,
if the index is a clustered index, the DBMS can just traverse the B+tree. Since the index is clustered, the
data will be stored in the correct order, so the I/O access will be sequential. This means it is always better
than external merge sort since no computation is required. On the other hand, if the index is unclustered,
traversing the tree is almost always worse, since each record could be stored in any page, so nearly all
record accesses will require a disk read. The only exception might be Top-N queries, where N is small
enough relative to total number of tuples in table.

3 Aggregations
An aggregation operator in a query plan collapses the values of one or more tuples into a single scalar
value. There are two approaches for implementing an aggregation: (1) sorting and (2) hashing.

15-445/645 Database Systems
Page 2 of 3

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #11 Sorting & Aggregation Algorithms

Sorting
The DBMS first sorts the tuples on the GROUP BY key(s). It can use either an in-memory sorting algorithm
if everything fits in the buffer pool (e.g., quicksort) or the external merge sort algorithm if the size of the
data exceeds memory. The DBMS then performs a sequential scan over the sorted data to compute the
aggregation. The output of the operator will be sorted on the keys.
When performing sorting aggregations, it is important to order the query operations to maximize effi-
ciency. For example, if the query requires a filter, it is better to perform the filter first and then sort the
filtered data to reduce the amount of data that needs to be sorted.

Hashing
Hashing can be computationally cheaper than sorting for computing aggregations, especially when the
order of the output does not matter. The DBMS populates an ephemeral hash table as it scans the table.
For each record, check whether there is already an entry in the hash table and perform the appropriate
modification. If the size of the hash table is too large to fit in memory, then the DBMS has to spill it to disk.
Divide-and-conquer approaches are generally adopted to compute an aggregation when data does not fit
in memory. There are two phases to accomplish this:

• Phase #1 – Partition: Use a hash function h1 to split tuples into partitions on disk based on target
hash key. This will put all tuples that match into the same partition. AssumeB buffer pages in total.
We will haveB-1 output buffer pages for partitions and 1 buffer page for input data. If any partition
is full, the DBMS will spill it to disk. Thus, this phase results in B − 1 partitions.

• Phase #2 – ReHash: For each partition on disk, read its pages into memory and build an in-memory
hash table based on a second hash function h2 (where h1 ̸= h2). This will put all tuples that match
into the same bucket. Then go through each bucket of this hash table to bring together matching
tuples to compute the aggregation. This assumes that each partition fits in memory.

During the ReHash phase, the DBMS can store pairs of the form (GroupByKey→RunningValue) to compute
the aggregation. The contents of RunningValue depends on the aggregation function (e.g. (COUNT, SUM)
for AVG). To insert a new tuple into the hash table:

• If it finds a matching GroupByKey, then update the RunningValue appropriately.
• Else insert a new (GroupByKey→RunningValue) pair.

In general for aggregation, hashing is always more efficient unless the data is already sorted beforehand
(e.g. following Order By).

15-445/645 Database Systems
Page 3 of 3

https://15445.courses.cs.cmu.edu/fall2024/

	Query Plan
	Sorting
	Aggregations

