
Lecture #16: Concurrency Control Theory
15-445/645 Database Systems (Fall 2024)

https://15445.courses.cs.cmu.edu/fall2024/
Carnegie Mellon University

Andy Pavlo

1 Motivation
• Lost Update Problem (Concurrency Control): How can we avoid race conditions when updating
records at the same time?

• Durability Problem (Recovery): How can we ensure the correct state in case of a power failure?

2 Transactions
A transaction is the execution of a sequence of one or more operations (e.g., SQL queries) on a shared
database to perform some higher level function. They are the basic unit of change in a DBMS. Partial
transactions are not allowed (i.e. transactions must be atomic).
Example: Move $100 from Andy’s bank account to his promotor’s account

1. Check whether Andy has $100.
2. Deduct $100 from his account.
3. Add $100 to his promotor’s account.

Either all of the steps need to be completed or none of them should be completed.

The Strawman System
A simple system for handling transactions is to execute one transaction at a time using a single worker
(e.g. one thread). Thus, only one transaction can be running at a time. To execute the transaction, the
DBMS copies the entire database file and makes the transaction changes to this new file. If the transaction
succeeds, then the new file becomes the current database file. If the transaction fails, the DBMS discards
the new file and none of the transaction’s changes have been saved. This method is slow as it does not
allow for concurrent transactions and requires copying the whole database file for every transaction.
A (potentially) better approach is to allow concurrent execution of independent transactions while also
maintaining correctness and fairness (as in all transactions are treated with equal priority and don’t get
”starved” by never being executed). But executing concurrent transactions in a DBMS is challenging. It is
difficult to ensure correctness (for example, if Andy only has $100 and tries to pay off two promoters at
once, who should get paid?) while also executing transactions quickly (our strawman example guarantees
sequential correctness, but at the cost of parallelism).
Arbitrary interleaving of operations can lead to:

• Temporary Inconsistency: Unavoidable, but not an issue.
• Permanent Inconsistency: Unacceptable, cause problems with correctness and integrity of data.

The scope of a transaction is only inside the database. It cannot make changes to the outside world because
it cannot roll those back. For example, if a transaction causes an email to be sent, this cannot be rolled
back by the DBMS if the transaction is aborted.

https://15445.courses.cs.cmu.edu/fall2024/
https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/

Fall 2024 – Lecture #16 Concurrency Control Theory

3 Definitions
Formally, a database can be represented as a fixed set of named data objects (A,B,C, . . .). These objects
can be attributes, tuples, pages, tables, or even databases. The algorithms that we will discuss work on any
type of object but all objects must be of the same type.
A transaction is a sequence of read and write operations (i.e., R(A),W (B)) on those objects. To simplify
discussion, this definition assumes the database is a fixed size, so the operations can only be reads and
updates, not inserts or deletions.
The boundaries of transactions are defined by the client. In SQL, a transaction starts with the BEGIN com-
mand. The outcome of a transaction is either COMMIT or ABORT. For COMMIT, either all of the transaction’s
modifications are saved to the database, or the DBMS overrides this and aborts instead. For ABORT, all of
the transaction’s changes are undone so that it is like the transaction never happened. Aborts can be either
self-inflicted or caused by the DBMS.
The criteria used to ensure the correctness of a database is given by the acronym ACID.

• Atomicity: Atomicity ensures that either all actions in the transaction happen, or none happen.
• Consistency: If each transaction is consistent and the database is consistent at the beginning of the
transaction, then the database is guaranteed to be consistent when the transaction completes. Data
is consistent if it satisfies all validation rules such as constraints, cascades and triggers.

• Isolation: Isolation means that when a transaction executes, it should have the illusion that it is
isolated from other transactions. Isolation ensures that concurrent execution of transactions should
have the same resulting database state as a sequential execution of the transactions.

• Durability: If a transaction commits, then its effects on the database should persist.

4 ACID: Atomicity
The DBMS guarantees that transactions are atomic. The transaction either executes all its actions or none
of them. There are two approaches to this:
Approach #1: Logging
DBMS logs all actions so that it can undo the actions in case of an aborted transaction. It maintains undo
records both in memory and on disk. Logging is used by almost all modern systems for audit and efficiency
reasons.
Approach #2: Shadow Paging
The DBMS makes copies of pages modified by the transactions and transactions make changes to those
copies. Only when the transaction commits is the page made visible. This approach is typically slower
at runtime than a logging-based DBMS. However, one benefit is, if you are only single threaded, there
is no need for logging, so there are less writes to disk when transactions modify the database. This also
makes recovery simple, as all you need to do is delete all pages from uncommitted transactions. In general,
though, better runtime performance is preferred over better recovery performance, so this is rarely used
in practice.

5 ACID: Consistency
At a high level, consistency means the “world” represented by the database is logically correct. All ques-
tions (i.e., queries) that the application asks about the data will return logically correct results. There are
two notions of consistency:
Database Consistency: The database accurately represents the real world entity it is modeling and fol-

15-445/645 Database Systems
Page 2 of 4

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #16 Concurrency Control Theory

lows integrity constraints. (E.g. The age of a person cannot not be negative). Additionally, transactions in
the future should see the effects of transactions committed in the past inside of the database.
Transaction Consistency: If the database is consistent before the transaction starts, it will also be con-
sistent after. Ensuring transaction consistency is the application’s responsibility.

6 ACID: Isolation
TheDBMS provides transactions the illusion that they are running alone in the system. They do not see the
effects of concurrent transactions. This is equivalent to a system where transactions are executed in serial
order (i.e., one at a time). But to achieve better performance, the DBMS has to interleave the operations of
concurrent transactions while maintaining the illusion of isolation.

Concurrency Control
A concurrency control protocol is how the DBMS decides the proper interleaving of operations frommultiple
transactions at runtime.
There are two categories of concurrency control protocols:

1. Pessimistic: The DBMS assumes that transactions will conflict, so it doesn’t let problems arise in
the first place.

2. Optimistic: The DBMS assumes that conflicts between transactions are rare, so it chooses to deal
with conflicts when they happen after the transactions commit.

The order in which the DBMS executes operations is called an execution schedule. We want to interleave
transactions to maximize concurrency while ensuring that the output is “correct”. The goal of a concur-
rency control protocol is to generate an execution schedule that is is equivalent to some serial execution:

• Serial Schedule: Schedule that does not interleave the actions of different transactions.
• Equivalent Schedules: For any database state, if the effect of execution the first schedule is identical
to the effect of executing the second schedule, the two schedules are equivalent.

• Serializable Schedule: A serializable schedule is a schedule that is equivalent to any serial ex-
ecution of the transactions. Different serial executions can produce different results, but all are
considered “correct”.

A conflict between two operations occurs if the operations are for different transactions, they are performed
on the same object, and at least one of the operations is a write. There are three variations of conflicts:

• Read-Write Conflicts (“Unrepeatable Reads”): A transaction is not able to get the same value
when reading the same object multiple times.

• Write-Read Conflicts (“Dirty Reads”): A transaction sees the write effects of a different transac-
tion before that transaction committed its changes.

• Write-Write conflict (“Lost Updates”): One transaction overwrites the uncommitted data of an-
other concurrent transaction.

There are two types for serializability: (1) conflict and (2) view. Neither definition allows all schedules
that one would consider serializable. In practice, DBMSs support conflict serializability because it can be
enforced efficiently.

Conflict Serializability
Two schedules are conflict equivalent iff they involve the same operations of the same transactions and
every pair of conflicting operations is ordered in the same way in both schedules. A schedule S is conflict

15-445/645 Database Systems
Page 3 of 4

https://15445.courses.cs.cmu.edu/fall2024/

Fall 2024 – Lecture #16 Concurrency Control Theory

serializable if it is conflict equivalent to some serial schedule.
One can verify that a schedule is conflict serializable by swapping non-conflicting operations until a serial
schedule is formed. For schedules with many transactions, this becomes too expensive. A better way to
verify schedules is to use a dependency graph (precedence graph).
In a dependency graph, each transaction is a node in the graph. There exists a directed edge from node Ti

to Tj iff an operation Oi from Ti conflicts with an operation Oj from Tj and Oi occurs before Oj in the
schedule. Then, a schedule is conflict serializable iff the dependency graph is acyclic.

View Serializability
View serializability is a weaker notion of serializibility that allows for all schedules that are conflict serial-
izable and “blind writes” (i.e. performing writes without reading the value first). Thus, it allows for more
schedules than conflict serializability, but is difficult to enforce efficiently. This is because the DBMS does
not know how the application will “interpret” values. As such, view serializability is not used often in
practice.
About ”blind writes” : From a database perspective, all that matters is whether the database state is equiv-
alent to some sort of serial execution, so blind writes can still make a set of transactions view serializable
if the last action is a blind write.

Universe of Schedules
SerialSchedules ⊂ ConflictSerializableSchedules ⊂ V iewSerializableSchedules ⊂ AllSchedules

7 ACID: Durability
All of the changes of committed transactions must be durable (i.e., persistent) after a crash or restart.
The DBMS can either use logging or shadow paging to ensure that all changes are durable. This usually
requires that committed transactions are stored in non-volatile memory.

15-445/645 Database Systems
Page 4 of 4

https://15445.courses.cs.cmu.edu/fall2024/

	Motivation
	Transactions
	Definitions
	ACID: Atomicity
	ACID: Consistency
	ACID: Isolation
	ACID: Durability

