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1 Timestamp Ordering Concurrency Control
Timestamp ordering (T/O) is an optimistic class of concurrency control protocols where the DBMS assumes
that transaction con�icts are rare. Instead of requiring transactions to acquire locks before they are allowed
to read/write to a database object, the DBMS instead uses timestamps to determine the serializability order
of transactions.
Each transaction Ti is assigned a unique �xed timestamp TS(Ti) that is monotonically increasing. Di�erent
schemes assign timestamps at di�erent times during the transaction. Some advanced schemes even assign
multiple timestamps per transaction.
If TS(Ti) < TS(Tj), then the DBMS must ensure that the execution schedule is equivalent to the serial
schedule where Ti appears before Tj .
�ere are multiple timestamp allocation implementation strategies. �e DBMS can use the system clock
as a timestamp, but issues arise with edge cases like daylight savings. Another option is to use a logical
counter. However, this has issues with over�ow and with maintaining the counter across a distributed
system with multiple machines. �ere are also hybrid approaches that use a combination of both methods.

2 Optimistic Concurrency Control (OCC)
Optimistic concurrency control (OCC) is an optimistic concurrency control protocol which uses times-
tamps to validate transactions. OCC works best when the number of con�icts is low. �is is when either
all of the transactions are read-only or when transactions access disjoint subsets of data. If the database
is large and the workload is not skewed, then there is a low probability of con�ict, making OCC a good
choice.
In OCC, the DBMS creates a private workspace for each transaction. All modi�cations of the transaction
are applied to this workspace. Any object read is copied into workspace and any object wri�en is copied to
the workspace and modi�ed there. No other transaction can read the changes made by another transaction
in its private workspace.
When a transaction commits, the DBMS compares the transaction’s workspace write set to see whether
it con�icts with other transactions. If there are no con�icts, the write set is installed into the “global”
database.
OCC consists of three phases:

1. Read Phase: Here, the DBMS tracks the read/write sets of transactions and stores their writes in
a private workspace. �e DBMS copies every tuple accessed to its private workspace to ensure
repeatable reads.

2. Validation Phase: When a transaction commits, the DBMS checks whether it con�icts with other
transactions.
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3. Write Phase: If validation succeeds, the DBMS applies the private workspace’s changes to the
database. Otherwise, it aborts and restarts the transaction.

Validation Phase
�e DBMS assigns transactions timestamps when they enter the validation phase. To ensure only serial-
izable schedules are permi�ed, the DBMS checks Ti against other transactions for RW and WW con�icts
and makes sure that all con�icts go one way.

• Approach 1: Backward validation (from younger transactions to older transactions, slide 48)
• Approach 2: Forward validation (from older transactions to younger transactions, slide 47)

In forward validation, the DBMS checks the timestamp ordering of the commi�ing transaction with all
other running transactions. Transactions that have not yet entered the validation phase are assigned a
timestamp of∞.
If TS(Ti) < TS(Tj), then one of the following three conditions must hold:

1. Ti completes all three phases before Tj begins its execution (serial ordering) (slide 25).
2. Ti completes its Write phase before Tj starts its Write phase, and Ti does not write to any object

read by Tj (slide 26).
• WriteSet(Ti) ∩ ReadSet(Tj) = ∅.

3. Ti completes its Read phase before Tj completes its Read phase, and Ti does not write to any object
that is either read or wri�en by Tj (slide 40).

• WriteSet(Ti) ∩ ReadSet(Tj) = ∅, and WriteSet(Ti) ∩WriteSet(Tj) = ∅.
In backward validation, the DBMS checks the timestamp ordering of the commi�ing transaction with the
Read/Write sets of transactions that have already commi�ed, using the same three conditions as above.
Potential Issues:

• High overhead for copying data locally into the transaction’s private workspace.
• Validation/Write phase bo�lenecks.
• Aborts are potentially more wasteful than in other protocols because they only occur a�er a trans-
action has already executed.

• Su�ers from timestamp allocation bo�leneck.

3 Dynamic Databases and�e Phantom Problem
In our previous discussions, we have considered transactions that operate on a static set of objects within
the database. However, when transactions perform insertions, updates, and deletions, we encounter a new
set of complications.
�e phantom problem arises when transactions only lock existing records, neglecting those that are in the
process of being created. �is oversight can lead to non-serializable executions because the set of objects
in the database is not �xed (slide 57). Approaches to Address the Phantom Problem:

1. Re-Execute Scans:
Transactions may re-run queries at commit time to check for di�erent results, indicating missed
changes due to new or deleted records. �e DBMS keeps track of the WHERE clauses for all queries
executed by the transaction. At commit time, it re-executes the scans to ensure that the results
remain consistent (slide 59).

2. Predicate Locking:
�is involves acquiring locks based on the predicates of the queries, ensuring that any data that
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satis�es the predicate cannot be modi�ed by other transactions. Originally proposed in System R,
this scheme is not widely implemented. However, systems like HyPer utilize a form of precision
locking that is akin to predicate locking (slide 61).

3. Index Locking:
Utilizing index keys to protect ranges of data, preventing phantoms by ensuring that no new data
can fall within the locked ranges. Di�erent schemes are employed to prevent phantoms using index
locking:

• Key-Value Locks: Locks on individual key-values in an index, including virtual keys for non-
existent values (slide 63).

• Gap Locks: Locks on the gap following a key-value, preventing insertion in these gaps (slide
64).

• Key-Range Locks: Locks on a range of keys, from one existing key to the next (slide 67).
• Hierarchical Locking: Allows transactions to hold broader key-range locks with di�erent
modes, reducing lock manager overhead (slide 70).

In the absence of a suitable index, transactions must lock every page in the table or the entire table
itself to prevent changes that could lead to phantoms.

4 Isolation Levels
Serializability is useful because it allows programmers to ignore concurrency issues but enforcing it may
allow too li�le parallelism and limit performance. We may want to use a weaker level of consistency to
improve scalability.
Isolation levels control the extent that a transaction is exposed to the actions of other concurrent transac-
tions.
Anomalies:

• Dirty Read: Reading uncommi�ed data.
• Unrepeatable Reads: Redoing a read retrieves a di�erent result.
• Lost Updates: Transaction overwrites data of another concurrent transaction.
• Phantom Reads: Insertion or deletions result in di�erent results for the same range scan queries.

Isolation Levels (Strongest to Weakest):

1. SERIALIZABLE: No Phantoms, all reads repeatable, and no dirty reads.
• Possible implementation: Strict 2PL + Phantom Protection (e.g., index locks).

2. REPEATABLE READS: Phantoms may happen.
• Possible implementation: Strict 2PL.

3. READ-COMMITTED: Phantoms, unrepeatable reads, and lost updates may happen.
• Possible implementation: Strict 2PL for exclusive locks, immediate release of the shared lock
a�er a read.

4. READ-UNCOMMITTED: All anomalies may happen.
• Possible implementation: Strict 2PL for exclusive locks, no shared locks for reads.

�e isolation levels de�ned as part of SQL-92 standard only focused on anomalies that can occur in a
2PL-based DBMS. An application sets a per-transaction isolation level before it starts executing queries.
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