
Lecture #20: Database Logging
15-445/645 Database Systems (Fall 2024)

https://15445.courses.cs.cmu.edu/fall2024/
Carnegie Mellon University

Andy Pavlo

1 Crash Recovery
Recovery algorithms are techniques to ensure database consistency, transaction atomicity, and durability
despite failures. When a crash occurs, all the data in memory that has been committed but not yet flushed
to disk is at risk of being lost. This is not ideal since the user expects the change of the data to be persisted
once it’s committed successfully. Recovery algorithms act to prevent loss of information after a crash.
Every recovery algorithm has two parts:

• Actions during normal transaction processing to ensure that the DBMS can recover from a failure.
• Actions after a failure to recover the database to a state that ensures atomicity, consistency, and
durability.

The key primitives that used in recovery algorithms are UNDO and REDO. Not all algorithms use both
primitives.

• UNDO: The process of removing the effects of an incomplete or aborted transaction.
• REDO: The process of re-applying the effects of a committed transaction for durability.

2 Buffer Pool Management Policies
The DBMS needs to ensure the following guarantees:

• The changes for any transaction are durable once the DBMS has told somebody that it committed.
• No partial changes are durable if the transaction aborted.

A steal policy dictates whether the DBMS allows an uncommitted transaction to overwrite the most re-
cent committed value of an object in non-volatile storage (while a transaction is committing, can it write
uncommitted changes from another active transaction to disk?).

• STEAL: Is allowed
• NO-STEAL: Is not allowed.

A force policy dictates whether the DBMS requires that all updates made by a transaction are reflected on
non-volatile storage before the transaction is allowed to commit (ie. return a commit message back to the
client).

• FORCE: Is required
• NO-FORCE: Is not required

Force writes make it easier to recover since all of the changes are preserved but result in poor runtime
performance.
The easiest buffer pool management policy to implement is called NO-STEAL + FORCE. In this policy, the
DBMS never has to undo changes of an aborted transaction because the changes were not written to disk.

https://15445.courses.cs.cmu.edu/fall2024/
https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/


Fall 2024 – Lecture #20 Database Logging

It also never has to redo changes of a committed transaction because all the changes are guaranteed to be
written to disk at commit time. An example of NO-STEAL + FORCE is show in Figure 1.

Figure 1: DBMS using NO-STEAL + FORCE Example – All changes from a trans-
action are only written to disk when the transaction is committed. Once the schedule
begins at Step #1, changes from T1 and T2 are written to the buffer pool. Because of
the FORCE policy, when T2 commits at Step #2, all of its changes must be written
to disk. To do this, the DBMS makes a copy of the memory in disk, applies only the
changes from T2, and writes it back to disk. This is because NO-STEAL prevents the
uncommitted changes from T1 to be written to disk. At Step #3, it is trivial for the
DBMS to rollback T1 since no dirty changes from T1 are on disk.

A limitation of NO STEAL + FORCE is that all of the data (ie. the write set) that a transaction needs to
modify must fit into memory. Otherwise, that transaction cannot execute because the DBMS is not allowed
to write out dirty pages to disk before the transaction commits. More frequent writes can lead to a faster
wearing to storage devices like SSD as well.

3 Shadow Paging
Shadow Paging is an improvement upon the previous scheme where the DBMS copies pages on write to
maintain two separate versions of the database:

• master : Contains only changes from committed txns.
• shadow: Temporary database with changes made from uncommitted transactions.

Updates are only made in the shadow copy. When a transaction commits, the shadow copy is atomically
switched to become the new master. The old master is eventually garbage collected. This is an example of
a NO-STEAL + FORCE system. A high-level example of shadow paging is shown in Figure 2.

Implementation
The DBMS organizes the database pages in a tree structure where the root is a single disk page. There are
two copies of the tree, the master and shadow. The root always points to the current master copy. When a

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #20 Database Logging

Figure 2: Shadow Paging – The database root points to a master page table which
in turn points to the pages on disk (all of which contain committed data). When
an updating transaction occurs, a shadow page table is created that points to the
same pages as the master. Modifications are made to a temporary space on disk and
the shadow table is updated. To complete the commit, the database root pointer is
redirected to the shadow table, which becomes the new master.

transaction executes, it only makes changes to the shadow copy.
When a transaction wants to commit, the DBMSmust install its updates. To do this, it only has overwritten
the root to make it points to the shadow copy of the database, thereby swapping the master and shadow.
Before overwriting the root, none of the transactions updates are part of the disk-resident database. After
overwriting the root, all the transaction’s updates are part of the disk resident database. This overwriting
of the root can be done atomically.

Recovery
• Undo: Remove the shadow pages. Leave the master and DB root pointer alone.
• Redo: Not needed at all.

Disadvantages
A disadvantage of shadow paging is that copying the entire page table is expensive. In reality, only paths
in the tree that lead to updated leaf nodes need to be copied, not the entire tree. In addition, the commit
overhead of shadow paging is high. Commits require the page table, root page, and every updated page
to be flushed. This approach causes lots of writes to random non-contiguous pages. Additionally, this
approach results in data fragmentation because potentially related data is divided between different pages.
It also requires garbage collection because as data is updated, references to different pages will be nullified,
and these references need to be updated so that no pages reference old, un-updated data. Another issue is
that this only supports one writer transaction at a time or transactions in a batch.

15-445/645 Database Systems
Page 3 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #20 Database Logging

4 Journal File
When a transaction modifies a page, the DBMS copies the original page to a separate journal file before
overwriting the master version. After restarting, if a journal file exists, the DBMS collects the original
pages and blindly overwrite the pages with those original pages to restore data to the state before the
uncommitted transaction.
This technique was implemented in SQLite prior to 2010. However, after 2010, they switched their imple-
mentation using a write-ahead log instead.

5 Write-Ahead Logging
With write-ahead logging, the DBMS records all the changes made to the database in a log file (on stable
storage) before the change is made to a disk page. The log contains sufficient information to perform the
necessary undo and redo actions to restore the database after a crash. The DBMS must write to disk the
log file records that correspond to changes made to a database object before it can flush that object to disk.
An example of WAL is shown in Figure 3. WAL is an example of a STEAL + NO-FORCE system.
In shadow paging, the DBMS was required to perform writes to random non-contiguous pages on disk.
Write-ahead logging instead runs as a sequential write. Thus, almost every DBMS uses write-ahead logging
(WAL) because it has the fastest runtime performance. But the DBMS’s recovery time with WAL is slower
than shadow paging because it has to replay the log.

Figure 3: Write Ahead Logging – When the transaction begins, all changes are
recorded in the WAL buffer in memory before being made to the buffer pool. At the
time of commit, the WAL buffer is flushed out to disk. The transaction result can be
written out to disk, once the WAL buffer is safely on disk.

Implementation
The DBMS first stages all of a transaction’s log records in volatile storage. All log records pertaining to an
updated page are then written to non-volatile storage before the page itself is allowed to be overwritten in
non-volatile storage. A transaction is not considered committed until all its log records have been written

15-445/645 Database Systems
Page 4 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #20 Database Logging

to stable storage.
When the transaction starts, write a <BEGIN> record to the log for each transaction to mark its starting
point.
When a transaction finishes, write a <COMMIT> record to the log and make sure all log records are flushed
before it returns an acknowledgment to the application.
Each log entry contains information necessary to rewind or replay the changes to a single object:

• Transaction ID.
• Object ID.
• Before Value (used for UNDO).
• After Value (used for REDO).
• . . . Some system dependent data (e.g. timestamp, checksum)

The DBMS must flush all of a transaction’s log entries to disk before it can tell the outside world that a
transaction has successfully committed. The system can use the “group commit” optimization to batch
multiple log flushes together to amortize overhead. Flushes happen either when the log buffer is full, or if
sufficient time has passed between successive flushes. The DBMS can write dirty pages to disk whenever
it wants to, as long as it is after flushing the corresponding log records.

Buffer Pool Policies
Most DBMS employ the NO-FORCE + STEAL policy due to its superior runtime performance compared
to FORCE + NO-STEAL. However, during the recovery phase, NO-FORCE requires the database to redo +
STEAL requires the database to undo, making it slower than FORCE + NO-STEAL in recovery time.

Change Data Capture
Write ahead log can also be used in propagate changes to other data source. After all, WAL is meant to
restore changes from a stable checkpoint, which is the same philosophy to propagate changes to some
external data source that had a copy of the data and keep them update.

6 Logging Schemes
The contents of a log record can vary based on the implementation.
Physical Logging:

• Record the byte-level changes made to a specific location in the database.
• Example: git diff

Logical Logging:

• Record the high level operations executed by transactions.
• Not necessarily restricted to a single page.
• Requires less data written in each log record than physical logging because each record can update
multiple tuples over multiple pages. However, it is difficult to implement recovery with logical
logging when there are concurrent transactions in a non-deterministic concurrency control scheme.
Additionally recovery takes longer because you must re-execute every transaction.

• Example: The UPDATE, DELETE, and INSERT queries invoked by a transaction.
Physiological Logging:

• Hybrid approach where log records target a single page but does not specify data organization of the

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #20 Database Logging

page. That is, identify tuples based on a slot number in the page without specifying exactly where
in the page the change is located. Therefore the DBMS can reorganize pages after a log record has
been written to disk.

• Most common approach used in DBMSs.

7 Checkpoints
The main problem with a WAL-based DBMS is that the log file will grow forever. After a crash, the DBMS
has to replay the entire log, which can take a long time if the log file is large. Thus, the DBMS can period-
ically take a checkpoint where it flushes all buffers out to disk.
How often the DBMS should take a checkpoint depends on the application’s performance and downtime
requirements. Taking a checkpoint too often causes the DBMS’s runtime performance to degrade. But
waiting a long time between checkpoints can potentially be just as bad, as the system’s recovery time after
a restart increases.
Blocking Checkpoint Implementation:

• The DBMS stops accepting new transactions and waits for all active transactions to complete.
• Flush all log records and dirty blocks currently residing in main memory to stable storage.
• Write a <CHECKPOINT> entry to the log and flush to stable storage.

But in this implementation, the DBMS must halt everything when it takes a checkpoint to ensure consis-
tency snapshot. This is bad for runtime performance but makes recovery easy.

15-445/645 Database Systems
Page 6 of 6

https://15445.courses.cs.cmu.edu/fall2024/

	Crash Recovery
	Buffer Pool Management Policies
	Shadow Paging
	Journal File
	Write-Ahead Logging
	Logging Schemes
	Checkpoints

