
Lecture #23: Distributed OLTP Databases
15-445/645 Database Systems (Fall 2024)

https://15445.courses.cs.cmu.edu/fall2024/
Carnegie Mellon University

Andy Pavlo

1 OLTP VS. OLAP
On-line Transaction Processing (OLTP)

• Short lived read/write transactions.
• Small footprint.
• Repetitive operations.

On-line Analytical Processing (OLAP)
• Long-running, read-only queries.
• Complex joins.
• Exploratory queries.

2 Decentralized Coordinator Setup
The basic senario for distributed database system is that we have an application server and multiple data
partitions. One of these partitions is elected to be the primary node. The begin request for transactions
goes from application server to primary node and queries are sent directly sent to various nodes if there
are no centralized coordinator. The commit request goes from the application server to the primary node
and the primary node is reponsible for figuring out amongst all participating nodes whether it is allowed
to commit. If all participating nodes agree it is safe to commit, then we can commit the transaction. Two
phase locking, MVCC, OCC and other strategies are used to determine whether the transaction can be
safely committed on each individual node.
The following sections will talk about how to ensure all nodes agree to commit a transaction and what
happens if a node fails/messages show up late/the system does not wait for every node to agree. We’ll
assume that all nodes in a distributed DBMS are well-behaved and under the smae administrative domain.
(If you do not trust the other nodes in a distributed DBMS, then you need to use a byzantine fault tolerant
protocol (e.g., blockchain) for the transaction.)

3 Replication
The DBMS can replicate data across redundant nodes to increase availability.
Design Decisions:

• Replica Configuration
• Propagation Scheme
• Propagation Timing
• Update Method

https://15445.courses.cs.cmu.edu/fall2024/
https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/


Fall 2024 – Lecture #23 Distributed OLTP Databases

Replica Congigurations
In Primary-Replica, all updates go to a designated primary for each object. The primary propagates
updates to its replicas without an atomic commit protocol, coordinating all updates that come to it. Read-
only transactions may be allowed to access replicas if the most up-to-date information is not needed. If
the primary goes down, then an election is held to select a new primary.
In Multi-Primary, transactions can update data objects at any replica. Replicas must synchronize with
each other using an atomic commit protocol.

Figure 1: Replica Configurations

K-safety is a threshold for determining the fault tolerance of the replicated database. The valueK represents
the number of replicas per data object that must always be available. If the number of replicas goes below
this threshold, then the DBMS halts execution and takes itself offline. A higher value of K reduces the risk
of losing data. It is a threshold to determine how available a system can be.

Propagation Scheme
When a transaction commits on a replicated database, the DBMS decides whether it must wait for that
transaction’s changes to propagate to other nodes before it can send the acknowledgement to the ap-
plication client. There are two propagation levels: synchronous (strong consistency) and asynchronous
(eventual consistency).
In a synchronous scheme, the primary sends updates to replicas and then waits for them to acknowledge
that they fully applied (i.e., logged) the changes. Then, the primary can notify the client that the update
has succeeded. It ensures that the DBMS will not lose any data due to strong consistency. This is more
common in a traditional DBMS.
In an asynchronous scheme, the primary immediately returns the acknowledgement to the client without
waiting for replicas to apply the changes. Stale reads can occur in this approach, since updates may not
be fully applied to replicas when read is occurring. If some data loss can be tolerated, this option can be a
viable optimization. This is used commonly in NoSQL systems.

Propagation Timing
For continuous propagation timing, the DBMS sends log messages immediately as it generates them. Note
that commit and abort messages also need to be sent. Most systems use this approach.
For on commit propagation timing, the DBMS only sends the log messages for a transaction to the replicas
once the transaction is committed. This does not waste time for sending log records for aborted transac-
tions. It does make the assumption that a transaction’s log records fit entirely in memory.

15-445/645 Database Systems
Page 2 of 5

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #23 Distributed OLTP Databases

Active vs Passive
There are multiple approaches to applying changes to replicas. For active-active, a transaction executes at
each replica independently. At the end, the DBMS needs to check whether the transaction ends up with
the same result at each replica to see if the replicas committed correctly. This is difficult since now the
ordering of the transactions must sync between all the nodes, making it less common.
For active-passive, each transaction executes at a single location and propagates the overall changes to the
replica. The DBMS can either send out the physical bytes that were changed, which is more common, or
the logical SQL queries. Most systems are active-passive.

4 Atomic Commit Protocols
When a multi-node transaction finishes, the DBMS needs to ask all of the nodes involved whether it is
safe to commit. Depending on the protocol, a majority of the nodes or all of the nodes may be needed to
commit. Examples include:

• Two-Phase Commit (1970s)
• Three-Phase Commit (1983)
• Viewstamped Replication (1988)
• Paxos (1989)
• ZAB (2008? Zookeeper Atomic Broadcast protocol, Apache Zookeeper)
• Raft (2013)

All of these atomic commit protocols have a common structure. They ususally have a notion of Resource
Managers (RMs) that manage resources databases (or part of a database) on different nodes. The RMs
need to coordinate together to decide the fate of each transaction: Commit or Abort. Using the RMs, an
atomic commit protocol need to gurantee the following property:

• Stability: Once the fate of a transaction is decided, it cannot be changed.
• Consistency: All the RMs end up in the same state, even after failure.
• Liveness: The protocol always have some way of progressing forward (e.g enough nodes are alive
and connected for the duration of the protocol).

Figure 2: Atomic commit protocols can usually be modeled as state machines.

In the following sections we will focus on Two-Phase Commit and Paxos. If the coordinator fails after the
prepare message is sent, Two-Phase Commit (2PC) blocks until the coordinator recovers. On the other
hand, Paxos is non-blocking if a majority of participants are alive, provided that there is a sufficiently long
period without further failures. If the nodes are in the same data center, do not fail often, and are not
malicious, then 2PC is often preferred over Paxos as 2PC usually results in fewer round trips.

15-445/645 Database Systems
Page 3 of 5

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #23 Distributed OLTP Databases

Two-Phase Commit
The client sends a Commit Request to the coordinator. In the first phase of this protocol, the coordinator
sends a Prepare message, essentially asking the participant nodes if the current transaction is allowed to
commit. If a given participant verifies that the given transaction is valid, they send an OK to the coordi-
nator. If the coordinator receives an OK from all the participants, the system can now go into the second
phase in the protocol. If anyone sends an Abort to the coordinator, the coordinator sends an Abort to the
client.
The coordinator sends a Commit to all the participants, telling those nodes to commit the transaction, if all
the participants sent an OK. Once the participants respond with an OK, the coordinator can tell the client
that the transaction is committed. If the transaction was aborted in the first phase, the participants receive
an Abort from the coordinator, to which they should respond to with an OK. Either everyone commits or
no one does. The coordinator can also be a participant in the system.
Additionally, in the case of a crash, all nodes keep track of a non-volatile log of the outcome of each phase.
Nodes block until they can figure out the next course of action. If the coordinator crashes, the participants
must decide what to do. A safe option is just to abort. Alternatively, the nodes can communicate with each
other to see if they can commit without the explicit permission of the coordinator. If a participant crashes,
the coordinator assumes that it responded with an abort if it has not sent an acknowledgement yet.
Optimizations:

• Early Prepare Voting – If the DBMS sends a query to a remote node that it knows will be the last
one executed there, then that node will also return their vote for the prepare phase with the query
result.

• Early Acknowledgement after Prepare – If all nodes vote to commit a transaction, the coordinator can
send the client an acknowledgement that their transaction was successful before the commit phase
finishes.

Paxos
Paxos (along with Raft) is more prevalent in modern systems than 2PC. 2PC is a degenerate case of Paxos;
Paxos uses 2F +1 coordinators and makes progress as long as at least F +1 of them are working properly,
2PC sets F = 0.
Paxos is a consensus protocol where a coordinator proposes an outcome (e.g., commit or abort) and then
the participants vote on whether that outcome should succeed. This protocol does not block if a majority
of participants are available and has provably minimal message delays in the best case. For Paxos, the
coordinator is called the proposer and participants are called acceptors.
The client will send a Commit Request to the proposer. The proposer will send a Propose to the other nodes
in the system, or the acceptors. A given acceptor will send an Agree if they have not already sent an Agree
on a higher logical timestamp. Otherwise, they send a Reject.
Once the majority of the acceptors sent an Agree, the proposer will send a Commit. The proposer must
wait to receive an Accept from the majority of acceptors before sending the final message to the client
saying that the transaction is committed, unlike 2PC.
Use exponential back off times for trying to propose again after a failed proposal, to avoid dueling pro-
posers.
Multi-Paxos: If the system elects a single leader that oversees proposing changes for some period, then it
can skip the propose phase. The system periodically renews who the leader is using another Paxos round.
When there is a failure, the DBMS can fall back to full Paxos.

15-445/645 Database Systems
Page 4 of 5

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #23 Distributed OLTP Databases

5 CAPTheorem
The CAPTheorem, proposed by Eric Brewer and later proved in 2002 at MIT, explained that it is impossible
for a distributed system to always be Consistent, Available, and Partition Tolerant. Only two of these three
properties can be chosen.
Consistency is synonymous with linearizability for operations on all nodes. Once a write completes, all
future reads should return the value of that write applied or a later write applied. Additionally, once a
read has been returned, future reads should return that value or the value of a later applied write. NoSQL
systems compromise this property in favor of the latter two. Other systems will favor this property and
one of the latter two.
Availability is the concept that all nodes that are up can satisfy all requests.
Partition tolerance means that the system can still operate correctly despite some message loss between
nodes that are trying to reach consensus on values. If consistency and partition tolerance is chosen for a
system, updates will not be allowed until a majority of nodes are reconnected, typically done in traditional
or NewSQL DBMSs.
There is a modern version that considers consistency vs. latency trade-offs: PACELC Theorem. In case of
network partitioning (P) in a distributed system, one has to choose between availability (A) and consistency
(C), else (E), even when the system runs normally without network partitions, one has to choose between
latency (L) and consistency (C).

15-445/645 Database Systems
Page 5 of 5

https://15445.courses.cs.cmu.edu/fall2024/

	OLTP VS. OLAP
	Decentralized Coordinator Setup
	Replication
	Atomic Commit Protocols
	CAP Theorem

