
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Relational Model &
Algebra

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

#1 ⮕ KB + BD

#2 ⮕ DBs

3

https://www.reddit.com/r/cmu/comments/1exylou/is_15440_or_15445_harder/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button

3

5

https://www.reddit.com/r/cmu/comments/1exylou/is_15440_or_15445_harder/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button
https://www.reddit.com/r/cmu/comments/1exylou/comment/lj9o8wq/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COURSE LOGISTICS

Course Policies + Schedule: Course Web Page

Discussion + Announcements: Piazza

Homeworks + Projects: Gradescope

Final Grades: Canvas

Waitlist: Six open seats (as of 12pm today)

Non-CMU students can complete all assignments
using Gradescope (Code: WWWJZ5).
→ Do not post your solutions on Github.
→ Do not email instructors / TAs for help.
→ Discord Channel: https://discord.gg/YF7dMCg

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://piazza.com/cmu/fall2024/15445645
https://www.gradescope.com/courses/817456
https://canvas.cmu.edu/courses/42170
https://www.gradescope.com/courses/585997
https://discord.gg/YF7dMCg

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY’S AGENDA

Database Systems Background

Relational Model

Relational Algebra

Alternative Data Models

Q&A Session

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Databases

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABASE

Organized collection of inter-related data that
models some aspect of the real-world.

Databases are the core component of most
computer applications.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABASE EXAMPLE

Create a database that models a digital music store
to keep track of artists and albums.

Information we need to keep track of in our store:
→ Information about Artists
→ The Albums those Artists released

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FLAT FILE STRAWMAN

Store our database as comma-separated value (CSV)
files that we manage ourselves in application code.
→ Use a separate file per entity.
→ The application must parse the files each time they want to

read/update records.

10

"Enter the Wu-Tang","Wu-Tang Clan",1993

"St.Ides Mix Tape","Wu-Tang Clan",1994

"Liquid Swords","GZA",1990

Album(name, artist, year)

"Wu-Tang Clan",1992,"USA"

"Notorious BIG",1992,"USA"

"GZA",1990,"USA"

Artist(name, year, country)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FLAT FILE STRAWMAN

Example: Get the year that GZA went solo.

for line in file.readlines():

 record = parse(line)

 if record[0] == "GZA":

 print(int(record[1]))

"Wu-Tang Clan",1992,"USA"

"Notorious BIG",1992,"USA"

"GZA",1990,"USA"

Artist(name, year, country)

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FLAT FILES: DATA INTEGRITY

How do we ensure that the artist is the same for
each album entry?

What if somebody overwrites the album year with
an invalid string?

What if there are multiple artists on an album?

What happens if we delete an artist that has
albums?

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FLAT FILES: IMPLEMENTATION

How do you find a particular record?

What if we now want to create a new application
that uses the same database? What if that
application is running on a different machine?

What if two threads try to write to the same file at
the same time?

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FLAT FILES: DURABILITY

What if the machine crashes while our program is
updating a record?

What if we want to replicate the database on
multiple machines for high availability?

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABASE MANAGEMENT SYSTEM

A database management system (DBMS) is
software that allows applications to store and
analyze information in a database.

A general-purpose DBMS supports the definition,
creation, querying, update, and administration of
databases in accordance with some data model.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

A data model is a collection of concepts for
describing the data in a database.

A schema is a description of a particular collection
of data, using a given data model.
→ This defines the structure of data for a data model.
→ Otherwise, you have random bits with no meaning.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

A data model is a collection of concepts for
describing the data in a database.

A schema is a description of a particular collection
of data, using a given data model.
→ This defines the structure of data for a data model.
→ Otherwise, you have random bits with no meaning.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

18

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← Most DBMSs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

19

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← Simple Apps / Caching

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

20

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← NoSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

21

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← ML / Science

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

22

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← Obsolete / Legacy / Rare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

23

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← This Course

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EARLY DBMSs

Early database applications were difficult to build
and maintain on available DBMSs in the 1960s.
→ Examples: IDS, IMS, CODASYL
→ Computers were expensive, humans were cheap.

Tight coupling between logical and physical layers.

Programmers had to (roughly) know what queries
the application would execute before they could
deploy the database.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EARLY DBMSs

Ted Codd was a mathematician at
IBM Research in the late 1960s.

Codd saw IBM’s developers rewriting
database programs every time the
database’s schema or layout changed.

Devised the relational model in 1969.

Edgar F. Codd

Edgar F. Codd

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EARLY DBMSs

Ted Codd was a mathematician at
IBM Research in the late 1960s.

Codd saw IBM’s developers rewriting
database programs every time the
database’s schema or layout changed.

Devised the relational model in 1969.

Edgar F. Codd

Edgar F. Codd

26
7

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82
http://dl.acm.org/citation.cfm?id=1558336
http://dl.acm.org/citation.cfm?id=362685

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CODASYL

ACM SIGFIDET Workshop on Data Description, Access, and Control in Ann Arbor, Michigan, held 1–3 May 1974

ACM SIGFIDET Workshop on Data Description, Access, and Control in Ann Arbor, Michigan, held 1–3 May 1974

ACM SIGFIDET Workshop on Data Description, Access, and Control in Ann Arbor, Michigan, held 1–3 May 1974

The Differences and Similarities
Between the Data Base Set and
Relational Views of Data.
→ ACM SIGFIDET Workshop on Data

Description, Access, and Control in Ann
Arbor, Michigan, held 1–3 May 1974

Bachman Gray Stonebraker
Codd

Codd

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CODASYL

ACM SIGFIDET Workshop on Data Description, Access, and Control in Ann Arbor, Michigan, held 1–3 May 1974

ACM SIGFIDET Workshop on Data Description, Access, and Control in Ann Arbor, Michigan, held 1–3 May 1974

ACM SIGFIDET Workshop on Data Description, Access, and Control in Ann Arbor, Michigan, held 1–3 May 1974

The Differences and Similarities
Between the Data Base Set and
Relational Views of Data.
→ ACM SIGFIDET Workshop on Data

Description, Access, and Control in Ann
Arbor, Michigan, held 1–3 May 1974

Bachman Gray Stonebraker
Codd

Codd

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL

The relational model defines a database
abstraction based on relations to avoid maintenance
overhead.

Key tenets:
→ Store database in simple data structures (relations).
→ Physical storage left up to the DBMS implementation.
→ Access data through high-level language, DBMS figures

out best execution strategy.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL

Structure: The definition of the database’s relations
and their contents independent of their physical
representation.

Integrity: Ensure the database’s contents satisfy
constraints.

Manipulation: Programming interface for
accessing and modifying a database's contents.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA INDEPENDENCE

Isolate the user/application from low-
level data representation.
→ The user only worries about high-level

application logic.
→ DBMS optimizes the layout according

to operating environment, database
contents, and workload.

→ DBMS can then re-optimize the
database if/when these factors changes.

Database
Storage

Physical Schema

Pages, Files, Extents…

Logical Schema
Schema, Constraints…
 (SQL)

External Schema External Schema

Views (SQL)

ApplicationApplication

31

Physical Data
Independence

Logical Data
Independence

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL

A relation is an unordered set that
contain the relationship of attributes
that represent entities.

A tuple is a set of attribute values
(aka its domain) in the relation.
→ Values are (normally) atomic/scalar.
→ The special value NULL is a member of

every domain (if allowed).

n-ary Relation

Table with n columns
=

Artist(name, year, country)

name year country

Wu-Tang Clan 1992 USA

Notorious BIG 1992 USA

GZA 1990 USA

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: PRIMARY KEYS

identity column

A relation's primary key uniquely
identifies a single tuple.

Some DBMSs automatically create an
internal primary key if a table does
not define one.

DBMS can auto-generation unique
primary keys via an identity column:
→ IDENTITY (SQL Standard)
→ SEQUENCE (PostgreSQL / Oracle)
→ AUTO_INCREMENT (MySQL)

Artist(name, year, country)

name year country

Wu-Tang Clan 1992 USA

Notorious BIG 1992 USA

GZA 1990 USA

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Identity_column

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: PRIMARY KEYS

identity column

A relation's primary key uniquely
identifies a single tuple.

Some DBMSs automatically create an
internal primary key if a table does
not define one.

DBMS can auto-generation unique
primary keys via an identity column:
→ IDENTITY (SQL Standard)
→ SEQUENCE (PostgreSQL / Oracle)
→ AUTO_INCREMENT (MySQL)

Artist(id, name, year, country)

id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Identity_column

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an
attribute from one relation maps to a
tuple in another relation.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: FOREIGN KEYS

Album(id, name, artists, year)

Enter the Wu-Tang

St.Ides Mix Tape

Liquid Swords

id name artists year

11 Enter the Wu-Tang 101 1993

22 St.Ides Mix Tape ??? 1994

33 Liquid Swords 103 1995

id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

36

Artist(id, name, year, country)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: FOREIGN KEYS

Album(id, name, artists, year)

Enter the Wu-Tang

St.Ides Mix Tape

Liquid Swords

id name artists year

11 Enter the Wu-Tang 101 1993

22 St.Ides Mix Tape ??? 1994

33 Liquid Swords 103 1995

id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

ArtistAlbum(artist_id, album_id)

artist_id album_id

101 11

101 22

103 22

102 22

37

Artist(id, name, year, country)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: FOREIGN KEYS

 id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

ArtistAlbum(artist_id, album_id)

artist_id album_id

101 11

101 22

103 22

102 22

Album(id, name, year)

Enter the Wu-Tang

St.Ides Mix Tape

Liquid Swords

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

38

Artist(id, name, year, country)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: CONSTRAINTS

User-defined conditions that must
hold for any instance of the database.
→ Can validate data within a single tuple

or across entire relation(s).
→ DBMS prevents modifications that

violate any constraint.

Unique key and referential (fkey)
constraints are the most common.

SQL:92 supports global asserts but
these are rarely used (too slow).

Artist(id, name, year, country)

id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

39

CREATE TABLE Artist (
 name VARCHAR NOT NULL,
 year INT,
 country CHAR(60),
 CHECK (year > 1900)
);

CREATE ASSERTION myAssert
 CHECK (<SQL>);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MANIPULATION LANGUAGES (DML)

The API that a DBMS exposes to applications to
store and retrieve information from a database.

Procedural:
→ The query specifies the (high-level) strategy to find

the desired result based on sets / bags.

Non-Procedural (Declarative):
→ The query specifies only what data is wanted and

not how to find it.

← Relational
 Algebra

← Relational
 Calculus

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA

Fundamental operations to retrieve
and manipulate tuples in a relation.
→ Based on set algebra (unordered lists with

no duplicates).

Each operator takes one or more
relations as its inputs and outputs a
new relation.
→ We can “chain” operators together to

create more complex operations.

σ Select
π Projection
∪ Union
∩ Intersection
– Difference
× Product
⋈ Join

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection
predicate.
→ Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

→ Can combine multiple predicates using
conjunctions / disjunctions.

Syntax: σpredicate(R)

σa_id='a2'∧ b_id>102(R)

a_id b_id

a1 101

a2 102

a2 103

a3 104

R(a_id,b_id)

a_id b_id

a2 103

σa_id='a2'(R)
a_id b_id

a2 102

a2 103

SELECT * FROM R
 WHERE a_id='a2' AND b_id>102;

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection
predicate.
→ Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

→ Can combine multiple predicates using
conjunctions / disjunctions.

Syntax: σpredicate(R)

σa_id='a2'∧ b_id>102(R)

a_id b_id

a1 101

a2 102

a2 103

a3 104

R(a_id,b_id)

a_id b_id

a2 103

σa_id='a2'(R)
a_id b_id

a2 102

a2 103

SELECT * FROM R
 WHERE a_id='a2' AND b_id>102;

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: PROJECTION

Generate a relation with tuples that
contains only the specified attributes.
→ Rearrange attributes’ ordering.
→ Remove unwanted attributes.
→ Manipulate values to create derived

attributes.

Syntax: ΠA1,A2,…,An(R)

Πb_id-100,a_id(σa_id='a2'(R))

a_id b_id

a1 101

a2 102

a2 103

a3 104

R(a_id,b_id)

b_id-100 a_id

2 a2

3 a2

SELECT b_id-100, a_id
 FROM R WHERE a_id = 'a2';

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: UNION

Generate a relation that contains all
tuples that appear in either only one
or both input relations.

Syntax: (R ∪ S)

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id

a3 103

a4 104

a5 105

(R ∪ S)
a_id b_id

a1 101

a2 102

a3 103

a4 104

a5 105

(SELECT * FROM R)
UNION

(SELECT * FROM S);

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: INTERSECTION

Generate a relation that contains only
the tuples that appear in both of the
input relations.

Syntax: (R ∩ S)
(R ∩ S)

a_id b_id

a3 103

(SELECT * FROM R)
INTERSECT

(SELECT * FROM S);

46

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id

a3 103

a4 104

a5 105

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: DIFFERENCE

Generate a relation that contains only
the tuples that appear in the first and
not the second of the input relations.

Syntax: (R – S)
(R – S)

a_id b_id

a1 101

a2 102

(SELECT * FROM R)
EXCEPT

(SELECT * FROM S);

47

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id

a3 103

a4 104

a5 105

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: PRODUCT

Generate a relation that contains all
possible combinations of tuples from
the input relations.

Syntax: (R × S) (R × S)
R.a_id R.b_id S.a_id S.b_id

a1 101 a3 103

a1 101 a4 104

a1 101 a5 105

a2 102 a3 103

a2 102 a4 104

a2 102 a5 105

a3 103 a3 103

a3 103 a4 104

a3 103 a5 105

SELECT * FROM R CROSS JOIN S;

SELECT * FROM R, S;

48

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id

a3 103

a4 104

a5 105

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)
a_id b_id val

a3 103 XXX

49

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val

a3 103 XXX

a4 104 YYY

a5 105 ZZZ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)
a_id b_id val

a3 103 XXX

R.a_id R.b_id S.a_id S.b_id S.val

a3 103 a3 103 XXX

50

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val

a3 103 XXX

a4 104 YYY

a5 105 ZZZ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)
a_id b_id val

a3 103 XXX

R.a_id R.b_id S.a_id S.b_id S.val

a3 103 a3 103 XXX

51

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val

a3 103 XXX

a4 104 YYY

a5 105 ZZZ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)

SELECT * FROM R NATURAL JOIN S;

a_id b_id val

a3 103 XXX

SELECT * FROM R JOIN S USING (a_id, b_id);

52

a_id b_id

a1 101

a2 102

a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val

a3 103 XXX

a4 104 YYY

a5 105 ZZZ

SELECT * FROM R JOIN S
 ON R.a_id = S.a_id AND R.b_id = S.b_id;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL ALGEBRA: EXTRA OPERATORS

Rename (ρ)

Assignment (R←S)

Duplicate Elimination (δ)

Aggregation (γ)

Sorting (τ)

Division (R÷S)

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

Relational algebra defines an ordering of the high-
level steps of how to compute a query.
→ Example: σb_id=102(R⋈S) vs. (R⋈(σb_id=102(S))

A better approach is to state the high-level answer
that you want the DBMS to compute.
→ Example: Retrieve the joined tuples from R and S where

b_id equals 102.

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL MODEL: QUERIES

The relational model is independent of any query
language implementation.

SQL is the de facto standard (many dialects).

for line in file.readlines():

 record = parse(line)

 if record[0] == "GZA":

 print(int(record[1]))

SELECT year FROM artists

 WHERE name = 'GZA';

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

56

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← This Course

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA MODELS

57

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)

Hierarchical

Network

Semantic

Entity-Relationship

← New Hotness

← Leading Alternative

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DOCUMENT DATA MODEL

A collection of record documents containing a
hierarchy of named field/value pairs.
→ A field’s value can be either a scalar type, an array of values,

or another document.
→ Modern implementations use JSON. Older systems use

XML or custom object representations.

Avoid “relational-object impedance mismatch” by
tightly coupling objects and database.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DOCUMENT DATA MODEL

Artist

ArtistAlbum

R1(id,…)

⨝

⨝
Album

R2(artist_id,album_id)

R3(id,…)

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DOCUMENT DATA MODEL

Artist

ArtistAlbum

R1(id,…)

⨝

⨝
Album

R2(artist_id,album_id)

R3(id,…)

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DOCUMENT DATA MODEL

Artist

{
 "name": "GZA",
 "year": 1990,
 "albums": [
 {
 "name": "Liquid Swords",
 "year": 1995
 },
 {
 "name": "Beneath the Surface",
 "year": 1999
 }
]
}

Album

class Artist {
 int id;
 String name;
 int year;
 Album albums[];
}
class Album {
 int id;
 String name;
 int year;
}

Application Code

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DOCUMENT DATA MODEL

Artist

{
 "name": "GZA",
 "year": 1990,
 "albums": [
 {
 "name": "Liquid Swords",
 "year": 1995
 },
 {
 "name": "Beneath the Surface",
 "year": 1999
 }
]
}

Album

class Artist {
 int id;
 String name;
 int year;
 Album albums[];
}
class Album {
 int id;
 String name;
 int year;
}

Application Code

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR DATA MODEL

One-dimensional arrays used for nearest-neighbor
search (exact or approximate).
→ Used for semantic search on embeddings generated by ML-

trained transformer models (think ChatGPT).
→ Native integration with modern ML tools and APIs (e.g.,

LangChain, OpenAI).

At their core, these systems use specialized indexes
to perform NN searches quickly.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR DATA MODEL

One-dimensional arrays used for nearest-neighbor
search (exact or approximate).
→ Used for semantic search on embeddings generated by ML-

trained transformer models (think ChatGPT).
→ Native integration with modern ML tools and APIs (e.g.,

LangChain, OpenAI).

At their core, these systems use specialized indexes
to perform NN searches quickly.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR DATA MODEL

Enter the Wu-Tang

St.Ides Mix Tape

Liquid Swords

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW

Meta Faiss Spotify Annoy

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

Transformer

Find albums similar

to "Liquid Swords"

Query

Album(id, name, year)

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR DATA MODEL

Enter the Wu-Tang

St.Ides Mix Tape

Liquid Swords

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW

Meta Faiss Spotify Annoy

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

[0.02, 0.10, 0.24, ...]

Transformer

Ranked List of Ids
Find albums similar

to "Liquid Swords"

Query

Album(id, name, year)

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR DATA MODEL

Enter the Wu-Tang

St.Ides Mix Tape

Liquid Swords

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings
Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW

Meta Faiss Spotify Annoy

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

[0.02, 0.10, 0.24, ...]

Transformer

Ranked List of Ids
Find albums similar

to "Liquid Swords"

Query

Album(id, name, year)

67

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

Databases are ubiquitous.

Relational algebra defines the primitives for
processing queries on a relational database.

We will see relational algebra again when we talk
about query optimization + execution.

68

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Modern SQL
→ Make sure you understand basic SQL before the lecture.

69

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ASK ANDY ANYTHING

Questions about database industry?

Questions about database jobs?

Questions about database systems?

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Relational Model & Algebra
	Slide 2
	Slide 3
	Slide 4
	Slide 5: COURSE LOGISTICS
	Slide 6: TODAY’S AGENDA

	Databases Background
	Slide 7
	Slide 8: DATABASE
	Slide 9: DATABASE EXAMPLE
	Slide 10: FLAT FILE STRAWMAN
	Slide 11: FLAT FILE STRAWMAN
	Slide 12: FLAT FILES: DATA INTEGRITY
	Slide 13: FLAT FILES: IMPLEMENTATION
	Slide 14: FLAT FILES: DURABILITY
	Slide 15: DATABASE MANAGEMENT SYSTEM
	Slide 16: DATA MODELS
	Slide 17: DATA MODELS
	Slide 18: DATA MODELS
	Slide 19: DATA MODELS
	Slide 20: DATA MODELS
	Slide 21: DATA MODELS
	Slide 22: DATA MODELS
	Slide 23: DATA MODELS
	Slide 24: EARLY DBMSs
	Slide 25: EARLY DBMSs
	Slide 26: EARLY DBMSs
	Slide 27: CODASYL
	Slide 28: CODASYL
	Slide 29: RELATIONAL MODEL

	Relational Model
	Slide 30: RELATIONAL MODEL
	Slide 31: DATA INDEPENDENCE
	Slide 32: RELATIONAL MODEL
	Slide 33: RELATIONAL MODEL: PRIMARY KEYS
	Slide 34: RELATIONAL MODEL: PRIMARY KEYS
	Slide 35: RELATIONAL MODEL: FOREIGN KEYS
	Slide 36: RELATIONAL MODEL: FOREIGN KEYS
	Slide 37: RELATIONAL MODEL: FOREIGN KEYS
	Slide 38: RELATIONAL MODEL: FOREIGN KEYS
	Slide 39: RELATIONAL MODEL: CONSTRAINTS

	Relational Algebra
	Slide 40: DATA MANIPULATION LANGUAGES (DML)
	Slide 41: RELATIONAL ALGEBRA
	Slide 42: RELATIONAL ALGEBRA: SELECT
	Slide 43: RELATIONAL ALGEBRA: SELECT
	Slide 44: RELATIONAL ALGEBRA: PROJECTION
	Slide 45: RELATIONAL ALGEBRA: UNION
	Slide 46: RELATIONAL ALGEBRA: INTERSECTION
	Slide 47: RELATIONAL ALGEBRA: DIFFERENCE
	Slide 48: RELATIONAL ALGEBRA: PRODUCT
	Slide 49: RELATIONAL ALGEBRA: JOIN
	Slide 50: RELATIONAL ALGEBRA: JOIN
	Slide 51: RELATIONAL ALGEBRA: JOIN
	Slide 52: RELATIONAL ALGEBRA: JOIN
	Slide 53: RELATIONAL ALGEBRA: EXTRA OPERATORS
	Slide 54: OBSERVATION
	Slide 55: RELATIONAL MODEL: QUERIES

	Other Data Models
	Slide 56: DATA MODELS
	Slide 57: DATA MODELS
	Slide 58: DOCUMENT DATA MODEL
	Slide 59: DOCUMENT DATA MODEL
	Slide 60: DOCUMENT DATA MODEL
	Slide 61: DOCUMENT DATA MODEL
	Slide 62: DOCUMENT DATA MODEL
	Slide 63: VECTOR DATA MODEL
	Slide 64: VECTOR DATA MODEL
	Slide 65: VECTOR DATA MODEL
	Slide 66: VECTOR DATA MODEL
	Slide 67: VECTOR DATA MODEL

	Conclusion
	Slide 68: CONCLUSION
	Slide 69: NEXT CLASS

	Q&A
	Slide 70: ASK ANDY ANYTHING

