
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Modern SQL

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY’S AGENDA

Database Systems Background

Relational Model

Relational Algebra

Alternative Data Models

Q&A Session

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LAST CLASS

We introduced the Relational Model as the superior
data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and
modify a relational database.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SQL HISTORY

SQUARE

IBM System R

IBM System R

In 1971, IBM created its first relational query
language called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM
System R prototype DBMS.
→ Structured English Query Language

IBM releases commercial SQL-based DBMSs:
→ System/38 (1979), SQL/DS (1981), and DB2 (1983).

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R
https://en.wikipedia.org/wiki/IBM_System_R

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SQL HISTORY

SQUARE

IBM System R

IBM System R

In 1971, IBM created its first relational query
language called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM
System R prototype DBMS.
→ Structured English Query Language

IBM releases commercial SQL-based DBMSs:
→ System/38 (1979), SQL/DS (1981), and DB2 (1983).

6

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R
https://en.wikipedia.org/wiki/IBM_System_R
https://dl.acm.org/doi/10.1145/361219.361221

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SQL HISTORY

SQL-92

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

Current standard is SQL:2023
→ SQL:2023 → Property Graph Queries, Muti-Dim. Arrays
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/files/sql/sql1992.txt

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SQL HISTORY

SQL-92

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

Current standard is SQL:2023
→ SQL:2023 → Property Graph Queries, Muti-Dim. Arrays
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/files/sql/sql1992.txt

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SQL HISTORY

SQL-92

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

Current standard is SQL:2023
→ SQL:2023 → Property Graph Queries, Muti-Dim. Arrays
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/files/sql/sql1992.txt

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SQL HISTORY

SQL-92

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

Current standard is SQL:2023
→ SQL:2023 → Property Graph Queries, Muti-Dim. Arrays
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

9

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/files/sql/sql1992.txt
https://spectrum.ieee.org/the-rise-of-sql

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:
→ View definition
→ Integrity & Referential Constraints
→ Transactions

Important: SQL is based on bags (duplicates) not
sets (no duplicates).

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Aggregations + Group By

String / Date / Time Operations

Output Control + Redirection

Window Functions

Nested Queries

Lateral Joins

Common Table Expressions

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE DATABASE

student(sid,name,login,gpa) enrolled(sid,cid,grade)

course(cid,name)

sid name login age gpa
53666 RZA rza@cs 55 4.0
53688 Taylor swift@cs 27 3.9
53655 Tupac shakur@cs 25 3.5

sid cid grade
53666 15-445 C
53688 15-721 A
53688 15-826 B
53655 15-445 B
53666 15-721 C

cid name
15-445 Database Systems
15-721 Advanced Database Systems
15-826 Data Mining
15-799 Special Topics in Databases

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATES

Functions that return a single value from a bag of
tuples:
→ AVG(col)→ Return the average col value.
→ MIN(col)→ Return minimum col value.
→ MAX(col)→ Return maximum col value.
→ SUM(col)→ Return sum of values in col.
→ COUNT(col)→ Return # of values for col.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
 FROM student WHERE login LIKE '%@cs'

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1) AS cnt
 FROM student WHERE login LIKE '%@cs'

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1+1+1) AS cnt
 FROM student WHERE login LIKE '%@cs'

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MULTIPLE AGGREGATES

Get the number of students and their average GPA that
have a “@cs” login.

SELECT AVG(gpa), COUNT(sid)
 FROM student WHERE login LIKE '%@cs'

AVG(gpa) COUNT(sid)

3.8 3

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 ???

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 ???

21

SELECT AVG(s.gpa), ANY_VALUE(e.cid)
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GROUP BY

Project tuples into subsets and
calculate aggregates against
each subset.

AVG(s.gpa) e.cid

2.46 15-721

3.39 15-826

1.89 15-445

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 GROUP BY e.cid

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 GROUP BY e.cid

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid, s.name

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HAVING

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 AND avg_gpa > 3.9
 GROUP BY e.cid

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HAVING

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 AND avg_gpa > 3.9
 GROUP BY e.cid

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 GROUP BY e.cid
 HAVING avg_gpa > 3.9;

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HAVING

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 AND avg_gpa > 3.9
 GROUP BY e.cid

AVG(s.gpa) e.cid

3.75 15-415
3.950000 15-721
3.900000 15-826

avg_gpa e.cid

3.950000 15-721

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 GROUP BY e.cid
 HAVING avg_gpa > 3.9;

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid
 GROUP BY e.cid
 HAVING AVG(s.gpa) > 3.9;

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STRING OPERATIONS

String Case String Quotes

SQL-92 Sensitive Single Only

Postgres Sensitive Single Only

MySQL Insensitive Single/Double

SQLite Sensitive Single/Double

MSSQL Sensitive Single Only

Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('TuPaC')

WHERE name = "TuPaC" MySQL

SQL-92

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STRING OPERATIONS

LIKE is used for string matching.

String-matching operators
→'%' Matches any substring (including

empty strings).

→'_' Match any one character

SELECT * FROM enrolled AS e
 WHERE e.cid LIKE '15-%'

SELECT * FROM student AS s
 WHERE s.login LIKE '%@c_'

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STRING OPERATIONS

SQL-92 defines string functions.
→ Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
 FROM student WHERE sid = 53688

SELECT * FROM student AS s
 WHERE UPPER(s.name) LIKE 'KAN%'

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STRING OPERATIONS

SQL standard defines the || operator for
concatenating two or more strings together.

SELECT name FROM student
 WHERE login = LOWER(name) + '@cs'

MSSQL

SELECT name FROM student
 WHERE login = LOWER(name) || '@cs'

SQL-92

SELECT name FROM student
 WHERE login = CONCAT(LOWER(name), '@cs')

MySQL

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.

Support/syntax varies wildly…

Demo: Get the # of days since the beginning of
the year.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT REDIRECTION

Store query results in another table:
→ Table must not already be defined.
→ Table will have the same # of columns with the same types

as the input.

CREATE TABLE CourseIds (
 SELECT DISTINCT cid FROM enrolled);

MySQL

SELECT DISTINCT cid INTO CourseIds
 FROM enrolled;

SQL-92

SELECT DISTINCT cid
 INTO TEMPORARY CourseIds
 FROM enrolled;

Postgres

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT REDIRECTION

Insert tuples from query into another table:
→ Inner SELECT must generate the same columns as the

target table.
→ DBMSs have different options/syntax on what to do with

integrity violations (e.g., invalid duplicates).

INSERT INTO CourseIds
(SELECT DISTINCT cid FROM enrolled);

SQL-92

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

SELECT sid, grade FROM enrolled
 WHERE cid = '15-721'
 ORDER BY grade

sid grade

53123 A
53334 A
53650 B
53666 D

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

SELECT sid, grade FROM enrolled
 WHERE cid = '15-721'
 ORDER BY grade

SELECT sid, grade FROM enrolled
 WHERE cid = '15-721'
 ORDER BY 2

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

SELECT sid, grade FROM enrolled
 WHERE cid = '15-721'
 ORDER BY grade

SELECT sid FROM enrolled
 WHERE cid = '15-721'
 ORDER BY grade DESC, sid ASC

sid

53666
53650
53123
53334

SELECT sid, grade FROM enrolled
 WHERE cid = '15-721'
 ORDER BY 2

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS
→ Limit the # of tuples returned in output.
→ Can set an offset to return a “range”

SELECT sid, name FROM student
 WHERE login LIKE '%@cs'
FETCH FIRST 10 ROWS ONLY;

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS
→ Limit the # of tuples returned in output.
→ Can set an offset to return a “range”

SELECT sid, name FROM student
 WHERE login LIKE '%@cs'
FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
 WHERE login LIKE '%@cs'
 ORDER BY gpa
OFFSET 10 ROWS
FETCH FIRST 10 ROWS WITH TIES;

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OUTPUT CONTROL

FETCH {FIRST|NEXT} <count> ROWS
OFFSET <count> ROWS
→ Limit the # of tuples returned in output.
→ Can set an offset to return a “range”

SELECT sid, name FROM student
 WHERE login LIKE '%@cs'
FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
 WHERE login LIKE '%@cs'
 ORDER BY gpa
OFFSET 10 ROWS
FETCH FIRST 10 ROWS WITH TIES;

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing
them into a single output tuple, to support running
totals, ranks, and moving averages.
→ Like an aggregation but tuples are not grouped into a

single output tuples.

SELECT FUNC-NAME(...) OVER (...)
 FROM tableName

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing
them into a single output tuple, to support running
totals, ranks, and moving averages.
→ Like an aggregation but tuples are not grouped into a

single output tuples.

SELECT FUNC-NAME(...) OVER (...)
 FROM tableName

Aggregation Functions
Special Functions

How to “slice” up data
Can also sort tuples

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

Aggregation functions:
→ Anything that we discussed earlier

Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

SELECT *, ROW_NUMBER() OVER () AS row_num
 FROM enrolled

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

Aggregation functions:
→ Anything that we discussed earlier

Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

SELECT *, ROW_NUMBER() OVER () AS row_num
 FROM enrolled

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

SELECT cid, sid,
 ROW_NUMBER() OVER (PARTITION BY cid)
 FROM enrolled
 ORDER BY cid

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

SELECT cid, sid,
 ROW_NUMBER() OVER (PARTITION BY cid)
 FROM enrolled
 ORDER BY cid

cid sid row_number
15-445 53666 1
15-445 53655 2
15-721 53688 1
15-721 53666 2
15-826 53688 1

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

SELECT cid, sid,
 ROW_NUMBER() OVER (PARTITION BY cid)
 FROM enrolled
 ORDER BY cid

cid sid row_number
15-445 53666 1
15-445 53655 2
15-721 53688 1
15-721 53666 2
15-826 53688 1

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

SELECT *,
 ROW_NUMBER() OVER (ORDER BY cid)
 FROM enrolled
 ORDER BY cid

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

SELECT * FROM (
 SELECT *, RANK() OVER (PARTITION BY cid
 ORDER BY grade ASC) AS rank
 FROM enrolled) AS ranking
 WHERE ranking.rank = 2

Group tuples by cid
Then sort by grade

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

SELECT * FROM (
 SELECT *, RANK() OVER (PARTITION BY cid
 ORDER BY grade ASC) AS rank
 FROM enrolled) AS ranking
 WHERE ranking.rank = 2

Group tuples by cid
Then sort by grade

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Invoke a query inside of another query to compose
more complex computations.
→ Inner queries can appear (almost) anywhere in query.

SELECT name FROM student WHERE
 sid IN (SELECT sid FROM enrolled)

Outer Query
Inner Query

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Invoke a query inside of another query to compose
more complex computations.
→ Inner queries can appear (almost) anywhere in query.

SELECT name FROM student WHERE
 sid IN (SELECT sid FROM enrolled)

Outer Query
Inner Query

53

SELECT sid,
 (SELECT name FROM student AS s
 WHERE s.sid = e.sid) AS name
 FROM enrolled AS e;

SELECT * FROM student
 ORDER BY (SELECT MAX(sid) FROM student);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Invoke a query inside of another query to compose
more complex computations.
→ Inner queries can appear (almost) anywhere in query.

SELECT name FROM student WHERE
 sid IN (SELECT sid FROM enrolled)

Outer Query
Inner Query

54

SELECT sid,
 (SELECT name FROM student AS s
 WHERE s.sid = e.sid) AS name
 FROM enrolled AS e;

SELECT * FROM student
 ORDER BY (SELECT MAX(sid) FROM student);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Get the names of students in '15-445'

SELECT name FROM student
 WHERE ...

sid in the set of people that take 15-445

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Get the names of students in '15-445'

SELECT name FROM student
 WHERE ...
SELECT name FROM student
 WHERE ...
 SELECT sid FROM enrolled
 WHERE cid = '15-445'

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Get the names of students in '15-445'

SELECT name FROM student
 WHERE ...
SELECT name FROM student
 WHERE ...
 SELECT sid FROM enrolled
 WHERE cid = '15-445'

SELECT name FROM student
 WHERE sid IN (
 SELECT sid FROM enrolled
 WHERE cid = '15-445'
)

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Get the names of students in '15-445'

SELECT name FROM student
 WHERE ...
SELECT name FROM student
 WHERE ...
 SELECT sid FROM enrolled
 WHERE cid = '15-445'

SELECT name FROM student
 WHERE sid IN (
 SELECT sid FROM enrolled
 WHERE cid = '15-445'
)

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

ALL→ Must satisfy expression for all rows in the
sub-query.

ANY→ Must satisfy expression for at least one row in
the sub-query.

IN→ Equivalent to '=ANY()' .

EXISTS→ At least one row is returned without
comparing it to an attribute in outer query.

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Get the names of students in '15-445'

SELECT name FROM student
 WHERE sid = ANY(
 SELECT sid FROM enrolled
 WHERE cid = '15-445'
)

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Find student record with the highest id that is enrolled in
at least one course.

This won't work in SQL-92. It runs in SQLite, but
not Postgres or MySQL (v8 with strict mode).

SELECT MAX(e.sid), s.name
 FROM enrolled AS e, student AS s
 WHERE e.sid = s.sid;

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Find student record with the highest id that is enrolled in
at least one course.

SELECT sid, name FROM student
 WHERE ...

"Is the highest enrolled sid"

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Find student record with the highest id that is enrolled in
at least one course.

SELECT sid, name FROM student
 WHERE ...
SELECT sid, name FROM student
 WHERE sid
 SELECT MAX(sid) FROM enrolled

sid name

53688 Bieber

63

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
 WHERE ...

“with no tuples in the enrolled table”

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53655 15-445 B

53666 15-721 C

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases

64

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
 WHERE ...

“with no tuples in the enrolled table”

SELECT * FROM course
 WHERE NOT EXISTS(

)

tuples in the enrolled table

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
 WHERE ...

“with no tuples in the enrolled table”

SELECT * FROM course
 WHERE NOT EXISTS(

)

tuples in the enrolled table

SELECT * FROM course
 WHERE NOT EXISTS(
 SELECT * FROM enrolled
 WHERE course.cid = enrolled.cid
)

cid name

15-799 Special Topics in Databases

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LATERAL JOINS

The LATERAL operator allows a nested query to
reference attributes in other nested queries that
precede it.
→ You can think of it like a for loop that allows you to

invoke another query for each tuple in a table.

67

SELECT * FROM
 (SELECT 1 AS x) AS t1,
 LATERAL (SELECT t1.x+1 AS y) AS t2;

t1.x t2.y

1 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students
For each course:
 ⮕ Compute the average gpa of enrolled students

LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

68

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2;

LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

69

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2;

LATERAL JOIN

Calculate the number of students enrolled in each course
and the average GPA. Sort by enrollment count in
descending order.

70

cid name cnt avg

15-445 Database Systems 2 3.75
15-721 Advanced Database Systems 2 3.95
15-826 Data Mining 1 3.9
15-799 Special Topics in Databases 0 null

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COMMON TABLE EXPRESSIONS

Specify a temporary result set that can then be
referenced by another part of that query.
→ Think of it like a temp table just for one query.

Alternative to nested queries, views, and explicit
temp tables.

WITH cteName AS (
 SELECT 1
)
SELECT * FROM cteName

71

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COMMON TABLE EXPRESSIONS

Specify a temporary result set that can then be
referenced by another part of that query.
→ Think of it like a temp table just for one query.

Alternative to nested queries, views, and explicit
temp tables.

WITH cteName AS (
 SELECT 1
)
SELECT * FROM cteName

72

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names before
the AS keyword.

WITH cteName (col1, col2) AS (
 SELECT 1, 2
)
SELECT col1 + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
 SELECT 1, 2
)
SELECT colXXX + colXXX FROM cteName

73

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names before
the AS keyword.

WITH cteName (col1, col2) AS (
 SELECT 1, 2
)
SELECT col1 + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
 SELECT 1, 2
)
SELECT colXXX + colXXX FROM cteName

74

WITH cteName (colXXX, colXXX) AS (
 SELECT 1, 2
)
SELECT * FROM cteName

Postgres

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in
at least one course.

WITH cteSource (maxId) AS (
 SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student, cteSource
 WHERE student.sid = cteSource.maxId

75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OTHER THINGS TO NOTE

Identifiers (e.g. table and column
names) are case-insensitive.
→ Makes it harder for applications that care

about case (e.g., use CamelCased names).

One often sees quotes around names:
→ SELECT "ArtistList.firstName"

You have to pay cash money to get
the standard documents.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

SQL is a hot language.
→ Lots of NL2SQL tools, but writing

SQL is not going away.

You should (almost) always strive
to compute your answer as a
single SQL statement.

77

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://spectrum.ieee.org/the-rise-of-sql

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HOMEWORK #1

Write SQL queries to perform basic data analysis.
→ Write the queries locally using SQLite + DuckDB.
→ Submit them to Gradescope
→ You can submit multiple times and use your best score.

Due: Sunday Sept 8th @ 11:59pm

https://15445.courses.cs.cmu.edu/fall2024/homework1

78

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024/homework1

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

We will begin our journey to understanding the
internals of database systems starting with Storage!

79

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Modern SQL
	Slide 2: TODAY’S AGENDA

	Background
	Slide 3: LAST CLASS
	Slide 4: SQL HISTORY
	Slide 5: SQL HISTORY
	Slide 6: SQL HISTORY
	Slide 7: SQL HISTORY
	Slide 8: SQL HISTORY
	Slide 9: SQL HISTORY
	Slide 10: RELATIONAL LANGUAGES
	Slide 11: TODAY'S AGENDA
	Slide 12: EXAMPLE DATABASE

	Aggregation
	Slide 13: AGGREGATES
	Slide 14: AGGREGATES
	Slide 15: AGGREGATES
	Slide 16: AGGREGATES
	Slide 17: AGGREGATES
	Slide 18: MULTIPLE AGGREGATES
	Slide 20: AGGREGATES
	Slide 21: AGGREGATES
	Slide 22: GROUP BY
	Slide 23: GROUP BY
	Slide 24: GROUP BY
	Slide 25: GROUP BY
	Slide 26: HAVING
	Slide 27: HAVING
	Slide 28: HAVING

	String + Date/Time Operations
	Slide 29: STRING OPERATIONS
	Slide 30: STRING OPERATIONS
	Slide 31: STRING OPERATIONS
	Slide 32: STRING OPERATIONS
	Slide 33: DATE/TIME OPERATIONS

	Output Control
	Slide 34: OUTPUT REDIRECTION
	Slide 35: OUTPUT REDIRECTION
	Slide 36: OUTPUT CONTROL
	Slide 37: OUTPUT CONTROL
	Slide 38: OUTPUT CONTROL
	Slide 39: OUTPUT CONTROL
	Slide 40: OUTPUT CONTROL
	Slide 41: OUTPUT CONTROL

	Window Functions
	Slide 42: WINDOW FUNCTIONS
	Slide 43: WINDOW FUNCTIONS
	Slide 44: WINDOW FUNCTIONS
	Slide 45: WINDOW FUNCTIONS
	Slide 46: WINDOW FUNCTIONS
	Slide 47: WINDOW FUNCTIONS
	Slide 48: WINDOW FUNCTIONS
	Slide 49: WINDOW FUNCTIONS
	Slide 50: WINDOW FUNCTIONS
	Slide 51: WINDOW FUNCTIONS

	Nested Queries
	Slide 52: NESTED QUERIES
	Slide 53: NESTED QUERIES
	Slide 54: NESTED QUERIES
	Slide 55: NESTED QUERIES
	Slide 56: NESTED QUERIES
	Slide 57: NESTED QUERIES
	Slide 58: NESTED QUERIES
	Slide 59: NESTED QUERIES
	Slide 60: NESTED QUERIES
	Slide 61: NESTED QUERIES
	Slide 62: NESTED QUERIES
	Slide 63: NESTED QUERIES
	Slide 64: NESTED QUERIES
	Slide 65: NESTED QUERIES
	Slide 66: NESTED QUERIES

	Lateral Joins
	Slide 67: LATERAL JOINS
	Slide 68: LATERAL JOIN
	Slide 69: LATERAL JOIN
	Slide 70: LATERAL JOIN

	Common Table Expressions
	Slide 71: COMMON TABLE EXPRESSIONS
	Slide 72: COMMON TABLE EXPRESSIONS
	Slide 73: COMMON TABLE EXPRESSIONS
	Slide 74: COMMON TABLE EXPRESSIONS
	Slide 75: COMMON TABLE EXPRESSIONS

	Conclusion
	Slide 76: OTHER THINGS TO NOTE
	Slide 77: CONCLUSION
	Slide 78: HOMEWORK #1
	Slide 79: NEXT CLASS

