Carnegie Mellon University

Uatabase
Systems

Database Storage:
Tuple Organization

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA
Hoemework#t - - -
Project #0-is-due September8%-@11:59pm

Project #1 will be released on September 10™

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

UPCOMING DATABASE TALKS

Databricks .

— Tuesday Sept 10" @ 6:00pm @ dqtq brICks
— GHC 4401

Snowflake Jdb

— Thursday Sept 12" @ 12:00pm)4°§ SnOWﬂOke

— GHCO9115

Apache DataFusion (DB Seminar) DATA.
— Monday Sept 23" @ 4:30pm F U S |

— Zoom

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/fall-2024-snowflake-tech-talk/
https://db.cs.cmu.edu/events/fall-2024-snowflake-tech-talk/
https://db.cs.cmu.edu/events/building-blocks-apache-arrow-datafusion-a-fast-embeddable-modular-analytic-query-engine-andrew-lamb/

$2CMU-DB

15-445/645 (Fall 2024)

UPCOMING DATABASE EVENTS

CMU-DB Industry Affiliates Retreat

— Monday Sept 16%: Research Talks + Poster Session
— Tuesday Sept 17%: Company Info Sessions
— All events are open to the public.

Sign-up for Company Info Sessions (@61)
Add your Resume if You Want to Make $$$ (@92)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/affiliates/retreat2024/
https://piazza.com/class/lzk4t7ue1bu5ph/post/61
https://piazza.com/class/lzk4t7ue1bu5ph/post/92

LAST CLASS

We presented a disk-oriented architecture where
the DBMS assumes that the primary storage
location of the database is on non-volatile disk.

We then discussed a page-oriented storage scheme
for organizing tuples across heap files.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SLOTTED PAGES

The most common layout scheme is Slot /}rray
called slotted pages.

'v 2 3 456 7"

Header

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of: Tuple #4| Tuple #3

— The # of used slots

— The offset of the starting location of the Tuple #2 | Tuple #1
last slot used. ' :

|
Fixed- and Var-length
Tuple Data

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SLOTTED PAGES

The most common layout scheme is Slot /}rray
called slotted pages.

'v 2 3 456 7"

Header

The slot array maps "slots" to the
tuples' starting position offsets.

v]
The header keeps track of: Tuple #4| Tuple #3

— The # of used slots
— The offset of the starting location of the Tuple #2 | Tuple #1
last slot used. ' :

|
Fixed- and Var-length
Tuple Data

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

$2CMU-DB

15-445/645 (Fall 2024)

Slot /}rray

'v 2 3 456 7"

Header

pu

"

Tuple #4 | Tuple #3

Tuple #2 Tuple #1

|
Fixed- and Var-length

Tuple Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SLOTTED PAGES

The most common layout scheme is Slot /}rray
called slotted pages.

'v 2 3 456 7"

Header
The slot array maps "slots" to the

tuples' starting position offsets.

The header keeps track of: Tuple #4 Tux#3

— The # of used slots

— The offset of the starting location of the Tuple #2 | Tuple #1
last slot used. ' :

|
Fixed- and Var-length
Tuple Data

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SLOTTED PAGES

The most common layout scheme is Slot /}rray
called slotted pages.

'v 2 3 456 7"

Header
The slot array maps "slots" to the

tuples' starting position offsets.

v

The header keeps track of: Tuple #4
— The # of used slots
— The offset of the starting location of the Tuple #2 | Tuple #1

last slot used. ' :

|
Fixed- and Var-length
Tuple Data

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

$2CMU-DB

15-445/645 (Fall 2024)

Slot /}rray

Header

'v 2 3 456 7"

\ 4

Tuple #4

Tuple #2

Tuple #1

|
Fixed- and Var-length
Tuple Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

RECORD IDS

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the

database.

— File Id, Page Id, Slot #

— Most DBMSs do not store ids in tuple.

— SQLite uses ROWID as the true primary
key and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

$2CMU-DB

15-445/645 (Fall 2024)

PostgreSQl
CTID (6-bytes)

?SQLite

ROWID (8-bytes)

ZSOL Server
% %physloc %% (8-bytes)

ORACLE
ROWID (10-bytes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/rowidtable.html

TUPLE-ORIENTED STORAGE

Insert a new tuple:

— Check page directory to find a page with a free slot.
— Retrieve the page from disk (if not in memory).
— Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
— Check page directory to find location of page.
— Retrieve the page from disk (if not in memory).
— Find offset in page using slot array.
— If new data fits, overwrite existing data.
Otherwise, mark existing tuple as deleted and insert new
version in a different page.

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TUPLE-ORIENTED STORAGE

Problem #1: Fragmentation
— Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/0O

— DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O

— Worse case scenario when updating multiple tuples is that
each tuple is on a separate page.

What if the DBMS cannot overwrite data in

pages and could only create new pages?
— Examples: Some object stores, HDFS, Google Colossus

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

TODAY'S AGENDA

Log-Structured Storage
Index-Organized Storage
Data Representation

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

Instead of storing tuples in pages and updating the
in-place, the DBMS maintains a log that records
changes to tuples.

— Each log entry represents a tuple PUT/DELETE operation.

— Originally proposed as log-structure merge trees (LSM
Trees) in 1996.

The DBMS applies changes to an in-memory data
structure (MemTable) and then writes out the
changes sequentially to disk (SSTable).

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Log-structured_merge-tree

LOG-STRUCTURED STORAGE

MemTable
(1]

[V] [V]

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

PUT (key101,a1)» MemTable

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

PUT (key102,b) B MemTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

PUT (key1@1,az)» MemTable

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

PUT (key103,c) B MemTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

() PUT (key101,a,)

[v] [v] » PUT (key1®2,b1)
|
)

PUT (key103,c,)

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0 | SSTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0 | sstable || sSTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0

Level #1 SSTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0

Level #1 SSTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0

Level #1 SSTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0

Level #1 SSTable SSTable

Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0

HRNEER
|
Level #1 SSTable SSTable
Disk \ Do
|
Level #2 SSTable
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c,)

Memory

Y3r1g<mo7 £3)]

Level #0

|
E Level #1
Disk e
Level #2 SSTable
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

MemTable
(1]

Disk e

Level #2 SSTable

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

GET (key10) MY MemTable

‘ L)

SummaryTable

* Min/Max Key (
Per SSTable]
J

* Key Filter
Per Level

Disk | e

> Level #2 SSTable

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED STORAGE

Key-value storage that appends log il SST able
records on disk to represent changes
to tuples (PUT, DELETE).

— Each log record must contain the tuple's
unique identifier.

— Put records contain the tuple contents.

— Deletes marks the tuple as deleted.

DEL (key100)

PUT (keyl01,a,)

PUT (key102,b,)

PUT (key103,c;)

=
<
h
=
g
)
=
)

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without
checking previous log records.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED COMPACTION

Periodically compact SST Ables to reduce wasted

space and speed up reads.
— Only keep the "latest" values for each key using a sort-
merge algorithm.

W SSTable W SSTable
DEL (key100) PUT (key101,a,)
PUT (key101,a;) PUT (key102,b,)
PUT (keyl102,b,) + DEL (key103)
PUT (keyl103,c;) PUT (key104,d,)

Newest—Oldest
£CMU-DB
15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOG-STRUCTURED COMPACTION

Periodically compact SST Ables to reduce wasted

space and speed up reads.
— Only keep the "latest” values for each key using a sort-
merge algorithm.

W SSTable W SSTable W SSTable
DEL (key100) PUT (key101,a,) DEL (key100)
PUT (key101,a;) PUT (key102,b,) PUT (key101,a;)
PUT (keyl102,b,) + DEL (key103) PUT (keyl102,b,)
PUT (keyl103,c;) PUT (key104,d,) PUT (key103,c,)

PUT (key104,d,)

Newest—Oldest
£CMU-DB
15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISCUSSION

LOg-StI’UCtUI’Gd storage managers are more comimon

today than in previous decades.
— This is partly due to the proliferation of RocksDB.

ROCI(SDB @Ievelos
F‘HPBFHSHEE Y yugabyteDB yfqunq 0T|DB |l ClickHouse

@ CockroachDB W/ﬁg cassandra ~ WIREDTIGER T NEON

What are some downsides of this approach?
— Write-Amplification
— Compaction is Expensive

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

The two table storage approaches we've discussed

so far rely on indexes to find individual tuples.
— Such indexes are necessary because the tables are
inherently unsorted.

But what if the DBMS could keep tuples sorted
automatically using an index?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index WSQLite

data structure. NMysaL.

— Still use a page layout that looks like a slotted page.

— Tuples are typically sorted in page based on key. ORACLE

B+Tree pays maintenance costs upfront, whereas ZSQLServer
LSMs pay for it later.

I ey ey ey
me gy pm [e
£ \
Leaf ’_g/ N ’_/ N
Nodes | | || v v v

« Tuple #3 | Tuple #2 | Tuple #6
£ CMU-DB

15-445/645 (Fall 2024)

"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

TUPLE STORAGE

A tuple is essentially a sequence of bytes prefixed
with a header that contains meta-data about it.

[t is the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAYOUT

unsigned charl]

CREATE TABLE foo (,
id INT PRIMARY KEY, header id value
value BIGINT

);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAYOUT

‘ unsigned charl]
CREATE TABLE foo (

id INT PRIMARY KEY, header id value
value BIGINT

);

reinterpret_cast<int32_t*>(address)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (
id INT PRIMARY KEY,
cdate TIMESTAMP,

color CHAR(2), ~—_——

zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

unsigned charl]

);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (

32-bits

);

id INT PRIMARY KEY,

cdate TIMESTAMP,
color CHAR(2),
zipcode INT

$2CMU-DB

15-445/645 (Fall 2024)

unsigned charl]

64-bit Word

64-bit Word 64-bit Word 64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to

enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (
EYRLY id INT PRIMARY KEY,
(g8 cdate TIMESTAMP,
color CHAR(2),
zipcode INT

);

$2CMU-DB

15-445/645 (Fall 2024)

unsigned charl]

id cdate

W_W

64-bit Word

64-bit Word

64-bit Word

64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to

enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (
Y28 id INT PRIMARY KEY,
(ZRUA cdate TIMESTAMP,
g4 color CHAR(2),

zipcode INT

);

$2CMU-DB

15-445/645 (Fall 2024)

unsigned charl]

id cdate C

W_W

64-bit Word

64-bit Word

64-bit Word

64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (‘
y2i id INT PRIMARY KEY,

(8 cdate TIMESTAMP, id cdate c zipc

Ky~ zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word
);

unsigned charl]

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple
is word aligned. Essentially round up the storage
size of types to the next largest word size.

CREATE TABLE foo (
y2i id INT PRIMARY KEY,

. . 00000000 . 00000
PRI cdate TIMESTAMP, id ponsonos cdate c | zipc o
LB color CHAR(2), —_—
Ky~ zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
y2i id INT PRIMARY KEY,
(8 cdate TIMESTAMP, ' cdate c zipc

Ky~ zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word
);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
kY201 id INT PRIMARY KEY,

000000000000
[ER4s] cdate TIMESTAMP, id | zipc cdate C gaoaonodedos

Ky~ zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word
);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed—Point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB

— Header with length, followed by data bytes OR pointer to
another page/offset with data.

— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL

— 32/64-bit integer of (micro/milli)-seconds since Unix
epoch (January 1%, 1970).

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

VARIABLE PRECISION NUMBERS

[nexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
— Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/IEEE-754

VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

int main(int argc, charx argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y
printf("0.3

%f\n", xty);
%f\n", 0.3);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

VARIABLE PRECISION NUMBERS

Rounding Example Output
#include <stdio.h> x+y = 0.300000
jn#include <stdio.h> 9.3 7 0.300000

0.30000001192092895508
0.29999999999999998890

X+
int main(int argc, charx argv[]) { ||, g

float x = 0.1;
float y = 0.2;
) printf("xty = %.20f\n", xty);
printf("0.3 = %.20f\n", 0.3);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are

unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if the DBMS does not provide
arbitrary precision (e.g., decimal point can be in a different
position per value).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

POSTGRES: NUMERIC

of Digits
typedef unsigned char NumericDigit:

typedef struct {

Weight of 1% Digit

int ndigits;
Scale Factor <@g it We
int sdb
Positive/Negative/NaN / int sien;
/NumericDigit *digits;
Digit Storage

} numeric;

b

le;

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

#

Weight o

Sc
Positive/Nega
Dig

$2CMU-DB

15-445/645 (Fall 2024)

AF e
* add var() -
*

* Full version of add functicnality on variable level (handling signs).
* result might point to one of the operands too without danger.
E3

int
PGTYPESnumeric add (numeric *varl, numeric *Var2, numeric *result)
{ E3

* Decide on the signs of the twg variables what to do

-

if {varl-»sign == NUMERIC Pos)

{
if {var2->sign == MUMERIC POS)
{

/*‘
* Both are positive result = +(ABS(varl) + ABS{varz))
*

if (add abs{varl, varZ, resuylt) 1= 0}
return -1;

result->sign = NUMERIC pos;
else
/Jk
* varl is positive, wvar2 is Negative Must compare absolute values
*/

Ew;t:k (cmp abs(varl, var2j)

* ABS(varl) == AB5{war2)
* result = ZgRp

x L

*/
zero var(result}),

result-srscale = Hax(varl-brﬁcale, var2-»rscale);
result-sdscale = Max(var1—>dscale, var2->dscale);

reak;

* ABS(varl) > ABS(varz)
* result = +{ABS(var1) - ABS{wvar2))
*

ES
if (sub abs(varl, var2, result) 1= o)
return g

result-»sign = NUMERIC POS;
break;

case -1:
/* __________
* ABS(varl) < ABS{varz)
* result = -(ABS(var2) - ABS(varl))
*

umericDigit:

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

NULL DATA TYPES

Choice #1: Null Column Bitmap Header

— Store a bitmap in a centralized header that specifies what
attributes are null.
— This is the most common approach in row-stores.

Choice #2: Special Values

— Designate a placeholder value to represent NULL for a data
type (e.g., INT32_MIN). More common in column-stores.

*ad
‘Q‘ » Choice #3: Per Attribute Null Flag

Don’ — Store a flag that marks that a value is null.
ont — Must use more space than just a single bit because this

Do This! messes up with word alignment.
£2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

N/

X 4
Don't
Do This!

$2CMU-DB

15-445/645 (Fall 2024)

)

NULL DATA T

Choice #1: Null Column Bitma
— Store a bitmap in a centralized headsg

attributes are null.)
— This is the most common approac

Choice #2: Special Values
— Designate a placeholder value to ref
type (e.g., INT32_MIN). More com

Choice #3: Per Attribute Null
— Store a flag that marks tha‘F a Valug
— Must use more space than just a sin

]

NULLS!
Revisiting Null Representation in Modern Columnar Formats

Xinyu Zeng Ruijun Meng Andrew Pavlo
Tsinghua University Tsinghua University Carnegie Mellon University
Zeng-xy2l@mails.tsinghua,edu.c mrj2i Is.tsinghua edv.cn pavlag@es.cmu.edu
Wes McKinney Huanchen Zhang"
Posit PRC Tsinghua University

wes@posit.co
ABSTRACT

Nulls are common in real-world data els, yet recent research on
columnar formats and encodings rarely address Null representa-

data disteibutions, encoding schemes (with different best SIMD I5A),
and implementations. We optimize the bottlertecks in the traditional
2pproach using AYX512. We also propose a Null-lling strategy
called SmartNull, which ean determine the Nujl values best for

mpression tatlo at ncoding time. From our micro-benchmask,
yhe argue that the aptinsal Null compression depends on severs] fae-
Yors: decouing speed, data distribution, and Null ratio, Oy analysis
shows that the Conpact layout pesformms better when Nt ratio is
high and the Placeholder layout is hetter when the Nul ratio is
low ar the data is seriak-correlated,

ACM Reference Format:
Xinyn Zeng. Ruijun Meng, Andrew Pavlo, Wes MeKinney, Huanchen Zhang.
2021, NULLS! Revisiting Nul Representation in Aodery, Columnar Foemats,

1 INTRODUCTION
Codd first mentioned how touse Nuil values to represent missing
dataina relational database i 1975 [17]. A subs Paperin 1979
described the semantics of Null propagation through ternary logic
for SQL's arithmetic and comparison operations [18). Every major
DBMS and data file format [27. 36] supports Nulls today and they
are widely used in real-world applications, a recont survey showed
that ~80% of SQL developers encounter Nuls in their databases [34].
Despite the prevalence of Nulls, there has not been a deep in-
vestigation into how to best handle them in a modern file format
that is designed for analytieal workioads Pprocessing columnar dats,

Gl
e e under 3 Cresoe Comomnas At NoaGommarcal
ateraationd] 4 ocnse
DM 54, Jue 10,202, Suntige, A, Chie
2024 Copyright held by the wwacr authorts)

MISEN 5754- 407
4/ 10,1145,

fips

huc\ndml@rs&ngllua‘edu.cn

Placehalder

Logical Compact

Figure 1: Nuli Representations - Examples of Comact and Placehalder
sepresentation schemes for a logical duta set.

Today's most widely used columnar file formats {ie., Apache Pa-
quet [7], Apache ORC [6]) follow the same Compact layout as the
seminal C-Store DBMS from the 2000s [13], For each nullable at-
tribute in a table, C-Stone’s scheme stores nonNgll (fixed-width)
values in densely packed contiguous columns, To handie x| Is, the
stheme maintains a separate bitmap to record whether the value
for an attribute at & given position is Null or st Storing values
in this manner enables better compression and improves query
perfarmaance. Hawever, because the Compact layout dues not store.
Nulls,a tuple’s logical position in & tble tray not match its physical
pesition in the column, hampering random access ability.

Analtemative approach is to store the Null vahyes place. That
13- nstead of pruning the Nulls out,this scheme uses a definlt value
(e 2er0, INT_MIN) as a placeholder to represent Null for a given
tuple. The scheme still maintains a bitmap 1o indicate whether 4
position contains Null or not because the placeholder value may
collide with a non-nuil value. Without further compression, this
Placehalder Luyout ahways uses the same amount ot storage space
whethet or not values are Null, but facilivates random access and
yeclorized execution. Recent systems and formats such a, DBz
BLU [32], DuckDE [31], Apache Arrow! [4], and BirBlocks [23)
adopt this Placenolder fayout. Figure 1 shows the difference be-
tween Compact and Placehaldar layout,

Many DBISs use a combination of Pacquet and Arrow storage
19 represent data on disk and in-memary, respectively 5, 9, 10].
However, the different representation of Nulls between Compact

Huanche:

% 5 s aflated with Shanghas 1 Zhi Intine.
224 104 8p0ly Nals 1 b iy partclar v ok vl b
mplemenitions (. ol st B i v et ke e ey e e

messes up with word alignment.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/papers/2024/zeng-damon24.pdf

LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (

id INT PRIMARY KEY,
data INT,
contents TEXT

);

Header | INT|INT| TEXT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (

id INT PRIMARY KEY,
data INT,
contents TEXT

);

Header | INT|INT| TEXT

$2CMU-DB

15-445/645 (Fall 2024)

Overflow Page

VARCHAR DATA

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (
id INT PRIMARY KEY,

$2CMU-DB

15-445/645 (Fall 2024)

data INT,
contents TEXT
);
Header | INT | INT |size loc%tion
Overflow Page
-> VARCHAR DATA @

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

EXTERNAL VALUE STORAGE

Some systems allow you to store a Tuple
large value in an external file.
Header | a | b | ¢ d e
Treated as a BLOB type.
— Oracle: BFILE data type I
— Microsoft: FILESTREAM data type

External File

The DBMS cannot manipulate the

contents of an external file.
— No durability protections. Data
— No transaction protections.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXTERNAL VALUE i

Some systems allow you to store a
large value in an external file.

Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.

— No durability protections.
— No transaction protections.

$2CMU-DB

15-445/645 (Fall 2024)

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sear.
I: Microsoft Research, 2:

“atharine van Ingen', Jim Gray'
University of California at Berkeley

sears@cs.berkeley.edu, vaning

soft.com, g rosoftcom

MSR-TR-2006-45
April 2006 Revised June 2006

Abstract
Application designers must decide whether to store
large objects (BLOBS) in a filesystem or in o database.
Generally, this decision is based on factors such as
application simplicity or manageability. Often, system
performance affects these factors,

Folklore tells us that databases effi ntly handle
large numbers of small objects, while filesystems are
more efficient for large objects. Where is the
break-cven point? When is accessing a BLOB stored
as a file cheaper than ace ng a BLOB stored as a
database record?

Of course, this depends on the particular
filesystem, database system, and workload in question.
This study shows that when comparing the NTFS file
system and SQL Server 2005 database system on &
create, = {read, replace}* = delete
workload, BLOBs smaller than 256KB are more
efficiently handled by SQL Server, while NTES is
more efficient BLOBS larger than IMB. Of course,
this break-even point will vary among - different
database systems, filesystems, and workloads,

By measuring the performance of a storage server
workload typical of web applications which use gevput
Pprotocols such as WebDAYV [WebDAV]. we found that
the break-even point depends on many factors.

fatio of bytes in deleted or replaced objects to bytes in
live objects, is dominant. As storage age increases,
fragmentation tends to increase, The filesystem we
study has better fragmentation contro} than the
database we used, suggesting the database system
would benefit from incorporating ideas from filesystem
architecture, Conversely, filesystem performance may
be improved by using database techniques to handle
small files.

Surprisingly, for these studies, when average
object size is held constant, the distribution of object
sizes did not significantly affect performance. We alsy
found that, in addition to low percentage free space,
low ratio of free Space Lo average object size leads o
fi ion and fc degrad; X

1. Introduction

Application data objects are getting larger as digital
media becomes ubiquitous. Furthermore, the
increasing popularity of web services and other
network applications means that systems that once
managed static archives of “fin ed” objects now
fanage frequently modified versions of application
data as it is being created and updated. Rather than
updating these objects, the archive either stores
multiple versions of the objects (the V of WebDAY
stands for “versioning"), or simply does wholesale
replacement (as in SharePoint ~ Team Services
[SharePoint]).

Application designers have the choice of storing
large objects as files in the filesystem, as BLOBs
(binary large objects) in a database, or as a
combination of both, Only folklore is available
regarding the tradeoffs - often the design decision is
based on which technology the designer knows best.
Most designers will tell you that a daabase is probably
best for small binary objects and that t files are best
for large objects. But, what is the break-cven point?
What are the tradeoffs?

This article characterizes the performance of an
abstracted write-intensive web. application that deals
Vith relatively large objects. Two versions of the
System are compared: one uses a relational database 1o
store large objects, while the other version stores the
objects as files in the filesystem. We measure how
performance changes over time as the storage becomes
fragmented. The article concludes by describing and
2 the factors that a designer should consider
when picking a storage system. It also suggests
filesystem and database improvements for large object
support.

One surprising (to us at least) conclusion of our
work is that storage fragmentation is the main
determinant of the break-even point in the tradeoff.
Therefore, much of our work and much of this article
focuses on storage fragmentation issues, [n essence,
filesystems seem to have beter fragmentation handling
than databases and this drives the break-even point
down from about IMB to about 256KB.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

$2CMU-DB

15-445/645 (Fall 2024)

SYSTEM CATALOGS

A DBMS stores meta-data about databases in its

internal catalogs.

— Tables, columns, indexes, views
— Users, permissions
— Internal statistics

Almost every DBMS stores the database's catalog

inside itself (i.e., as tables).
— Wrap object abstraction around tuples.
— Specialized code for "bootstrapping" catalog tables.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

SYSTEM CATALOGS

You can query the DBMS’s internal
INFORMATION_SCHEMA catalog to get info about the

database.

— ANSI standard set of read-only views that provide info
about all the tables, views, columns, and procedures in a
database

DBMSs also have non-standard shortcuts to
retrieve this information.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ACCESSING TABLE SCHEMA

List all the tables in the current database:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

\d; Postgres
SHOW TABLES; MySQL
.tables SQLite

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MysQL

.schema student SQLite

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCHEMA CHANGES

ADD COLUMN:

— NSM: Copy tuples into new region in memory.
— DSM: Just create the new column segment on disk.

DROP COLUMN:

— NSM #1: Copy tuples into new region of memory.
— NSM #2: Mark column as "deprecated", clean up later.
— DSM: Just drop the column and free memory.

CHANGE COLUMN:

— Check whether the conversion is allowed to happen.
Depends on default values.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

INDEXES

CREATE INDEX:

— Scan the entire table and populate the index.

— Have to record changes made by txns that modified the
table while another txn was building the index.

— When the scan completes, lock the table and resolve
changes that were missed after the scan started.

DROP INDEX:

— Just drop the index logically from the catalog.
— [t only becomes "invisible" when the txn that dropped it
commits. All existing txns will still have to update it.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONCLUSION

Log-structured storage is an alternative approach to

the tuple-oriented architecture.
— Ideal for write-heavy workloads because it maximizes
sequential disk I/O.

The storage manager is not entirely independent
from the rest of the DBMS.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NEXT CLASS

Breaking your preconceived notion that a DBMS
stores everything as rows...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Database Storage: Tuple Organization
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: UPCOMING DATABASE EVENTS
	Slide 5: LAST CLASS
	Slide 6: SLOTTED PAGES
	Slide 7: SLOTTED PAGES
	Slide 8: SLOTTED PAGES
	Slide 9: SLOTTED PAGES
	Slide 10: SLOTTED PAGES
	Slide 11: SLOTTED PAGES
	Slide 12: RECORD IDS
	Slide 13: TUPLE-ORIENTED STORAGE
	Slide 14: TUPLE-ORIENTED STORAGE
	Slide 15: TODAY'S AGENDA

	Log-Structured
	Slide 16: LOG-STRUCTURED STORAGE
	Slide 17: LOG-STRUCTURED STORAGE
	Slide 18: LOG-STRUCTURED STORAGE
	Slide 19: LOG-STRUCTURED STORAGE
	Slide 20: LOG-STRUCTURED STORAGE
	Slide 21: LOG-STRUCTURED STORAGE
	Slide 22: LOG-STRUCTURED STORAGE
	Slide 23: LOG-STRUCTURED STORAGE
	Slide 24: LOG-STRUCTURED STORAGE
	Slide 25: LOG-STRUCTURED STORAGE
	Slide 26: LOG-STRUCTURED STORAGE
	Slide 27: LOG-STRUCTURED STORAGE
	Slide 28: LOG-STRUCTURED STORAGE
	Slide 29: LOG-STRUCTURED STORAGE
	Slide 30: LOG-STRUCTURED STORAGE
	Slide 31: LOG-STRUCTURED STORAGE
	Slide 32: LOG-STRUCTURED STORAGE
	Slide 33: LOG-STRUCTURED STORAGE
	Slide 34: LOG-STRUCTURED STORAGE
	Slide 35: LOG-STRUCTURED COMPACTION
	Slide 36: LOG-STRUCTURED COMPACTION
	Slide 37: DISCUSSION

	Index-Organized Tables
	Slide 38: OBSERVATION
	Slide 39: INDEX-ORGANIZED STORAGE

	Data Representation
	Slide 40: TUPLE STORAGE
	Slide 41: DATA LAYOUT
	Slide 42: DATA LAYOUT
	Slide 43: WORD-ALIGNED TUPLES
	Slide 44: WORD-ALIGNED TUPLES
	Slide 45: WORD-ALIGNED TUPLES
	Slide 46: WORD-ALIGNED TUPLES
	Slide 47: WORD-ALIGNED TUPLES
	Slide 48: WORD-ALIGNMENT: PADDING
	Slide 49: WORD-ALIGNMENT: REORDERING
	Slide 50: WORD-ALIGNMENT: REORDERING
	Slide 51: DATA REPRESENTATION
	Slide 52: VARIABLE PRECISION NUMBERS
	Slide 53: VARIABLE PRECISION NUMBERS
	Slide 54: VARIABLE PRECISION NUMBERS
	Slide 55: FIXED PRECISION NUMBERS
	Slide 56: POSTGRES: NUMERIC
	Slide 57: POSTGRES: NUMERIC
	Slide 58: NULL DATA TYPES
	Slide 59: NULL DATA TYPES
	Slide 60: LARGE VALUES
	Slide 61: LARGE VALUES
	Slide 62: LARGE VALUES
	Slide 63: EXTERNAL VALUE STORAGE
	Slide 64: EXTERNAL VALUE STORAGE

	Catalogs
	Slide 65: SYSTEM CATALOGS
	Slide 66: SYSTEM CATALOGS
	Slide 67: ACCESSING TABLE SCHEMA
	Slide 68: ACCESSING TABLE SCHEMA
	Slide 69: SCHEMA CHANGES
	Slide 70: INDEXES

	Conclusion
	Slide 71: CONCLUSION
	Slide 72: NEXT CLASS

