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ADMINISTRIVIA

Homework #1 is due September 8th @ 11:59pm

Project #0 is due September 8th @ 11:59pm

Project #1 will be released on September 10th
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UPCOMING DATABASE TALKS

Databricks
→ Tuesday Sept 10th @ 6:00pm
→ GHC 4401

Snowflake
→ Thursday Sept 12th @ 12:00pm
→ GHC 9115

Apache DataFusion (DB Seminar)
→ Monday Sept 23rd @ 4:30pm
→ Zoom
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UPCOMING DATABASE EVENTS

CMU-DB Industry Affiliates Retreat
→ Monday Sept 16th: Research Talks + Poster Session
→ Tuesday Sept 17th: Company Info Sessions
→ All events are open to the public.

Sign-up for Company Info Sessions (@61)

Add your Resume if You Want to Make $$$ (@92)
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LAST CLASS

We presented a disk-oriented architecture where 
the DBMS assumes that the primary storage 
location of the database is on non-volatile disk.

We then discussed a page-oriented storage scheme 
for organizing tuples across heap files.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
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RECORD IDS

ROWID

The DBMS assigns each logical tuple a 
unique record identifier that 
represents its physical location in the 
database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary 

key and stores them as a hidden attribute.

Applications should never rely on 
these IDs to mean anything.

CTID (6-bytes)

ROWID (10-bytes)

ROWID (8-bytes)
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TUPLE-ORIENTED STORAGE

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert new 
version in a different page.

13
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TUPLE-ORIENTED STORAGE

HDF Google Colossu

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is that 

each tuple is on a separate page.

What if the DBMS cannot overwrite data in 
pages and could only create new pages?
→ Examples: Some object stores,  HDFS, Google Colossus
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TODAY'S AGENDA

Log-Structured Storage

Index-Organized Storage

Data Representation

15
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LOG-STRUCTURED STORAGE

Instead of storing tuples in pages and updating the 
in-place, the DBMS maintains a log that records 
changes to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM 

Trees) in 1996. 

The DBMS applies changes to an in-memory data 
structure (MemTable) and then writes out the 
changes sequentially to disk (SSTable).
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MemTable

LOG-STRUCTURED STORAGE

Disk

Memory
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MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

PUT (key101,a1)
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MemTable

LOG-STRUCTURED STORAGE
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MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

PUT (key101,a2)
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MemTable
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MemTable

LOG-STRUCTURED STORAGE
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GET (key101)

• Min/Max Key 
Per SSTable

• Key Filter 
Per Level

SummaryTable
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LOG-STRUCTURED STORAGE

Key-value storage that appends log 
records on disk to represent changes 
to tuples (PUT, DELETE).
→ Each log record must contain the tuple's 

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to 
the database, the DBMS appends log 
records to the end of the file without 
checking previous log records.

34
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Periodically compact SSTAbles to reduce wasted 
space and speed up reads.
→ Only keep the "latest" values for each key using a sort-

merge algorithm.

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

LOG-STRUCTURED COMPACTION
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Log-structured storage managers are more common 
today than in previous decades.
→ This is partly due to the proliferation of RocksDB.

What are some downsides of this approach?
→ Write-Amplification
→ Compaction is Expensive

DISCUSSION

37
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OBSERVATION

The two table storage approaches we've discussed 
so far rely on indexes to find individual tuples.
→ Such indexes are necessary because the tables are 

inherently unsorted.

But what if the DBMS could keep tuples sorted 
automatically using an index?

16
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DBMS stores a table's tuples as the value of an index 
data structure.
→ Still use a page layout that looks like a slotted page.
→ Tuples are typically sorted in page based on key.

B+Tree pays maintenance costs upfront, whereas 
LSMs pay for it later.

Header key→
offset

Tuple #2 Tuple #6Tuple #3

key→
offset

key→
offset

INDEX-ORGANIZED STORAGE

17

Inner
Nodes

Leaf
Nodes
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TUPLE STORAGE

A tuple is essentially a sequence of bytes prefixed 
with a header that contains meta-data about it.

It is the job of the DBMS to interpret those bytes 
into attribute types and values.

The DBMS's catalogs contain the schema 
information about tables that the system uses to 
figure out the tuple's layout.

40
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DATA LAYOUT

19

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

header id value

unsigned char[]
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DATA LAYOUT

19

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

header id value

unsigned char[]

reinterpret_cast<int32_t*>(address)
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WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to 
enable the CPU to access it without any unexpected 
behavior or additional work.

20

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

64-bit Word 64-bit Word 64-bit Word64-bit Word

unsigned char[]
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  id INT PRIMARY KEY,

  cdate TIMESTAMP,
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64-bit Word 64-bit Word 64-bit Word64-bit Word

id

unsigned char[]
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WORD-ALIGNED TUPLES
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enable the CPU to access it without any unexpected 
behavior or additional work.
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CREATE TABLE foo (

  id INT PRIMARY KEY,
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unsigned char[]
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WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple 
is word aligned. Essentially round up the storage 
size of types to the next largest word size.

21

id cdate zipc
00000000
00000000
00000000
00000000

00000
000

00000
000

c

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word
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id cdate c zipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical 
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

22

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word
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id cdate czipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical 
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

22

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000 
000000000000
000000000000
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to 

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix 

epoch (January 1st, 1970).
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VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses 
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision 
numbers because CPU ISA's (Xeon, Arm) have 
instructions / registers to support them.

But they do not guarantee exact values…
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VARIABLE PRECISION NUMBERS

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output
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VARIABLE PRECISION NUMBERS

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %.20f\n", x+y);
    printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890
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FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary 
precision and scale. Used when rounding errors are 
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary 

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide 

arbitrary precision (e.g., decimal point can be in a different 
position per value).
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POSTGRES: NUMERIC

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage
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POSTGRES: NUMERIC

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;
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# of Digits
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Scale Factor

Positive/Negative/NaN
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NULL DATA TYPES

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what 

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data 

type (e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this 

messes up with word alignment.

28
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LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

29
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Header INT INT TEXT

CREATE TABLE foo (
  id INT PRIMARY KEY,
  data INT,
  contents TEXT
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LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings
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VARCHAR DATA
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Header INT INT TEXTsize location
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  id INT PRIMARY KEY,
  data INT,
  contents TEXT
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EXTERNAL VALUE STORAGE

Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of an external file.
→ No durability protections.
→ No transaction protections.

30

Data

Header a b c d e

External File

Tuple
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→ No durability protections.
→ No transaction protections.
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SYSTEM CATALOGS

A DBMS stores meta-data about databases in its 
internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores the database's catalog 
inside itself (i.e., as tables).
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.
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SYSTEM CATALOGS

You can query the DBMS’s internal 
INFORMATION_SCHEMA catalog to get info about the 
database.
→ ANSI standard set of read-only views that provide info 

about all the tables, views, columns, and procedures in a 
database

DBMSs also have non-standard shortcuts to 
retrieve this information.
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ACCESSING TABLE SCHEMA

List all the tables in the current database:

SELECT *
  FROM INFORMATION_SCHEMA.TABLES
 WHERE table_catalog = '<db name>';

SQL-92

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite
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ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT *
  FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'student'

SQL-92

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQLite
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SCHEMA CHANGES

ADD COLUMN:
→ NSM: Copy tuples into new region in memory.
→ DSM: Just create the new column segment on disk. 

DROP COLUMN:
→ NSM #1: Copy tuples into new region of memory.
→ NSM #2: Mark column as "deprecated", clean up later.
→ DSM: Just drop the column and free memory.

CHANGE COLUMN:
→ Check whether the conversion is allowed to happen. 

Depends on default values.
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INDEXES

CREATE INDEX:
→ Scan the entire table and populate the index.
→ Have to record changes made by txns that modified the 

table while another txn was building the index.
→ When the scan completes, lock the table and resolve 

changes that were missed after the scan started.

DROP INDEX:
→ Just drop the index logically from the catalog.
→ It only becomes "invisible" when the txn that dropped it 

commits. All existing txns will still have to update it.
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CONCLUSION

Log-structured storage is an alternative approach to 
the tuple-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes 

sequential disk I/O.

The storage manager is not entirely independent 
from the rest of the DBMS.
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NEXT CLASS

Breaking your preconceived notion that a DBMS 
stores everything as rows…
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