
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Database Storage:
Tuple Organization

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

Homework #1 is due September 8th @ 11:59pm

Project #0 is due September 8th @ 11:59pm

Project #1 will be released on September 10th

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

UPCOMING DATABASE TALKS

Databricks
→ Tuesday Sept 10th @ 6:00pm
→ GHC 4401

Snowflake
→ Thursday Sept 12th @ 12:00pm
→ GHC 9115

Apache DataFusion (DB Seminar)
→ Monday Sept 23rd @ 4:30pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/fall-2024-snowflake-tech-talk/
https://db.cs.cmu.edu/events/fall-2024-snowflake-tech-talk/
https://db.cs.cmu.edu/events/building-blocks-apache-arrow-datafusion-a-fast-embeddable-modular-analytic-query-engine-andrew-lamb/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

UPCOMING DATABASE EVENTS

CMU-DB Industry Affiliates Retreat
→ Monday Sept 16th: Research Talks + Poster Session
→ Tuesday Sept 17th: Company Info Sessions
→ All events are open to the public.

Sign-up for Company Info Sessions (@61)

Add your Resume if You Want to Make $$$ (@92)

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/affiliates/retreat2024/
https://piazza.com/class/lzk4t7ue1bu5ph/post/61
https://piazza.com/class/lzk4t7ue1bu5ph/post/92

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LAST CLASS

We presented a disk-oriented architecture where
the DBMS assumes that the primary storage
location of the database is on non-volatile disk.

We then discussed a page-oriented storage scheme
for organizing tuples across heap files.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

6

1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

7

1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

8

1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

9

1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

10

1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

11

1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RECORD IDS

ROWID

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the
database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary

key and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

CTID (6-bytes)

ROWID (10-bytes)

ROWID (8-bytes)

12

%%physloc%% (8-bytes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/rowidtable.html

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert new
version in a different page.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

HDF Google Colossu

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is that

each tuple is on a separate page.

What if the DBMS cannot overwrite data in
pages and could only create new pages?
→ Examples: Some object stores, HDFS, Google Colossus

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Log-Structured Storage

Index-Organized Storage

Data Representation

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOG-STRUCTURED STORAGE

Instead of storing tuples in pages and updating the
in-place, the DBMS maintains a log that records
changes to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM

Trees) in 1996.

The DBMS applies changes to an in-memory data
structure (MemTable) and then writes out the
changes sequentially to disk (SSTable).

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Log-structured_merge-tree

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

PUT (key101,a1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

PUT (key102,b1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

PUT (key101,a2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

PUT (key103,c1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

SSTableLevel #0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

SSTableLevel #0 SSTable Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

SSTableLevel #0

Level #1

SSTable

SSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

Level #0

Level #1 SSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

SSTableLevel #0

Level #1

SSTable

SSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

SSTableLevel #0

Level #1

SSTable

SSTableSSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

SSTable

Level #0

Level #1

Level #2

SSTableSSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→
H
igh

SSTable

Level #0

Level #1

Level #2

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

SSTable

Level #0

Level #1

Level #2

SSTable

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MemTable

LOG-STRUCTURED STORAGE

Disk

Memory

SSTable

SSTable

Level #0

Level #1

Level #2

SSTable

GET (key101)

• Min/Max Key
Per SSTable

• Key Filter
Per Level

SummaryTable

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOG-STRUCTURED STORAGE

Key-value storage that appends log
records on disk to represent changes
to tuples (PUT, DELETE).
→ Each log record must contain the tuple's

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without
checking previous log records.

34

K
ey L

ow
→
H
igh

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Periodically compact SSTAbles to reduce wasted
space and speed up reads.
→ Only keep the "latest" values for each key using a sort-

merge algorithm.

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

LOG-STRUCTURED COMPACTION

35

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Periodically compact SSTAbles to reduce wasted
space and speed up reads.
→ Only keep the "latest" values for each key using a sort-

merge algorithm.

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

PUT (key104,d2)

SSTable

LOG-STRUCTURED COMPACTION

36

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Log-structured storage managers are more common
today than in previous decades.
→ This is partly due to the proliferation of RocksDB.

What are some downsides of this approach?
→ Write-Amplification
→ Compaction is Expensive

DISCUSSION

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

The two table storage approaches we've discussed
so far rely on indexes to find individual tuples.
→ Such indexes are necessary because the tables are

inherently unsorted.

But what if the DBMS could keep tuples sorted
automatically using an index?

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DBMS stores a table's tuples as the value of an index
data structure.
→ Still use a page layout that looks like a slotted page.
→ Tuples are typically sorted in page based on key.

B+Tree pays maintenance costs upfront, whereas
LSMs pay for it later.

Header key→
offset

Tuple #2 Tuple #6Tuple #3

key→
offset

key→
offset

INDEX-ORGANIZED STORAGE

17

Inner
Nodes

Leaf
Nodes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TUPLE STORAGE

A tuple is essentially a sequence of bytes prefixed
with a header that contains meta-data about it.

It is the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA LAYOUT

19

CREATE TABLE foo (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA LAYOUT

19

CREATE TABLE foo (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

unsigned char[]

reinterpret_cast<int32_t*>(address)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

20

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

64-bit Word 64-bit Word 64-bit Word64-bit Word

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

20

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

20

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

20

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

20

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple
is word aligned. Essentially round up the storage
size of types to the next largest word size.

21

id cdate zipc
00000000
00000000
00000000
00000000

00000
000

00000
000

c

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

id cdate c zipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

22

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

id cdate czipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

22

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000
000000000000
000000000000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix

epoch (January 1st, 1970).

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values…

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/IEEE-754

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VARIABLE PRECISION NUMBERS

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %f\n", x+y);
 printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VARIABLE PRECISION NUMBERS

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %f\n", x+y);
 printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %.20f\n", x+y);
 printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide

arbitrary precision (e.g., decimal point can be in a different
position per value).

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

POSTGRES: NUMERIC

typedef unsigned char NumericDigit;

typedef struct {

 int ndigits;

 int weight;

 int scale;

 int sign;

 NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

POSTGRES: NUMERIC

typedef unsigned char NumericDigit;

typedef struct {

 int ndigits;

 int weight;

 int scale;

 int sign;

 NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NULL DATA TYPES

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data

type (e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this

messes up with word alignment.

28

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NULL DATA TYPES

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data

type (e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this

messes up with word alignment.

28

Don't
Do This!

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/papers/2024/zeng-damon24.pdf

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

29

Tuple

Header INT INT TEXT

CREATE TABLE foo (
 id INT PRIMARY KEY,
 data INT,
 contents TEXT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

29

Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXT

CREATE TABLE foo (
 id INT PRIMARY KEY,
 data INT,
 contents TEXT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

29

Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXTsize location

CREATE TABLE foo (
 id INT PRIMARY KEY,
 data INT,
 contents TEXT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXTERNAL VALUE STORAGE

Some systems allow you to store a
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

30

Data

Header a b c d e

External File

Tuple

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXTERNAL VALUE STORAGE

Some systems allow you to store a
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

30

Data

Header a b c d e

External File

Tuple

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SYSTEM CATALOGS

A DBMS stores meta-data about databases in its
internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores the database's catalog
inside itself (i.e., as tables).
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SYSTEM CATALOGS

You can query the DBMS’s internal
INFORMATION_SCHEMA catalog to get info about the
database.
→ ANSI standard set of read-only views that provide info

about all the tables, views, columns, and procedures in a
database

DBMSs also have non-standard shortcuts to
retrieve this information.

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ACCESSING TABLE SCHEMA

List all the tables in the current database:

SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_catalog = '<db name>';

SQL-92

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite

67

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'student'

SQL-92

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQLite

68

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCHEMA CHANGES

ADD COLUMN:
→ NSM: Copy tuples into new region in memory.
→ DSM: Just create the new column segment on disk.

DROP COLUMN:
→ NSM #1: Copy tuples into new region of memory.
→ NSM #2: Mark column as "deprecated", clean up later.
→ DSM: Just drop the column and free memory.

CHANGE COLUMN:
→ Check whether the conversion is allowed to happen.

Depends on default values.

69

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INDEXES

CREATE INDEX:
→ Scan the entire table and populate the index.
→ Have to record changes made by txns that modified the

table while another txn was building the index.
→ When the scan completes, lock the table and resolve

changes that were missed after the scan started.

DROP INDEX:
→ Just drop the index logically from the catalog.
→ It only becomes "invisible" when the txn that dropped it

commits. All existing txns will still have to update it.

70

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

Log-structured storage is an alternative approach to
the tuple-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes

sequential disk I/O.

The storage manager is not entirely independent
from the rest of the DBMS.

71

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Breaking your preconceived notion that a DBMS
stores everything as rows…

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Database Storage: Tuple Organization
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: UPCOMING DATABASE EVENTS
	Slide 5: LAST CLASS
	Slide 6: SLOTTED PAGES
	Slide 7: SLOTTED PAGES
	Slide 8: SLOTTED PAGES
	Slide 9: SLOTTED PAGES
	Slide 10: SLOTTED PAGES
	Slide 11: SLOTTED PAGES
	Slide 12: RECORD IDS
	Slide 13: TUPLE-ORIENTED STORAGE
	Slide 14: TUPLE-ORIENTED STORAGE
	Slide 15: TODAY'S AGENDA

	Log-Structured
	Slide 16: LOG-STRUCTURED STORAGE
	Slide 17: LOG-STRUCTURED STORAGE
	Slide 18: LOG-STRUCTURED STORAGE
	Slide 19: LOG-STRUCTURED STORAGE
	Slide 20: LOG-STRUCTURED STORAGE
	Slide 21: LOG-STRUCTURED STORAGE
	Slide 22: LOG-STRUCTURED STORAGE
	Slide 23: LOG-STRUCTURED STORAGE
	Slide 24: LOG-STRUCTURED STORAGE
	Slide 25: LOG-STRUCTURED STORAGE
	Slide 26: LOG-STRUCTURED STORAGE
	Slide 27: LOG-STRUCTURED STORAGE
	Slide 28: LOG-STRUCTURED STORAGE
	Slide 29: LOG-STRUCTURED STORAGE
	Slide 30: LOG-STRUCTURED STORAGE
	Slide 31: LOG-STRUCTURED STORAGE
	Slide 32: LOG-STRUCTURED STORAGE
	Slide 33: LOG-STRUCTURED STORAGE
	Slide 34: LOG-STRUCTURED STORAGE
	Slide 35: LOG-STRUCTURED COMPACTION
	Slide 36: LOG-STRUCTURED COMPACTION
	Slide 37: DISCUSSION

	Index-Organized Tables
	Slide 38: OBSERVATION
	Slide 39: INDEX-ORGANIZED STORAGE

	Data Representation
	Slide 40: TUPLE STORAGE
	Slide 41: DATA LAYOUT
	Slide 42: DATA LAYOUT
	Slide 43: WORD-ALIGNED TUPLES
	Slide 44: WORD-ALIGNED TUPLES
	Slide 45: WORD-ALIGNED TUPLES
	Slide 46: WORD-ALIGNED TUPLES
	Slide 47: WORD-ALIGNED TUPLES
	Slide 48: WORD-ALIGNMENT: PADDING
	Slide 49: WORD-ALIGNMENT: REORDERING
	Slide 50: WORD-ALIGNMENT: REORDERING
	Slide 51: DATA REPRESENTATION
	Slide 52: VARIABLE PRECISION NUMBERS
	Slide 53: VARIABLE PRECISION NUMBERS
	Slide 54: VARIABLE PRECISION NUMBERS
	Slide 55: FIXED PRECISION NUMBERS
	Slide 56: POSTGRES: NUMERIC
	Slide 57: POSTGRES: NUMERIC
	Slide 58: NULL DATA TYPES
	Slide 59: NULL DATA TYPES
	Slide 60: LARGE VALUES
	Slide 61: LARGE VALUES
	Slide 62: LARGE VALUES
	Slide 63: EXTERNAL VALUE STORAGE
	Slide 64: EXTERNAL VALUE STORAGE

	Catalogs
	Slide 65: SYSTEM CATALOGS
	Slide 66: SYSTEM CATALOGS
	Slide 67: ACCESSING TABLE SCHEMA
	Slide 68: ACCESSING TABLE SCHEMA
	Slide 69: SCHEMA CHANGES
	Slide 70: INDEXES

	Conclusion
	Slide 71: CONCLUSION
	Slide 72: NEXT CLASS

