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ADMINISTRIVIA

Homework #2 is due Sept 22" @ 11:59pm

Project #1 is due Sept 29" @ 11:59pm
— Recitation on Wed Sept 18™ @ 6:00pm
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UPCOMING DATABASE EVENTS

CMU-DB IndUStrY Affiliates Visit Day Carnegie
— Monday Sept 16™: Research Talks + Poster Session Mellon
— Tuesday Sept 17%: Company Info Sessions

University
] BEIEIEN] Group
— All events are open to the public. Industry Affiliates

Sign-up for Company Info Sessions (@61)
Add your Resume if You Want to Make $$$ (@92)
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LAST CLASS

We discussed storage architecture alternatives to

tuple-oriented scheme.
— Log-structured storage
— Index-organized storage

These approaches are ideal for write-heavy
(INSERT/UPDATE/DELETE) workloads.

But the most important query for some workloads
may be read (SELECT ) performance...
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TODAY'S AGENDA

Database Workloads
Storage Models

Data Compression
DB Flash Talk: StarTree
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DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)

— Fast operations that only read/update a small amount of
data each time.

On-Line Analytical Processing (OLAP)

— Complex queries that read a lot of data to compute
aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance
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Complex

DATABASE WORKLOADS

Simple

OLTP

Operation Complexity

Write-Heavy

Read-Heavy

W orkload Focus

Source: Mike Stonebraker
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Operation Complexity
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Simple

DATABASE WORKLOADS

LAP

OLT

Write-Heavy Read-Heavy

W orkload Focus

Source: Mike Stonebraker
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WIKIPEDIA EXAMPLE

CREATE TABLE useracct ( CREATE TABLE pages (
userID INT PRIMARY KEY, pageID INT PRIMARY KEY,
userName VARCHAR UNIQUE, title VARCHAR UNIQUE,
- latest INT
); —® S REFERENCES revisions (revID),
A );

A

CREATE TABLE revisions (

revID INT PRIMARY KEY,
® userID INT REFERENCES useracct (userlID),
pageID INT REFERENCES pages (pagelD)®
content TEXT,

updated DATETIME

);
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OBSERVATION

The relational model does not specify that the
DBMS must store all a tuple's attributes together in
a single page.

This may not actually be the best layout for some
workloads...
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OLTP

On-line Transaction Processing:
} , SELECT P.*x, R.*
— Simple queries that read/update a small FROM pages AS P
amount of data that is related to a single INNER JOIN revisions AS R
entity in the database. ON P.latest = R.revID

WHERE P.pagelD = ?

This is usually the kind of application

that people build first. UPDATE useracct
SET lastlLogin = NOW(),

hostname = ?
WHERE userID = ?

INSERT INTO revisions
VALUES (?,?2..,7)
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OLAP

On-line Analytical Processing:
— Complex queries that read large portions

of the database spanning multiple entities.

You execute these workloads on the

data you have collected from your
OLTP application(s).
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SELECT COUNT(U.lastlLogin),
EXTRACT(month FROM
U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastlLogin)
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STORAGE MODELS

A DBMS's storage model specifies how it

physically organizes tuples on disk and in memory.

— Can have different performance characteristics based on
the target workload (OLTP vs. OLAP).
— Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)
Choice #2: Decomposition Storage Model (DSM)
Choice #3: Hybrid Storage Model (PAX)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all attributes for a single
tuple contiguously in a single page.
— Also commonly known as a row store

I[deal for OLTP workloads where queries are more
likely to access individual entities and execute write-
heavy workloads.

NSM database page sizes are typically some constant

multiple of 4 KB hardware pages.
— See Lecture #03
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A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

NSM: PHYSICAL ORGANIZATION

ColA ColB Col C

Row #1
Row #2
Row #3
Row i#4
Row #5

Row #0 c0 I

C

c2

c3
c4

c5

Slot Array
A

header

y
header [BENEN % co

Database Page
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NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a

tuple's fixed-length and variable- ——
length attributes contiguously in a m—
single slotted page. Row #3

Row #4
Row #5

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a

Slot Array

physical tuple. l

header

y
header BEX

ad  bo co

Database Page
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NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a

tuple's fixed-length and variable- o —
length attributes contiguously in a cou 2 =
single slotted page. Row #3 c3
The tuple's record id (page#, slot#) is oo s I N |
how the DBMS uniquely identifies a

. Slot Array
physical tuple. !
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Disk
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NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

| Lectures #8 + #9

Index

$

userName JuserPass|hostname] lastlLogin

userName JuserPass|hostname] lastlLogin

userName JuserPass|hostname] lastlLogin

NSM Disk Page
header | userID

:% header | userID
S Se====l|=====m=
o L ”I =ea|ll=s===e| header- userlID
- rmll == | | header -
2| ===
S
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NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?,?,..7)

»

Index

Lectures #8 + #9

$

NSM Disk Page
header | userID juserNamejuserPass|hostname| lastLogin

,& header | userID JuserName|userPass|hostname| lastlLogin
M)
% header | userID juserNamejuserPassjhostname| lastLogin
S
= header | userID JuserName|userPass|hostname| lastlLogin

-
2
S
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Database File

NSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)
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Database File

NSM: OLAP EXAMPLE

FROM useracct AS U

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastlLogin) AS

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

month

| NSM Disk Page
header | userID juserName|userPassfjhostname] lastlLogin
header | userID juserNamejuserPassfjhostnamel lastlLogin
header | userID juserNamejuserPassfjhostnamel] lastlLogin
header | userID JuserName|userPassfjhostnamef] lastlLogin
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Database File

NSM: OLAP EXAMPLE

SELECT COUNTdU.lastLoginb,

EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U
WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]
| NSM Disk Page
header | userID juserName|userPassfjhostnamel] lastlLogin
header | userID juserNamejuserPassfjhostnamel]l lastlLogin
header | userID juserNamejuserPassfjhostnamel] lastlLogin
header | userID JuserName|userPassfjhostnamef] lastlLogin
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Database File

NSM: OLAP EXAMPLE

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin]) AS
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

month

I NSM Disk Page

header | userID JuserName hostnamel] lastlLogin
header | userID JuserName hostnamel lastlLogin
header | userID JuserName sfhostnamefl lastlLogin
header W userID JuserName hostname] lastlLogin

*
Q Useless Data!
oWy
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NSM: SUMMARY

Advantages

— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple (OLTP).
— Can use index-oriented physical storage for clustering.

Disadvantages

— Not good for scanning large portions of the table and/or a
subset of the attributes.

— Terrible memory locality in access patterns.

— Not ideal for compression because of multiple value
domains within a single page.
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DECOMPOSITION STORAGE MODEL (DSM)

Store a single attribute for all tuples

contiguously in a block of data.
— Also known as a "column store"

Ideal for OLAP workloads where

read-only queries perform large scans
over a subset of the table’s attributes.

DBMS is responsible for
combining/splitting a tuple's
attributes when reading/writing.
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A DECOMPOSITION STORAGE MODEL
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DSM: PHYSICAL ORGANIZATION

ColB ColC

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

null bitmap
a4 ab

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

®
a@ al a2 a3
&
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DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., ColA [ColB| ColC
nulls) in separate arrays of fixed- o
ow
length values. fou 12
— Most systems identify unique physical Row #3
tuples using offsets into these arrays. Row #4
— Need to handle variable-length values... Row #5
Maintain separate pages per attribute % [ header null bitmap
- . S a0 al a2 a3 a4 ab
with a dedicated header area for meta- <
. N B
data about entire column. © Logicader null bitmap
5‘0 b0 bl b2 b3 b4 b5
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DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., ColA ColB [ ColC
nulls) in separate arrays of fixed- 2°“ ::’
ow
length values. cou #2
— Most systems identify unique physical Row #3
tuples using offsets into these arrays. Row #4
— Need to handle variable-length values... Row #5
Maintain separate pages per attribute % [ header null bitnap
- . S a0 al a2 a3 a4 ab
with a dedicated header area for meta- <
. N B
data about entire column. s L header null bitnap
é‘b b0 bl b2 b3 b4 b5
0 header null bitmap
& co cl c2 c3 c4
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DSM: OLAP EXAMPLE

header | userID QuserNamejuserPassfhostnamef] lastlLogin

header | userID QuserNamejuserPassfhostnamef lastLogin

header | userID

header | userID IuserName userPassfhostname] lastlLogin
IuserName userPassfhostname] lastlLogin
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Disk

$2CMU-DB

15-445/645 (Fall 2024)

DSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),

FROM useracct AS U

WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

EXTRACT(month FROM U.lastLogin) AS month

Database File |

DSM Disk Page

header hostname|hostnamehostnamejhostname
hostnamelhostnamefhostnamefhostname|hostnamefhostname
hostname|hostname|hostnamelhostname|hostname|hostname
— hostname|hostname|hostname|hostnamefhostname|hostname

userName |E— B

’ ~_
userPass ]
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DSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),

FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

EXTRACT(month FROM U.lastLogin) AS month

| DSM Disk Page

header

hostname hostnameIhostname

hostname

lastlLogin ] hostnamehostname

hostnamelhostnamehostname

hostname|hostname

hostname

hostname

hostnams

el hostnamefjhostname

userName [E-=—

hostname

hostnamelhostnamehostname

hostname

Database File |

userPass
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Disk
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DSM: OLAP EXAMPLE

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

DSM Disk Page

header lastLogin lastLoginllastLogin lastLogin

].aStLOgln ] lastLogin j§ lastLogin | lastLogin | lastLogin | lastLogin | lastlLogin

lastLoginf lastlLogin | lastlLogin

lastLogin | lastlLogin | lastLogin

Database File |

—1 ‘\ lastLogin j§ lastLogin ] lastLogin | lastLogin | lastLogin | lastLogin
userName [E=—
userPass ]
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DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

\ R
. ™ Choice #2: Embedded Tuple Ids

— Each value is stored with its tuple id in a column.

Don't
Do This!
Offsets Embedded Ids
o §cfo B+ i c N c o
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
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DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are
fixed-length is wasteful, especially for large
attributes.

A better approach is to use dictionary compression to
convert repetitive variable-length data into fixed-
length values (typically 32-bit integers).

— More on this later in this lecture...
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DECOMPOSITION STORAGE MODEL (DSM)

$2CMU-DB
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Advantages

— Reduces the amount wasted I/O per query because the
DBMS only reads the data that it needs.

— Faster query processing because of increased locality and
cached data reuse (Lecture #13).

— Better data compression.

Disadvantages

— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching/reorganization.
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OBSERVATION

OLAP queries almost never access a single column

in a table by itself.

— At some point during query execution, the DBMS must get
other columns and stitch the original tuple back together.

But we still need to store data in a columnar format

to get the storage + execution benefits.

We need columnar scheme that still stores
attributes separately but keeps the data for each
tuple physically close to each other...
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PAX STORAGE MODEL

Partition Attributes Across (PAX
is a hybrid storage model that
vertically partitions attributes within

a database page.
— Examples: Parquet, ORC, and Arrow.

The goal is to get the benefit of faster
processing on columnar storage while
retaining the spatial locality benefits
of row storage.
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Weaving Relations for Cache Performance

Anastassia Aflamaki*  David J. DeWitt

on Universily  Univ, of Wisconsin-Madison
matrsa® cx.cmu oy dewinn@cs,wisc.ody
Abstract

Relotiomal datcbase systenss Kave tradiiomally oprimzed for
1O performance and organized reconds sequentially on isk
pages using the N-ary Swrage Mode! (NSM) fala. sloned
‘pagesh Recent rescorch, hawever, indicates that cache urilization
“and pefarmanee is becoming inceasingly importan on medern
plattorms. In this paer. we fist demonstrate that in-page daa
e i the key 1o high cache perfarmance and that NS
ilzation o mesdern platforau. Next, we pro-

pase @ new doa organization mesdel colled PAX. (Partition
Adtributes Acevns). that significamily improves cache. pesfor
mance by growping together all vatues of eack aribute within
ause PAX ouly affects layous inside the pages, it

rage penaity and does nr alfecs WO bebry
According 10 our experinental resulis, when compared 0 NS
(a1 PAX. cxhibits ruperior cuche and memory banabwicth wiliza
tivn, sarvimg ot least 75% of NSM's stall time due fo dato coche
(b) runge selection queries and updates on memory
resident relarions execw 17.25% fuser; and (c) TPC-H queries
wlving WO exevuie 1148 faster

1 Introduction

“The con
storage (U0) has heen ira
mujor dutabase performance botlleneck. To optimize data
wramsfer s and from mass swrage, relugonal DBMSs have
lomg organized records in slowcd disk pages sing the N-
ary Sorage Model (NSM). NSM stores records contigu-
ously starting from the beginning of each disk page, and
uses an offset (slot) table at the end of the page 1o locae
the beginning of each record [27].

Unfortunately. most queries use only o fraction of
cach recond. To minimize unnecessary 1O, the Decompo-
sition Storage Model (DSM) was proposed in 1985 [10]
DSM pa ribute relation vertically inko o
sub-relations, each of which is accessed only when the
comesponding aitribuie is needed. Queries hat nvolve
mulliple afiribules from a relation, however, must spend

unication between

# Wk doms while imihar was  he Usiversily of Wisconsn-Madison,
Permission o cog wishons fee il or partof this materia s granted o
vided thoe she copics ave ot made or diswibated for direct coanserciol
advauage, dhe VLD capyrigh norkce and he it of e publication and

—
Proceedings of the 27th VLB Canference,
Rasna, Haly, 2001

Mark D. Hill Marios Skounakis
Univ. of Wisconsin-Madisan — Univ, of Wisconsin-Madison
markhil@ . wise.edn ie o

tremendous additional fime to join the participating sub-
relations. together. Except for Sybase-1Q (331, today’s rela-
tional DBMSs use NSM for gencral-purpose data place-
ment [201129)[32].

Recent research has demonsirated that modem data-
base workloads, such as decision support systems and spa-
ol applications, are often bound by delays related t the
processor and the memory subsystem rather than L
1201{51126]. When running commercial datahase sysiems
on a modern processor, data requests tha miss in the cache
hicrarchy fic., requests for data that are not found in any

af the caches and are transferred from main memoey) are 3
Key memory bottleneck [1]. In addition, oaly 2 fraction of
the data

ferred 10 the eache is useful 1o the query
query processing algor
sher unit between the memory and e processor arc
typically not the same size. Louding the cache wit

data () wastcs bandwidth, (b) pollutes the ¢
possibly forces replacement of information that may be
the future, incurring even more delays. The
is to repair NSM’s cache behavior without com-

This paper intruduces amd evaluates Partition
Attributes Across (PAX), u new layout for data records
that combines the best of the two worlds and
formance superior 1o both placement schemes by el
ing unnecessary accesses to main memory. For a given
relation, PAX stores the sume data on cach page as NSM.
Within cach page. however, PAX groups all the values of a
pamicular atribute together on a minipage. During a
sequential scan (¢.2.. 10 apply a predicate on a feaction of
the record), PAX fully wilizes the cache resources,
because on each miss o namber of a single
aded ko the cache together, AL e,
all parts of the necord are on the same page. To reconstruet

e i
minipages, which incurs minimal cost hecause it docs not
have o look beyond the page.

We evaluated PAX against NSM and DSM using (a)
predicate selection queries on numeric data and (b) a vari-
ety of queries on TPC-H datasets on top of the Shore stor.
age manager |7). We vary query parameters including

clectivity, projecti unber of predicates, distance
betwesn the projected attsibute and the aliibue in the
predicate, and degree of the relation, The experimental
results show that, when compared 1o NSM, PAX (a) incurs
50-75% fewer sccond-level cache misses due to data
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PAX: PHYSICAL ORGANIZATION

ColA ColB ColC

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.

— This is stored in the footer if the file is Column_ < [___Row Group Meta-Data___| g
immutable (Parquet, Orc). bo_b1 b2 JIS
b= co cl c2 S
&y
Each row group contains its own :
meta-data header about its contents. R~

| File Meta-Data
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PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains

offsets to the file's row groups.
— This is stored in the footer if the file is Column
immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

PAX File

$2CMU-DB

15-445/645 (Fall 2024)

Chunk | Row Group Meta-Data

b3 b4 b5

c3 c4 c5

File Meta-Data

dnoag moy

dnoug moy
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PAX: PHYSICAL ORGANIZATION

Horizontally partitiol Parquet: data organization
groups. Then vertical . pata organization
attributes into colum ©  Row-groups (default 128M8)
o Column chunks
o Pages (default 1MB) [ /[ nmron N
. M ydon L) Page0
Global meta-data dui pln i t CoTT i
offsets to the file's rq e e j
— This is stored in the ®m  Rep/def levels e — —
3 ®m  Encoded values e}, [Poet ]
immutable (Parquet, s % il —
llw oroup N j
= =
Each row group corl ®¢tebricks
meta-data header about its contents. R, N —~
c3 c4 c5 S

| File Meta-Data
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OBSERVATION

I/0 is the main bottleneck if the DBMS fetches data
from disk during query execution.

The DBMS can compress pages to increase the
utility of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
— Compressing the database reduces DRAM requirements.
— [t may decrease CPU costs during query execution.

$2CMU-DB
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DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.
— Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as

possible during query execution.
— Also known as late materialization.

Goal #3: Must be a lossless scheme.
— People (typically) don't like losing data.
— Any lossy compression must be performed by application.
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COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level
— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored
for multiple tuples (DSM-only).

$2CMU-DB
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NAIVE COMPRESSION

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data

provided as input.
— LZO (1996), LZ4 (2011), Snappy (2011),
Oracle OZIP (2014), Zstd (2015)

Considerations
— Computational overhead
— Compress vs. decompress speed.

$2CMU-DB
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MYSQL INNODB COMPRESSION

B Buffer Pool B Database File

mod log

\[1,2,4,8] KB

Compressed- Page,

mod log

Compressed Page,

mod log

i

Compressed Page,

&CMU-DB Source: MySQL 5.7 Documentation

15-445/645 (Fall 2024)
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MYSQL INNODB COMPRESSION

B Buffer Pool B Database File

Write mod log
Compressed- Page,

mod log

\[1,2,4,8] KB

Compressed- Page,

mod log

Compressed Page,

mod log

i

Compressed Page,

&CMU-DB Source: MySQL 5.7 Documentation
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MYSQL INNODB COMPRESSION

B Buffer Pool B Database File

pe

Read mod log mod log

Compressed- Page,

3

Uncompressed Compressed. Page,
S 16 KB

\[1,2,4,8] KB

Compressed- Page,

mod log

mod log

i

Compressed Page,

&CMU-DB Source: MySQL 5.7 Documentation
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MYSQL INNODB COMPRESSION

B Buffer Pool B Database File
pu

Compressed- Page,

3

Read * Uncompressed Compressed Page,
Page, 16 KB

mod log

\[1,2,4,8] KB

Compressed- Page,

mod log

mod log

i

Compressed Page,

&CMU-DB Source: MySQL 5.7 Documentation
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NAIVE COMPRESSION

The DBMS must decompress data first before it can
be read and (potentially) modified.

— This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

$2CMU-DB
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OBSERVATION

[deally, we want the DBMS to operate on
compressed data without decompressing it first.

Database Magic!

SELECT * FROM users SELECT * FROM users
WHERE name = 'Andy' WHERE name = XX

Andy 99999 XX AA
Jignesh 88888 L YY BB
oy

NAME SALARY NAME SALARY
e s T e

$2CMU-DB
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COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level
— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored
for multiple tuples (DSM-only).
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COLUMNAR COMPRESSION

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta / Frame-of-Reference Encoding
Incremental Encoding

Dictionary Encoding

$2CMU-DB
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RUN-LENGTH ENCODING

Compress runs of the same value in a single column

into triplets:

— The value of the attribute.

— The start position in the column segment.
— The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.
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RUN-LENGTH ENCODING

Original Data Compressed Data

»

.
o

Y

(Y,0,3)
(N,3,1)
(Y,4,1)
(N,5,1)
(Y,6,2)

RLE Triplet
- Value

- Offset
- Length

Ol |IVN|old]J]w]IN]|—-
Ol |IN|oldJlwWw]INMN]|—-
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RUN-LENGTH ENCODING

Compressed Data

(Y,0,3)
(N,3,1)
(Y,4,1)
(N,5,1)
(v,6,2)

RLE Triplet
- Value

- Offset
- Length

SELECT isDead, COUNT(*)
FROM users
GROUP BY isDead

»

Ol |IN|oldJlwWw]INMN]|—-
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RUN-LENGTH ENCODING

Original Data Compressed Data
isDead
L | I 1
2 Y 2 (N,3,1)
3 Y 3 (Y,4,1)
4 N 4 (N,5,1)
6 Y 6 (Y,6,2)
! . ’_| RLE Triplet
8 \ 8 | -Value
9 Y g | - Offset
- Length
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RUN-LENGTH ENCODING

Sorted Data Compressed Data
1 Y 1 (Y,0,6)
- Y 2 (N,7,2)
3 Y 3
6 Y 6
8 Y 8
9 Y 9
4 N 4
7 N 7

$2CMU-DB
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BIT PACKING

[f the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

$2CMU-DB

15-445/645 (Fall 2024)

Original Data

Original:
8 x 32-bits =
256 bits

=

13 00000000 00000000 00000000 00001101
>

191 00000000 00000000 00000000 10111111
>

56 00000000 00000000 00000000 00111000
=

92 00000000 00000000 00000000 01011100
>

81 00000000 00000000 00000000 01010001
=

120 00000000 00000000 00000000 01111000
=

231 00000000 00000000 00000000 11100111
—

172 00000000 00000000 00000000 10101100
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BIT PACKING

[f the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

$2CMU-DB

15-445/645 (Fall 2024)

Original Data

13

Original:

8 x 32-bits =

256 bits

00000000 00000000 00000000

00001101

191

56

00000000 00000000 00000000

10111111

92

00111000

81

01011100

120

01010001

01111000

231

HEEEEEN!

00000000 00000000 00000000

11100111

172

00000000 00000000 00000000

10101100
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BIT PACKING

. . . Original Dat 1o1nal:
[f the values for an integer attribute is e — g?%gfléits B
smaller than the range of its given 256 bits
data type size, then reduce the 13 [ [oovorior
number of bits to represent each 191 : o
Value. 56 00111000
9?2 ] 01011100
. e . . 81 ] 01010001
Use bit-shifting tricks to operate on o Plomm
multiple values in a single word. 231 []imeon
172 ] 10101100
Compressed:
8 x 8-bits =
64 bits

$2CMU-DB

15-445/645 (Fall 2024)
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PATCHING / MOSTLY ENCODING

A variation of bit packing for when an attribute's
values are "mostly" less than the largest size, store

them with smaller data type.

— The remaining values that cannot be compressed are
stored in their raw form.

Original Data Compressed Data
. SiToer | vele
Original: 13 13 3 |99999999| Compressed:
8 x 32-bits = 191 181 (8 x 8-bits) +
256 bits ST o 16-bits + 32-bits
120 120
231 231
172 172

Source: Redshift Documentation

$2CMU-DB
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BITMAP ENCODING

Store a separate bitmap for each unique value for an

attribute where an offset in the vector corresponds

to a tuple.

— The i" position in the Bitmap corresponds to the i tuple
in the table.

— Typically segmented into chunks to avoid allocating large
blocks of contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.

$2CMU-DB
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BITMAP ENCODING

Original Data Compressed Data
: deead isDead
=

9 1 1110
3 2 11| 0
4 3 1110
6 4 01]1
7 6 1110
8 7 911
9 8 11| 0

9 11]0
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BITMAP ENCODING

Compressed:
Original Data Compressed Data égbéﬁst; 16 bits =

_ 2x 8-bits =

L A il Bl 16 Dits

2 Y 1 |[1]]e

3 Y 2 1 0

P N Original: 3 ([1]|e _

6 Y } 8 x 8-bits = 4 |[e]]|1 8 x 2-bits =

- - 64 bits 1 16 bits

8 Y 7 |[o]]1

9 Y | J 8 [l1][e

s |[1][e]J
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BITMAP ENCODING: EXAMPLE

Assume we have 10 million tuples.

43,000 zip codes in the US. CREQTIENFEE?MAC\;\S(TE? (
— 10000000 x 32-bits = 40 MB ’

name VARCHAR(32),
— 10000000 x 43000 = 53.75 GB email VARCHAR(64),

: .. address VARCHAR(64),
Every time the application inserts a [Zip_code INT |

new tuple, the DBMS must extend )}
43,000 different bitmaps.

There are compressed data structures
for Sparse data sets: Il ClickHouse () influxdb Qpani SLUCENE

— Roaring Bitmaps G wewvicte
£2CMU-DB : Sp Q’."I(\Z e, pilosa

15-445/645 (Fall 2024)
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DELTA ENCODING

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.

Original Data
o4 enmp
12:00 |]99.5
12:01 99.4
12:02 99.5
12:03 | [99.6
12:04 99.4

$2CMU-DB
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DELTA ENCODING

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.

Original Data Compressed Data
12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1
12:02 99.5 +1 +0.1
12:03 | [99.6 +1 0.1
12:04 99.4 +1 -0.2

$2CMU-DB
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Recording the difference between values that follow

DELTA ENCODING

each other in the same column.

— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Compressed Data

12:00

99.5

+1

-0.1

Original Data
o4 enmp
12:00 |]99.5
12:01 99.4
12:02 99.5
12:03 | [99.6
12:04 99.4

+1

+0.1

+1

+0.1

$2CMU-DB
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-0.2
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DELTA ENCODING

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.

— Combine with RLE to get even better compression ratios.

Original Data
o4 enmp
12:00 []99.5
12:01 99.4
12:02 99.5
12:03 | [99.6
12:04 99.4

$2CMU-DB
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»

Compressed Data

99.

12:00

+1

-0.

+1

+0.

+1

+0.

(O Y =y gy /)]

+1

-0.

»

Compressed Data
12:00 | [99.5
(+1,4) || -0.1

+0.1
0.1
0.2
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DELTA ENCODING

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.

— Combine with RLE to get even better compression ratios.

Frame-of-Reference Variant: Use global min value.

Original Data
12:00 | [99.5
12:01 | [99.4
12:02 || 99.5
12:03 | [99.6
12:04 ] [99.4

5 x 64-bits
=320 bits

$2CMU-DB
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»

12:00

99

Compressed Data

+1

-0

+1

+0

.5
N
N
N

+1

+0

+1

-0.

2

64-bits + (4 x 16-bits)
= 128 bits

»

Compressed Data
12:00 | [99.5
(+1.4) [0

+0.1
0.1
0.2

64-bits + (2 x 16-bits)
= 96 bits
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DICTIONARY COMPRESSION

Replace frequent values with smaller fixed-length
codes and then maintain a mapping (dictionary)

from the codes to the original values
— Typically, one code per attribute value.
— Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding

and decoding for both point and range queries.
— Encode/Locate: For a given uncompressed value, convert
it into its compressed form.
— Decode/Extract: For a given compressed value, convert it
back into its original form.
£2CMU-DB

15-445/645 (Fall 2024)
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DICTIONARY: ORDER-PRESERVING

The encoded values need to support the same
collation as the original values.

Original Data Compressed Data
_name | 3
Andrea 10 Andrea 10 g,. g3
Mr.Pickles » 40 Andy 20 Q.a
Andy 20 Jignesh 30 g g_‘
Jignesh 30 Mr.Pickles | 40 Q
Mr.Pickles 40

$2CMU-DB
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DICTIONARY: ORDER-PRESERVING

The encoded values need to support the same
collation as the original values.

SELECT * FROM users SELECT * FROM users
WHERE name LIKE 'And%' WHERE name BETWEEN 10 AND 20
Original Data Compressed Data
_name | 3
Andrea 10 Andrea 10 Q g3
Mr.Pickles » 40 Andy 20 8.2
Andy 20 Jignesh 30 g g_
Jignesh 30 Mr.Pickles | 40 ‘3
Mr.Pickles 40

$2CMU-DB
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ORDER-PRESERVING ENCODING

ELECT FROM :
Swnege 2223 LIﬁE 9?%;- » Still must perform scan on column

SELECT DISTINCT name

FROM users » Only need to access dictionary
WHERE name LIKE 'And%’

Original Data Compressed Data
_name | 3
Andrea 10 Andrea 10 g,. g3
Mr.Pickles » 40 Andy 20 Q.a
Andy 20 Jignesh 30 g g_
Jignesh 30 Mr.Pickles | 40 ‘3
Mr.Pickles 40

$2CMU-DB
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CONCLUSION

[t is important to choose the right storage model for

the target workload:
— OLTP = Row Store
— OLAP = Column Store

DBMSs can combine different approaches for even
better compression.

Dictionary encoding is probably the most useful
scheme because it does not require pre-sorting.
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DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

<« Next
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