Carnegie Mellon University

Uatabase

Systems

Memory & Disk
Management

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

CMU-DB IAP VISIT DAY (TUE SEPT 17) 1

Info Session #1(9:30-10:30am)

— DataStax: GHC 7101 Cal'ﬂegle
— dbtLabs: GHC 7501 MG]]OII

— Firebolt: GHC 8115 University
Info Session #2 (10:30-11:30am) Database Group

— ClickHouse: GHC 7101 Industry Affiliates
— Relational AI: GHC 7501
— StarTree;: GHC 8115

Info Sessions #3 (11:30-12:30pm)
— Neon: GHC 7101

— PingCAP TiDB: GHC 7501

— Weaviate: GHC 8115

< CMU-DB https://db.cs.cmu.edu/affiliates/visit2024

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.datastax.com/
https://www.getdbt.com/
https://www.firebolt.io/
https://clickhouse.com/
https://relational.ai/
https://startree.ai/
https://neon.tech/
https://www.pingcap.com/
https://weaviate.io/
https://db.cs.cmu.edu/affiliates/visit2024/
https://db.cs.cmu.edu/affiliates/visit2024

$2CMU-DB

15-445/645 (Fall 2024)

LAST CLASS

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATABASE STORAGE

Spatial Control:

— Where to write pages on disk.

— The goal is to keep pages that are used together often as
physically close together as possible on disk.

Temporal Control:
— When to read pages into memory, and when to write them

to disk.

— The goal is to minimize the number of stalls from having
to read data from disk.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISK-ORIENTED DBMS

Get Page #2

Buffer Pool«

.................

Database File

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISK-ORIENTED DBMS

Buffer Pool«

Get Page #2

.................

Database File

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OTHER MEMORY POOLS

The DBMS needs memory for things other than
just tuples and indexes.

These other memory pools may not always backed

by disk. Depends on implementation.
— Sorting + Join Buffers

— Query Caches

— Maintenance Buffers

— Log Buffers

— Dictionary Caches

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TODAY'S AGENDA

Buffer Pool Manager

Why MMAP Will Murder Your DBMS
Disk I/O Scheduling

Replacement Policies

Other Memory Pools

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL ORGANIZATION

Memory region organized as an array Buffer
of fixed-size pages. Pool
An array entry is called a frame.

y y | page1
When the DBMS requests a page, an -| page3 |
exact copy is placed into one of these { | frames |
frames. i Dtrames |

Dirty pages are buffered and not

written to disk immediately pagel || page2 || page3 | [page4
Write-Back Cach . .

e On-Disk File

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

$2CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel ; N
mgta%a'a ta pa ge 1
eta

Buffer
Pool

| frame3 |

' frames

page1 page2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

$2CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel ; N
mgta%a'a ta pa ge1
meta-data pa ge3

Buffer
Pool

» ﬁ frame3

' frames

page1 page2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

$2CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel ; N
mgta%a'a ta pa ge 1

* page3
meta-data pa ge3

Buffer
Pool

m) 6.5 o page?
page1 page2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

$2CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel ; N
mgta%a'a ta pa ge 1

* page3
meta-data pa ge3

Buffer
Pool

m) 6.5 e page?
' frames
page1 page2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

$2CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel ; N
mgta%a'a ta pa ge1
* page3
meta-data pa ge3

age2
L, | Pase2

Buffer
Pool

page2

page3

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOCKS VS. LATCHES

Locks:

— Protects the database's logical contents from other
transactions.

— Held for transaction duration.

— Need to be able to rollback changes.

Latches:
— Protects the critical sections of the DBMS's internal data

structure from other threads. «~Mutex
— Held for operation duration.
— Do not need to be able to rollback changes.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids
to page locations in the database files.

— All changes must be recorded on disk to allow the DBMS
to find on restart.

The page table is the mapping from page ids to a

copy of the page in buffer pool frames.
— This is an in-memory data structure that does not need to
be stored on disk.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

$2CMU-DB

15-445/645 (Fall 2024)

Virtual Physical
Memory Memory
» pagel pagel
page?2 :
page3
page4
pagel page?2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

$2CMU-DB

15-445/645 (Fall 2024)

Virtual Physical
Memory Memory
» pagel * pagel
page?2 :
page3
page4
pagel page?2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

$2CMU-DB

15-445/645 (Fall 2024)

Virtual Physical
Memory Memory
pagel »| pagel
page2 page3
» page3 ‘
page4
pagel page?2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

$2CMU-DB

15-445/645 (Fall 2024)

Virtual
Memory

Physical
Memory

pagel

page?2 -—”/,——' page3
3
page3 :

»| pagel

page4
pagel page?2 page3 page4
On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

$2CMU-DB

15-445/645 (Fall 2024)

Virtual
Memory

Physical
Memory

pagel

222 B

page?2 -—”/,——' page3
page3 z’

page4

»| pagel

page?2

page3 page4

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MEMORY MAPPED I/0 PROBLEMS

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

Problem #2: I/0 Stalls

— DBMS doesn't know which pages are in memory. The OS
will stall a thread on page fault.

Problem #3: Error Handling

— Difficult to validate pages. Any access can cause a SIGBUS
that the DBMS must handle.

Problem #4: Performance Issues
— OS data structure contention. TLB shootdown:s.

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

There are some solutions to some of

these problems:

— madvise: Tell the OS how you expect to
read certain pages.

— mlock: Tell the OS that memory ranges
cannot be paged out.

— msync: Tell the OS to flush memory
ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

$2CMU-DB

15-445/645 (Fall 2024)

Full Usage

mo@ L‘DB

RAVENDB @ levelps

& elasticsearch (.\‘ QuestDB

“ Weaviate

Partial Usage
0 MongoDB. Q) sSingleStore

?SQLite) influxdb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

There are some solutions to some of

these problems:

— madvise: Tell the OS how you expect to
read certain pages.

— mlock: Tell the OS that memory ranges
cannot be paged out.

— msync: Tell the OS to flush memory
ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

$2CMU-DB

15-445/645 (Fall 2024)

Full Usage

mone@ L‘DB

)ENDB @Ievelos
& elasticsearch (.\ QuestDB

Partial Usag

OMOXOD& OSln tore

WioLi. © i)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE THE 0S?

DBMS (almost) always wants to control things itself

and can do a better job than the OS.

— Flushing dirty pages to disk in the correct order.
— Specialized prefetching.

— Buffer replacement policy.

— Thread/process scheduling.

The OS is not your friend.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WHY NOT USE |

Are You Sure You Want to Use MMAP in Your
Database Management System?

Andrew Crotty Viktor Leis Andrew Pavlo
Carnegic Mellon University University of Erlangen-Nuremberg Camnegic Mellon University
andrewer@cs.cmu.edu viktorleis@fau,de pavlo@es.cmu.edu

\ h 7 a I l t S t‘ ABSTRACT page cache. The POSIX map system call maps a file on secondary
St a a Memory-mapped (mmap) file 1/O is an OS-provided feature that storage into the virtual address space of the caller (ie., the DBMS),
maps the con and the OS will then load pages lazily when the DBMS accesses

s of a file on secondary storage into a program’s

fldress space. The program then accesses pages vin pointers a them To the 5. the database appears to resde fully in memory,
. i the fle resided entirely in memory. The 0§ transparently loads but the OS handles all necessary paging behind the scenes rather
t an t (Pages anly when the program referances “mand automatically than the DBMS’s buffer pool

a etter O cvicts pages if memary il up Onthe surfice, mnap scems like an attractive implementation
an Cal l map'speceived cuse o use hasseduced database managenment option for managing ile VO in a DBMS. The most notable benefts
. . {ystem (DBMS) developers for decades as a viable alternative o are ease of e and low engineering cost, The DBMS no longer
. the implementing a buffer pool. There are, however, severe correct- needs to track which pages are in memory, nor does it need to track
° t a eS to IS ln ness and performance ivsues with mmap that are not immediately how often pages are accessed or which Pages are dirty. Instead,
Flus ln lr y p apparent. Such problems make it difficult, if not impossible, to s s can simply access diskcresident data via pointers as if
_) mmap correctly and efficiently in a modem DBMS, [n fact, several Mt were accessing data in memory while leaving all low-level page
. popular DBMSs initially used mmap to support larger-than-memory management to the OS. If the available memory fills up, then the
. M t hln databases but soon encountered these hidden perils, fotcing them to OSwill free space for new pages by 1 nsparently evicting (ideally

Cla lze re e C . switch to managing file I:(iIlu'mwl\‘vi.lllerumnlif.mlvuguwrlmg unnceded) pages from the page cache
ﬁ pe costs. In this way, mmap and DBMSs are like coffee and spicy food: From a performance perspective, map should also have much
an unfortunate combination that becomes obvious after by ey i overhead than traditonal bufte pool Specifclly, mmop

suitable replacement for u traditional buffer pool. We discg s y from the OS page cache.
. imain shortcomings of mnap in detad, and out experimental analyaty Since the early 19805, these supposed benefits have enticed DIMS
1 emonstrates clear performance limitations. Based on theas . developers to forgo implementing a buffer pool and instess rely
O C e S S S C e u Il . ings, we conclude with o prescipton fo when DBMS developers o the 08 o manage fle O [36].In fact, the developers of severa]
e 2 re a might consider using mmap for il) well-known DBMSs (sce Section 23) have gone dewn this path,
with some even touting mmap as a key factor in achieving good
1 INTRODUCTION performance (20]
Animportant feature of disk-based DBMSs s their ability to support fonlortunately, nap has o hidden dark side with many sordid

- problems that make it unde rable for file VO in o DBEMS. As we
databases that are larger than the available physical memory, This i

g describe in this Ppaper, these problems involve both data safety and
functionality allo usertoquery a database as if it resides entirely

. erformance conc, Ve contend tha cer
. jflmemory, even if it does not it all at once. DBMSs achieve thi, """'""”‘"l"“"“‘_" e contend that the engincering
. illusion by reading pages of data fren, secandary storage e g, HDD, steps required to overcome them tegate the purported simplicity
g = » f g Fo ese re, W eve that
‘ I I I le I I ° SSD) into memory on demand. If there js not enough memory for o ",‘V"'*""‘ v_’,"'f mmap. For these reasons, we believe that mmap
new page, the DBMS will evict an existing page that s no longer adds too much complexity with no commensurate performance
i I‘“* G A pog b nd strongly urge DBMS developers to avoid using mmap as
—_— oL order to v ness replacement for a traditional buffer pool
e Rt o P S’ the o ool e be: e semainder of this paper s organized as follows, We begin
!:‘“‘I::; “i}‘;:‘ »::-In:l::':‘”:n::::g:’::::::x;:;:-.::‘.-4.‘1:«'7':{ :VL_.: and Wit a short background an map (Section 2), followed by a discus
write. Thesefle O mechanism copy do v s o abuffer 800 ofits main problems (Section 9 and our experimental analysis
> ooy, (Section 4). We then discuss related work (Section 5)and conclude
in user space, with the DBM: maintaining complete control over v .
how and when it transfers peges witha summary of our guidance for when you might consider using

in your DBMS (Sect [
Alternatively, the DBMS can relinquish the res mep {n your DRMS (Section ¢)
which maintains its ow,

.
llc nce developers keep trying to use mnap in new DBMSs, we does not ineur the cost of explicit system calls (ie., readiwr i te)
| | e aceIIIeIl O L wrote this paper o provide a warning to athery o map is nota and avoids redundant copying to o buffer in user space because the
_) e tth DBMS can access pages direct] Il

sponsibility of data
file mapping and

PPy 2 BACKGROUND

ntermations

mte the work on their This section pravides the relevant background on mmap, We begin
o Lrided hat Yo i o Hichlevel o view of memory-mapped file 10 and the
12th Annual Conerence on ; p

weh (CIDR 22) Jantary 312, 2023 Chagmese e POSIX mmap AP1. Then, we discuss real-world implementations of
mnap-based systems

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022

BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make
room for a new page, it must decide which page to
evict from the buffer pool.

Goals:

— Correctness

— Accuracy

— Speed

— Meta-data overhead

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

page0 pagel page2

Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

page0

o1 P

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

pagel page0 page2

Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

page0

o1 P

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

page1 page0
Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

page0

o1 P

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=1

pagel

page3

ref=0

ref=0

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

” page2

page3

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

” page5

page3

ref=0

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=1
page4

ref=0

pagel

” page5

page3

ref=1

ref=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

pageb5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

page3

ref=0

ref=0

pageb5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over

pages in order:

— As the hand visits each page, check if its
bit is set to 1.

— [f yes, set to zero. If no, then evict.

$2CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

pageb5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

LRU + CLOCK replacement policies are susceptible

to sequential flooding.

— A query performs a sequential scan that reads every page in
a table one or more times (e.g., blocked nested-loop joins).

— This pollutes the buffer pool with pages that are read once
and then never again.

In OLAP workloads, the most recently used page is
often the best page to evict.

LRU + CLOCK only tracks when a page was last
accessed, but not how often a page is accessed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEQUENTIAL FLOODING

SELECT * FROM A WHERE id = 1

Disk Pages

Buffer Pool

o1

page0

pagel

page2

$2CMU-DB

page3

page4

pageb

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEQUENTIAL FLOODING

SELECT * FROM A WHERE id = 1

Disk Pages

SELECT AVG(val) FROM A

Buffer Pool

2y

page0

pagel

page2

$2CMU-DB

page3

page4

pageb

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEQUENTIAL FLOODING

SELECT *» FROM A WHERE id = 1

Disk Pages

SELECT AVG(val) FROM A

page0

Buffer Pool

pagel

page2

2 mp

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEQUENTIAL FLOODING

SELECT * FROM A WHERE id = 1

Disk Pages

SELECT AVG(val) FROM A

page0

Buffer Pool

pagel

page2

page3

2 mp

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Q1
Q2
Q3

$2CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE id

SELECT AVG(val) FROM A

SELECT * FROM A WHERE id

Buffer Pool

page3

pagel

page2

Disk Pages

2y

page0

pagel

page2

2 mp

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Q1
Q2
Q3

$2CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE id

SELECT AVG(val) FROM A

SELECT * FROM A WHERE id

Buffer Pool

page3

page2

Disk Pages

2y

page0

pagel

page2

2 mp

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BETTER POLICIES: LRU-K

Weaving Relations for Cache Performance

Track the history of last K references to
each page as timestamps and compute the

interval between subsequent accesses.
— Can distinguish between reference types

Use this history to estimate the next time

that page is going to be accessed.
— Replace the page with the oldest "K-th" access.
— Balances recency vs. frequency of access.
— Maintain an ephemeral in-memory cache for
. Microsoft®
recently evicted pages to prevent them from %SQL Server

always being evicted.
PostgreSQL

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://doi.org/10.1145/170036.170081

MYSQL APPROXIMATE

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,

then insert into the head of the young list.

Q1

uean Young List neap Old List
|page4 page5 (> page9 [« * page3 **[pages > page2

page8

Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

LRU-K

Disk Pages

page0

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MYSQL APPROXIMATE

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

weao Young List

»

weao Old List

Q1

|page4 page5 page9 [« * page3 > page2 page8

$2CMU-DB

15-445/645 (Fall 2024)

Newest<Oldest

LRU-K

Disk Pages

page0

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MYSQL APPROXIMATE

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again, Q1
then insert into the head of the young list.

uean Young List neap Old List

|page4 page5 [* page9 [« * page3 > page2

Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

LRU-K

Disk Pages

page0

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MYSQL APPROXIMATE

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,

then insert into the head of the young list.

Q1

uean Young List neap Old List
|page4 page5 (> page9 [« * page3 **l pagel <> page6

page2

Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

LRU-K

Disk Pages

page0

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MYSQL APPROXIMATE

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,

then insert into the head of the young list.

Q2

uean Young List neap Old List
|page4 page5 (> page9 [« * page3 **l pagel <> page6

page2

Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

LRU-K

Disk Pages

page0

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MYSQL APPROXIMATE

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

weao Young List

»

weao Old List

Q2

|page4 page5 page9 [« * page3 > page6 page2

$2CMU-DB

15-445/645 (Fall 2024)

Newest<Oldest

LRU-K

Disk Pages

page0

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MYSQL APPROXIMATE

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,

then insert into the head of the young list.

Q2

uean Young List neap Old List
|page1 page4 > page5 [« * page9 **l page3 [+* page6

page2

Newest<Oldest

$2CMU-DB

15-445/645 (Fall 2024)

LRU-K

Disk Pages

page0

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per
query basis. This minimizes the pollution of the

buffer pool from each query.
— Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of
buffer of buffer pool pages to a query and uses it as a
circular ring buffer.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

Q1 [INSERT INTO A VALUES (1d++) };&

index-page1 index-page4

index-page2||index-page3||index-page5||index-page6

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

index-page0

Q1 [INSERT INTO A VALUES (1d++)

index-page1

index-page2||index-page3||index-pageb
MIN--========= +>igd-==mmm—m e +>MAX

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

Q1 [INSERT INTO A VALUES (1d++) };&

Q2 [SELECT * FROM A WHERE id = ? L}.p\g; L},p\gi

index-page2||index-page3||index-page5||index-page6

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BETTER POLICIES: PRIORITY HINTS 1

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

Q1 [INSERT INTO A VALUES (id++)

Q2 [SELECT * FROM A WHERE id = ? ‘}.p\g; ‘},p\gi

index-page2||index-page3||index-page5||index-page6

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty,
then the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus dirty
writing pages that will not be read again in the
future.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

BACKGROUND WRITING

The DBMS can periodically walk through the page
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can
either evict the page or just unset the dirty flag.

Need to be careful that the system doesn't write
dirty pages before their log records are written...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OBSERVATION

OS/hardware tries to maximize disk bandwidth by
reordering and batching I/O requests.

But they do not know which I/O requests are more
important than others.

Many DBMSs tell you to switch Linux to use the

deadline or noop (FIFO) scheduler.
— Example: Oracle, Vertica, MySQL

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html#GUID-B59FCEFB-20F9-4E64-8155-7A61B38D8CDF
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html

DISK I/0 SCHEDULING

The DBMS maintain internal queue(s) to track page
read/write requests from the entire system.

Compute priorities based on several factors:
— Sequential vs. Random I/O

— Critical Path Task vs. Background Task

— Table vs. Index vs. Log vs. Ephemeral Data

— Transaction Information

— User-based SLAs

The OS doesn't know these things and is going to
get into the way...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0S PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own

User-space | read(...)

filesystem cache (aka page cache,

buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

$2CMU-DB

15-445/645 (Fall 2024)

Kernel-space

Filesystem

OS Page Cache

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://linux.die.net/man/2/open

0S PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own

User-space read(...)

filesystem cache (aka page cache,

buffer cache).

Kernel-

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

$2CMU-DB

15-445/645 (Fall 2024)

space

-
|05 Page Cache

OS Page Cache

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://linux.die.net/man/2/open

+ Follow

Krishnakumar R 3rd+
3 Group Engmeermg Manager, PostgresqL engine @ Micros. .,
4mao » @

0S PAGE

Direct 10 in PostgresQL ang double buffering

The following was a
Kerne| interactions

N experiment [hag sh

owWn in my talk on Post
at PGDay Chicago last

week :.)

greSQL and

' ' hrough the
disk operations go t .
1(\)/ISO iPIl.SUnfess the DBMS tells it nof
to, the OS maintains its own)
filesystem cache (aka page cache,

buffer cache).

this case),

On the right you can see
Onwards for €nabling dir
Pages no longer Cached j
of pg. As resultant you ¢
cached in Page cache,

irect [/O
Most DBMSs use direc |
(O_DIRECT) to bypass the OS's cach

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

£2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/

FSYNC PROBLEMS

[f the DBMS calls fwrite, what happens?
[f the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
5@0 — Linux marks the dirty pages as clean.

» — [f the DBMS calls fsync again, then Linux tells you that

¢ " the flush was successful. Since the DBMS thought the OS
Don t was its friend, it assumed the write was successful...
Do This!

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

)\ i 4

ool

Don't
Do This!

$2CMU-DB

15-445/645 (Fall 2024)

If the DBMS c4

If the DBMS c:

navigation
= Main Page
= Random page
= Recent changes
= Help

tools

® What links here
= Related changes
= Special pages

= Printable version
= Permanent link

= Page information

search

If fsync fails (
— Linux marks f
— [f the DBMS
the flush was
was its friend

| Go | Search [

—_—
Search PostgreSQL wi
T2 <t W

page discussion view source

Fsync Errors

This article covers the current status, history, and 0S and 0s version differences relati
discussed on the PostgreSQL mailing list and elsewhere, It has sometimes been refer

history

ing to the circa 2018 fsync(} reliability issue
red to as “fsyncgate 2018",
Contents [hide]

1 Current status
2 Articles and news
3 Research notes and OS differences

3.1 Open source kernels

3.2 Closed source kernels

3.3 Special cases

3.4 History and notes

Current status

As of this PastgresQL 12 commiti#, PostgreSQL will now PANIC on fsync() failure. It was backpatched to PostgreSQL 11, 10, 9.6, 9.5

and 9.4, Thanks to Thomas Munro, Andres Freund, Robert Haas, and Craig Ringer.

Linux kernel 4.13 improved fsync() error handling and the man page for fsync()
= Kernelnewbies for 4,13

= Particulariy significant 4.13 commits include:

is somewhat improved @ as well. See:

= "fs: new infrastructure for writeback error handling and reporting” &
= "extd: use errseq_t based error handling for reporting data writeback errors"@
= "Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors" @
= "mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error" @
Many thanks to Jeff Layton for work done in this area,

Similar changes were made in InnoDB

/MySQLER, eredTJger,’MongoDBL? and no doubt other software as a result of the PR around
this.

A proposed follow-up change to PostgreSQL was discussed in the thread Refactori
The patch that was committed @ did not incorporate the file-descriptor passing ¢
some additional safeguards that may use file system error counters and/or filesy

ing the checkpointer's fsync request queue Br].
hanges proposed. There is still discussion open o]
stem-wide flushing.

Articles and news

= The "fsyncgate 2018" maiiing list thread &
= LWN.net article "PostgreSQL's fsync() surprise" @
= LWN.net article "Improved block-layer error handling" i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools
Pre-Fetching

Scan Sharing

Bufter Pool Bypass

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer “MysaL.

pool for the entire system.
— Multiple buffer pool instances

— Per-database buffer pool ORACLE

— Per-page type buffer pool -
N SYBASE

Partitioning memory across multiple pools helps

reduce latch contention and improve locality. < SQLServer
— Avoids contention on LRU tracking meta-data. Informix

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD #123

and then maintain a mapping from objects
to specific buffer pools.

Buf ‘fer Pool #1

Buf fer Pool #2

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD |#123
and then maintain a mapping from objects
to specific buffer pools.

PAN

ObjectId| Pageld, SlotNum>

Buf fer Pool #1 Buf ‘fer Pool #2

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD |#123
and then maintain a mapping from objects

to specific buffer pools.

Approach #2: Hashing

— Hash the page id to select which
buffer pool to access.

$2CMU-DB

15-445/645 (Fall 2024)

HASH(123) % n

Buf ‘fer Pool #1

Buf fer Pool #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

o1

pageo

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty

frames upon start-up.
Buffer Pool

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

o1

pageo

pagel

~ page2

.
.
.
.
.
.
.
.
.t

')

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty

frames upon start-up.
Buffer Pool

pageo

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

pagel

pg'éez

~ page3

.
.
.
.
.
.
.
.
.
““““
an

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool

pageo

pagel

[

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

Q1 pagel

page2
page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty

frames upon start-up.
Buffer Pool

page1

$2CMU-DB

15-445/645 (Fall 2024)

L]
-
Ll
Ll
~
L
.O
R4
&
*
*
lIIIIIIIIIIIII} !
*
*
.
.
Illlliiiiillll -

Disk Pages

pageo

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

The DBMS can also prefetch pages

based on a query plan.

PRE-FETCHING

— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty

frames upon start-up.

Buffer Pool

page3

pagel

page2

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

pagel

o1 P

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool
page3

page4

pageb

$2CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

pagel

page2

page3

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

Q‘] SELECT * FROM A

WHERE val BETWEEN 100 AND 250

$2CMU-DB

15-445/645 (Fall 2024)

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

K Disk Pages

index-page! index-page4 index-page0

e e e index-page

Buffer Pool indexTpage2

i ndex-page3

ndex-pages

index-pages
I

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

index-page0

PRE-FETCHING

$2CMU-DB

15-445/645 (Fall 2024)

index-pagel index-page4
index-page2||index-page3||index-page5||index-page6
----------- »99 100--------»199 200 »299 300-------»399

Buffer Pool

Disk Pages

o1

index-page0

index-page1

index-page2

index-page0

index-page3

index-page4

index-page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

index-page0

PRE-FETCHING

index-page1

index-page4

index-page2||index-page3||index-page5

index-page6

»299 300------- »399

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page0

index-page3

index-page1

index-page4

index-page5

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PRE-FETCHING

index-page0 Disk P ages

4r””"<‘"“ﬁs :
index-page! index-page4 index-page0
» Buffer Pool 1ndex-page2

index-page0 index-page3

index-page1 index-page4

index-pages

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TERADATA ZS6L Server

$2CMU-DB

15-445/645 (Fall 2024)

SCAN SHARING

Allow multiple queries to attach to a single cursor

that scans a table.
— Also called synchronized scans.
— This is different from result caching.

Examples:

— Fully supported in DB2, MSSQL, Teradata, and Postgres.
— Oracle only supports cursor sharing for identical queries.

Microsol

=l ORACLE @ PostgreSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

Allow multiple queries to attach to a single cursor

that scans a table.
— Also called synchronized scans.
— This is different from result caching.

Examples:
— Fully supported in DB2, MSSQL, Teradata, and Postgres.

— Oracle only supports cursor sharing for identical queries.

TERADATA =S6L server

$2CMU-DB

15-445/645 (Fall 2024)

Microsol

=l ORACLE @ PostgreSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

T

SCAN SHARING

Allow multiple queries to attach to a single cursor

that scans a table.
— Also called synchronized scans. |
— This is different from result caching.

character-for-character identical, including spaces, case, and comments. For example, the
following statements cannot use the same shared SQL area:

SELECT * FROM employees;

I3 copy
SELECT * FROM Employees;

SELECT * FROM employees;

WO T~ b —— T —

eSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

o1

pageo

pagel

page2

page3

page4

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

o1

pageo

pagel

page2

page3

page4

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

pageo

pagel

o1 mp

page2

pageo

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

pageo

pagel

page2

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

pageo

pagel

page2

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

2

pageo

pagel

page2

page3

o1 P

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

pageo

pagel

page2

page3

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

pageo

pagel

page2

page3

page3

page4

page4

pageb

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

2

pageo

pagel

page2

page3

page3

page4

page4

pageb

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

pageo

pagel

02 mp

page2

pageo

page3

pagel

page4

page2

pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

100

SCAN SHARING

Disk Pages
Q1 |SELECT SUM(val) FROM A -
pageo
Q2 [SELECT AVG(val) FROM A LIMIT 100
pagel
Buffer Pool Q2 ‘ page2
page0 page3
pagel page4
page2 pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

101

SCAN SHARING

Disk Pages
Q1 |SELECT SUM(val) FROM A -
pageo
Q2 [SELECT AVG(val) FROM A LIMIT 100
pagel
Buffer Pool page2
page0 page3
pagel page4
page2 pageb

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

102

BUFFER POOL BYPASS

The sequential scan operator will not store fetched

pages in the buffer pool to avoid overhead.

— Memory is local to running query.

— Works well if operator needs to read a large sequence of
pages that are contiguous on disk.

— Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

Microsoft®

ORACLE »Lserver INnformiz

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

103

CONCLUSION

The DBMS can almost always manage memory
better than the OS.

Leverage the semantics about the query plan to

make better decisions:
— Evictions

— Allocations

— Pre-fetching

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

104

NEXT CLASS

Hash Tables

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

105

PROJECT #1

You will build the first component of

your storage manager.
— LRU-K Replacement Policy

— Disk Scheduler
— Buffer Pool Manager Instance

We will provide you with the basic
APIs for these components.

BusTub

Due Date:
Sunday Sept 29" @ 11:59pm

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://github.com/cmu-db/bustub

106

TASK #1 - LRU-K REPLACEMENT POLICY

Build a data structure that tracks the usage of pages
using the LRU-K policy.

General Hints:

— Your LRUKReplacer needs to check the "pinned" status of
a Page.

— [f there are no pages touched since last sweep, then return
the lowest page id.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TASK #2 - DISK SCHEDULER

Create a background worker to
read/write pages from disk.

— Single request queue. Database
— Simulates asynchronous IO using (On-Disk)

std: : promise for callbacks.
» page0

pagel

« page2

[t's up to you to decide how you want
to batch, reorder, and issue read/write
requests to the local disk.

v A 4
Disk Scheduler

Make sure it is thread-safe!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

108

TASK #3 - BUFFER POOL MANAGER

Use your LRU-K replacer to manage

the allocation of pages.
— Need to maintain internal data Buffer Pool Database
structures to track allocated + free pages. (In- Memory) (On-Disk)
— Implement page guards.
— Use whatever data structure you want » SR
pagel

for the page table.
« page2

v A 4
Disk Scheduler

Make sure you get the order of
operations correct when pinning!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

109

THINGS TO NOTE

Do not change any file other than the six that you
must hand in. Other changes will not be graded.

The projects are cumulative.
We will not be providing solutions.

Post any questions on Piazza or come to office
hours, but we will not help you debug.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

110

CODE QUALITY

We will automatically check whether you are

writing good code.
— Google C++ Style Guide
— Doxygen Javadoc Style

You need to run these targets before you submit

your implementation to Gradescope.

— make format
— make check-clang-tidy-p1

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html

111

EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will

receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

Student with the most bonus points at the end of
the semester will receive a BusTub schwag!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

112

PLAGIARISM WARNING *QO

The homework and projects must be your own
original work. They are not group assignments.

You may not copy source code from other people
or the web.

Plagiarism is not tolerated. You will get lit up.
— Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

	Introduction
	Slide 1: Memory & Disk Management
	Slide 2: CMU-DB IAP VISIT DAY (TUE SEPT 17)
	Slide 3: LAST CLASS
	Slide 4: DATABASE STORAGE
	Slide 5: DISK-ORIENTED DBMS
	Slide 6: DISK-ORIENTED DBMS
	Slide 7: OTHER MEMORY POOLS
	Slide 8: TODAY'S AGENDA

	Buffer Pool Manager
	Slide 9: BUFFER POOL ORGANIZATION
	Slide 10: BUFFER POOL META-DATA
	Slide 11: BUFFER POOL META-DATA
	Slide 12: BUFFER POOL META-DATA
	Slide 13: BUFFER POOL META-DATA
	Slide 14: BUFFER POOL META-DATA
	Slide 15: LOCKS VS. LATCHES
	Slide 16: PAGE TABLE VS. PAGE DIRECTORY

	MMAP
	Slide 17: WHY NOT USE THE OS?
	Slide 18: WHY NOT USE THE OS?
	Slide 19: WHY NOT USE THE OS?
	Slide 20: WHY NOT USE THE OS?
	Slide 21: WHY NOT USE THE OS?
	Slide 22: MEMORY MAPPED I/O PROBLEMS
	Slide 23: WHY NOT USE THE OS?
	Slide 24: WHY NOT USE THE OS?
	Slide 25: WHY NOT USE THE OS?
	Slide 26: WHY NOT USE THE OS?

	Buffer Replacement Policies
	Slide 27: BUFFER REPLACEMENT POLICIES
	Slide 28: LEAST-RECENTLY USED
	Slide 29: LEAST-RECENTLY USED
	Slide 30: LEAST-RECENTLY USED
	Slide 31: CLOCK
	Slide 32: CLOCK
	Slide 33: CLOCK
	Slide 34: CLOCK
	Slide 35: CLOCK
	Slide 36: CLOCK
	Slide 37: CLOCK
	Slide 38: CLOCK
	Slide 39: CLOCK
	Slide 40: CLOCK
	Slide 41: OBSERVATION
	Slide 42: SEQUENTIAL FLOODING
	Slide 43: SEQUENTIAL FLOODING
	Slide 44: SEQUENTIAL FLOODING
	Slide 45: SEQUENTIAL FLOODING
	Slide 46: SEQUENTIAL FLOODING
	Slide 47: SEQUENTIAL FLOODING
	Slide 48: BETTER POLICIES: LRU-K
	Slide 49: MYSQL APPROXIMATE LRU-K
	Slide 50: MYSQL APPROXIMATE LRU-K
	Slide 51: MYSQL APPROXIMATE LRU-K
	Slide 52: MYSQL APPROXIMATE LRU-K
	Slide 53: MYSQL APPROXIMATE LRU-K
	Slide 54: MYSQL APPROXIMATE LRU-K
	Slide 55: MYSQL APPROXIMATE LRU-K
	Slide 56: BETTER POLICIES: LOCALIZATION
	Slide 57: BETTER POLICIES: PRIORITY HINTS
	Slide 58: BETTER POLICIES: PRIORITY HINTS
	Slide 59: BETTER POLICIES: PRIORITY HINTS
	Slide 60: BETTER POLICIES: PRIORITY HINTS
	Slide 61: DIRTY PAGES
	Slide 62: BACKGROUND WRITING

	Disk I/O Scheduling
	Slide 63: OBSERVATION
	Slide 64: DISK I/O SCHEDULING
	Slide 65: OS PAGE CACHE
	Slide 66: OS PAGE CACHE
	Slide 67: OS PAGE CACHE
	Slide 68: FSYNC PROBLEMS
	Slide 69: FSYNC PROBLEMS

	Optimizations
	Slide 70: BUFFER POOL OPTIMIZATIONS
	Slide 71: MULTIPLE BUFFER POOLS
	Slide 72: MULTIPLE BUFFER POOLS
	Slide 73: MULTIPLE BUFFER POOLS
	Slide 74: MULTIPLE BUFFER POOLS
	Slide 75: PRE-FETCHING
	Slide 76: PRE-FETCHING
	Slide 77: PRE-FETCHING
	Slide 78: PRE-FETCHING
	Slide 79: PRE-FETCHING
	Slide 80: PRE-FETCHING
	Slide 81: PRE-FETCHING
	Slide 82: PRE-FETCHING
	Slide 83: PRE-FETCHING
	Slide 84: PRE-FETCHING
	Slide 85: PRE-FETCHING
	Slide 86: PRE-FETCHING
	Slide 87: SCAN SHARING
	Slide 88: SCAN SHARING
	Slide 89: SCAN SHARING
	Slide 90: SCAN SHARING
	Slide 91: SCAN SHARING
	Slide 92: SCAN SHARING
	Slide 93: SCAN SHARING
	Slide 94: SCAN SHARING
	Slide 95: SCAN SHARING
	Slide 96: SCAN SHARING
	Slide 97: SCAN SHARING
	Slide 98: SCAN SHARING
	Slide 99: SCAN SHARING
	Slide 100: SCAN SHARING
	Slide 101: SCAN SHARING
	Slide 102: BUFFER POOL BYPASS

	Conclusion
	Slide 103: CONCLUSION
	Slide 104: NEXT CLASS

	Project #1
	Slide 105: PROJECT #1
	Slide 106: TASK #1 – LRU-K REPLACEMENT POLICY
	Slide 107: TASK #2 – DISK SCHEDULER
	Slide 108: TASK #3 – BUFFER POOL MANAGER
	Slide 109: THINGS TO NOTE
	Slide 110: CODE QUALITY
	Slide 111: EXTRA CREDIT
	Slide 112: PLAGIARISM WARNING

