
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024  
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Memory & Disk 
Management

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CMU-DB IAP VISIT DAY (TUE SEPT 17)

Info Session #1 (9:30-10:30am)
→ DataStax: GHC 7101 
→ dbtLabs: GHC 7501 
→ Firebolt: GHC 8115 

Info Session #2 (10:30-11:30am)
→ ClickHouse: GHC 7101 
→ RelationalAI: GHC 7501 
→ StarTree: GHC 8115 

Info Sessions #3 (11:30-12:30pm)
→ Neon: GHC 7101 
→ PingCAP TiDB: GHC 7501 
→ Weaviate: GHC 8115 

2

https://db.cs.cmu.edu/affiliates/visit2024

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.datastax.com/
https://www.getdbt.com/
https://www.firebolt.io/
https://clickhouse.com/
https://relational.ai/
https://startree.ai/
https://neon.tech/
https://www.pingcap.com/
https://weaviate.io/
https://db.cs.cmu.edu/affiliates/visit2024/
https://db.cs.cmu.edu/affiliates/visit2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LAST CLASS

Problem #1: How the DBMS represents the 
database in files on disk.

Problem #2: How the DBMS manages its memory 
and move data back-and-forth from disk.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABASE STORAGE

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as 

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write them 

to disk.
→ The goal is to minimize the number of stalls from having 

to read data from disk.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

5

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

6

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OTHER MEMORY POOLS

The DBMS needs memory for things other than 
just tuples and indexes.

These other memory pools may not always backed 
by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Buffer Pool Manager

Why MMAP Will Murder Your DBMS

Disk I/O Scheduling

Replacement Policies

Other Memory Pools

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BUFFER POOL ORGANIZATION

Memory region organized as an array 
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an 
exact copy is placed into one of these 
frames.

Dirty pages are buffered and not 
written to disk immediately
→ Write-Back Cache

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

On-Disk File

page1 page2 page3 page4

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages 
that are currently in memory.
→ Usually a fixed-size hash table protected 

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

On-Disk File

Buffer
Pool

page1

page3

Page
Table

10

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages 
that are currently in memory.
→ Usually a fixed-size hash table protected 

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

On-Disk File

Buffer
Pool

page1

page3

Page
Table

11

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages 
that are currently in memory.
→ Usually a fixed-size hash table protected 

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page2
meta-data

page2

12

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages 
that are currently in memory.
→ Usually a fixed-size hash table protected 

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page2
meta-data

page2

13

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages 
that are currently in memory.
→ Usually a fixed-size hash table protected 

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page2
meta-data

page2

14

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOCKS VS. LATCHES

Locks:
→ Protects the database's logical contents from other 

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

←Mutex

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids 
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS 

to find on restart.

The page table is the mapping from page ids to a 
copy of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to 

be stored on disk.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to 
store the contents of a file into the 
address space of a program.

OS is responsible for moving file 
pages in and out of memory, so the 
DBMS doesn't need to worry about it.

What if DBMS allows multiple 
threads to access mmap files to hide 
page fault stalls?

12

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to 
store the contents of a file into the 
address space of a program.

OS is responsible for moving file 
pages in and out of memory, so the 
DBMS doesn't need to worry about it.

What if DBMS allows multiple 
threads to access mmap files to hide 
page fault stalls?

12

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1page1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to 
store the contents of a file into the 
address space of a program.

OS is responsible for moving file 
pages in and out of memory, so the 
DBMS doesn't need to worry about it.

What if DBMS allows multiple 
threads to access mmap files to hide 
page fault stalls?

12

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

page3

page1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to 
store the contents of a file into the 
address space of a program.

OS is responsible for moving file 
pages in and out of memory, so the 
DBMS doesn't need to worry about it.

What if DBMS allows multiple 
threads to access mmap files to hide 
page fault stalls?

12

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

page3

page1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to 
store the contents of a file into the 
address space of a program.

OS is responsible for moving file 
pages in and out of memory, so the 
DBMS doesn't need to worry about it.

What if DBMS allows multiple 
threads to access mmap files to hide 
page fault stalls?

12

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

page3???
page1

page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
→ OS can flush dirty pages at any time.

Problem #2: I/O Stalls
→ DBMS doesn't know which pages are in memory. The OS 

will stall a thread on page fault.

Problem #3: Error Handling
→ Difficult to validate pages. Any access can cause a SIGBUS 

that the DBMS must handle.

Problem #4: Performance Issues
→ OS data structure contention. TLB shootdowns.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

There are some solutions to some of 
these problems:
→ madvise: Tell the OS how you expect to 

read certain pages.
→ mlock: Tell the OS that memory ranges 

cannot be paged out.
→ msync: Tell the OS to flush memory 

ranges out to disk.

Using these syscalls to get the OS to 
behave correctly is just as onerous as 
managing memory yourself.

Full Usage

Partial Usage

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

There are some solutions to some of 
these problems:
→ madvise: Tell the OS how you expect to 

read certain pages.
→ mlock: Tell the OS that memory ranges 

cannot be paged out.
→ msync: Tell the OS to flush memory 

ranges out to disk.

Using these syscalls to get the OS to 
behave correctly is just as onerous as 
managing memory yourself.

Full Usage

Partial Usage

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

25

WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself 
and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

26

WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself 
and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

https://db.cs.cmu.edu/mmap-cidr2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make 
room for a new page, it must decide which page to 
evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LEAST-RECENTLY USED

Maintain a single timestamp of when 
each page was last accessed. When the 
DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce 

the search time on eviction.

28

Disk Pages

page0

page1

page2

page3

page4

page5

page0 page1 page2

Newest←Oldest

LRU List

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LEAST-RECENTLY USED

Maintain a single timestamp of when 
each page was last accessed. When the 
DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce 

the search time on eviction.

29

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

LRU List

Q1

page1 page0 page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LEAST-RECENTLY USED

Maintain a single timestamp of when 
each page was last accessed. When the 
DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce 

the search time on eviction.

30

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

LRU List

Q1

page1 page0 page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4 page2

ref=1

ref=0

ref=0

ref=0

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4

ref=0

ref=0

ref=1

ref=1
page5

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4

ref=0

ref=0

ref=0

ref=0
page5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

LRU + CLOCK replacement policies are susceptible 
to sequential flooding.
→ A query performs a sequential scan that reads every page in 

a table one or more times (e.g., blocked nested-loop joins).
→ This pollutes the buffer pool with pages that are read once 

and then never again.

In OLAP workloads, the most recently used page is 
often the best page to evict.

LRU + CLOCK only tracks when a page was last 
accessed, but not how often a page is accessed.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

SEQUENTIAL FLOODING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

Q1

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

SEQUENTIAL FLOODING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2 Q2

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

page1

page2

SEQUENTIAL FLOODING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

Q2

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page1

page2

SEQUENTIAL FLOODING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page1

page2

SEQUENTIAL FLOODING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

SELECT * FROM A WHERE id = 1Q3

Q2

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page1

page2

SEQUENTIAL FLOODING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

SELECT * FROM A WHERE id = 1Q3

Q2

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BETTER POLICIES: LRU-K

Track the history of last K references to 
each page as timestamps and compute the 
interval between subsequent accesses.
→ Can distinguish between reference types

Use this history to estimate the next time 
that page is going to be accessed.
→ Replace the page with the oldest "K-th" access.
→ Balances recency vs. frequency of access.
→ Maintain an ephemeral in-memory cache for 

recently evicted pages to prevent them from 
always being evicted.

48

A close-up of a paper

Description automatically generated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://doi.org/10.1145/170036.170081


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

49

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

Young List

Q1

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

50

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

Young List

Q1

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

51

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

Young List

Q1

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

52

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

Young List

Q1

page9 page3page5page4

Old List

page1 page6 page2

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

53

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

Young List

page9 page3page5page4

Old List

page1 page6 page2

Q2

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

54

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

Young List

page9 page3page5page4

Old List

page1 page6 page2

Q2

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.

55

Disk Pages

page0

page1

page2

page3

page4

page5Newest←Oldest

Young List Old List

page1 page6 page2

Q2

page5 page9page4page1 page3

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per 
query basis. This minimizes the pollution of the 
buffer pool from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of 
buffer of buffer pool pages to a query and uses it as a 
circular ring buffer.

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty, 
then the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must 
write back to disk to ensure that its changes are 
persisted.

Trade-off between fast evictions versus dirty 
writing pages that will not be read again in the 
future.

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BACKGROUND WRITING

The DBMS can periodically walk through the page 
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can 
either evict the page or just unset the dirty flag.

Need to be careful that the system doesn't write 
dirty pages before their log records are written…

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

OS/hardware tries to maximize disk bandwidth by 
reordering and batching I/O requests.

But they do not know which I/O requests are more 
important than others.

Many DBMSs tell you to switch Linux to use the 
deadline or noop (FIFO) scheduler.
→ Example: Oracle, Vertica, MySQL 

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html#GUID-B59FCEFB-20F9-4E64-8155-7A61B38D8CDF
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISK I/O SCHEDULING

The DBMS maintain internal queue(s) to track page 
read/write requests from the entire system.

Compute priorities based on several factors:
→ Sequential vs. Random I/O
→ Critical Path Task vs. Background Task
→ Table vs. Index vs. Log vs. Ephemeral Data
→ Transaction Information
→ User-based SLAs

The OS doesn't know these things and is going to 
get into the way…

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OS PAGE CACHE

O_DIRECT

Most disk operations go through the 
OS API. Unless the DBMS tells it not 
to, the OS maintains its own 
filesystem cache (aka page cache, 
buffer cache).

Most DBMSs use direct I/O 
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

29

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://linux.die.net/man/2/open


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OS PAGE CACHE

O_DIRECT

Most disk operations go through the 
OS API. Unless the DBMS tells it not 
to, the OS maintains its own 
filesystem cache (aka page cache, 
buffer cache).

Most DBMSs use direct I/O 
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

29

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://linux.die.net/man/2/open


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OS PAGE CACHE

O_DIRECT

Most disk operations go through the 
OS API. Unless the DBMS tells it not 
to, the OS maintains its own 
filesystem cache (aka page cache, 
buffer cache).

Most DBMSs use direct I/O 
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

29

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FSYNC PROBLEMS

If the DBMS calls fwrite, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
→ Linux marks the dirty pages as clean.
→ If the DBMS calls fsync again, then Linux tells you that 

the flush was successful. Since the DBMS thought the OS 
was its friend, it assumed the write was successful…

30

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FSYNC PROBLEMS

If the DBMS calls fwrite, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
→ Linux marks the dirty pages as clean.
→ If the DBMS calls fsync again, then Linux tells you that 

the flush was successful. Since the DBMS thought the OS 
was its friend, it assumed the write was successful…

30

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass

70

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer 
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Partitioning memory across multiple pools helps 
reduce latch contention and improve locality.
→ Avoids contention on LRU tracking meta-data.

71

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

                     
                                 

                      
Buffer Pool #1 Buffer Pool #2

72

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

                     
                                 

                      
Buffer Pool #1 Buffer Pool #2

<ObjectId, PageId, SlotNum> 

73

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
Buffer Pool #1 Buffer Pool #2

HASH(123) % n

74

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

Buffer Pool

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

Buffer Pool

page0

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

76

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

Buffer Pool

page0

page1

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

77

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

Buffer Pool

page0

page1

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

78

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

Buffer Pool

page1

page2

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

page3

79

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

Buffer Pool

page1

page2

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

page3

80

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

Buffer Pool

Disk Pages

page0

page1

page2

page3

page4

page5Q1

page3

page4

page5

81

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

SELECT * FROM A
 WHERE val BETWEEN 100 AND 250

Q1

82

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

83

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

Buffer Pool

index-page0

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

84

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

85

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PRE-FETCHING

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

86

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCAN SHARING

Allow multiple queries to attach to a single cursor 
that scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

87

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCAN SHARING

Allow multiple queries to attach to a single cursor 
that scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

88

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCAN SHARING

Allow multiple queries to attach to a single cursor 
that scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

89

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1
Q1

90

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1
Q1

91

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1

92

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1

93

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q1page3

94

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1page3

Q2

95

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1page3 Q2

96

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q1

page3

Q2

page4

page5

97

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3

Q2

page4

page5

98

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

Q2

99

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

Q2

SELECT AVG(val) FROM A LIMIT 100Q2

100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Buffer Pool

page0

page1

page2

SCAN SHARING

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM A LIMIT 100Q2

101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BUFFER POOL BYPASS

The sequential scan operator will not store fetched 
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of 

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

102

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

The DBMS can almost always manage memory 
better than the OS.

Leverage the semantics about the query plan to 
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching

103

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Hash Tables

104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROJECT #1

You will build the first component of 
your storage manager.
→ LRU-K Replacement Policy
→ Disk Scheduler
→ Buffer Pool Manager Instance

We will provide you with the basic 
APIs for these components.

Due Date:
Sunday Sept 29th @ 11:59pm

105

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://github.com/cmu-db/bustub


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TASK #1 – LRU-K REPLACEMENT POLICY

Build a data structure that tracks the usage of pages 
using the LRU-K policy.

General Hints:
→ Your LRUKReplacer needs to check the "pinned" status of 

a Page.
→ If there are no pages touched since last sweep, then return 

the lowest page id.

106

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TASK #2 – DISK SCHEDULER

Create a background worker to 
read/write pages from disk.
→ Single request queue.
→ Simulates asynchronous IO using 

std::promise for callbacks.

It's up to you to decide how you want 
to batch, reorder, and issue read/write 
requests to the local disk.

Make sure it is thread-safe!

43

Database
(On-Disk)

page0

page1

page2

D
is

k 
Sc

he
du

le
r

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TASK #3 – BUFFER POOL MANAGER

Use your LRU-K replacer to manage 
the allocation of pages.
→ Need to maintain internal data

structures to track allocated + free pages.
→ Implement page guards.
→ Use whatever data structure you want

for the page table.

Make sure you get the order of 
operations correct when pinning!

Buffer Pool
(In-Memory)

page6

page2

page4

108

Database
(On-Disk)

page0

page1

page2

D
is

k 
Sc

he
du

le
r

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

THINGS TO NOTE

Do not change any file other than the six that you 
must hand in. Other changes will not be graded.

The projects are cumulative.

We will not be providing solutions.

Post any questions on Piazza or come to office 
hours, but we will not help you debug.

109

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CODE QUALITY

We will automatically check whether you are 
writing good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit 
your implementation to Gradescope.
→ make format
→ make check-clang-tidy-p1

110

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXTRA CREDIT

Gradescope Leaderboard runs your code with a 
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will 
receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

Student with the most bonus points at the end of 
the semester will receive a BusTub schwag!

111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PLAGIARISM WARNING

The homework and projects must be your own 
original work. They are not group assignments.

You may not copy source code from other people 
or the web.

Plagiarism is not tolerated. You will get lit up.
→ Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for 
additional information. 

112

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

	Introduction
	Slide 1: Memory & Disk Management
	Slide 2: CMU-DB IAP VISIT DAY (TUE SEPT 17)
	Slide 3: LAST CLASS
	Slide 4: DATABASE STORAGE
	Slide 5: DISK-ORIENTED DBMS
	Slide 6: DISK-ORIENTED DBMS
	Slide 7: OTHER MEMORY POOLS
	Slide 8: TODAY'S AGENDA

	Buffer Pool Manager
	Slide 9: BUFFER POOL ORGANIZATION
	Slide 10: BUFFER POOL META-DATA
	Slide 11: BUFFER POOL META-DATA
	Slide 12: BUFFER POOL META-DATA
	Slide 13: BUFFER POOL META-DATA
	Slide 14: BUFFER POOL META-DATA
	Slide 15: LOCKS VS. LATCHES
	Slide 16: PAGE TABLE VS. PAGE DIRECTORY

	MMAP
	Slide 17: WHY NOT USE THE OS?
	Slide 18: WHY NOT USE THE OS?
	Slide 19: WHY NOT USE THE OS?
	Slide 20: WHY NOT USE THE OS?
	Slide 21: WHY NOT USE THE OS?
	Slide 22: MEMORY MAPPED I/O PROBLEMS
	Slide 23: WHY NOT USE THE OS?
	Slide 24: WHY NOT USE THE OS?
	Slide 25: WHY NOT USE THE OS?
	Slide 26: WHY NOT USE THE OS?

	Buffer Replacement Policies
	Slide 27: BUFFER REPLACEMENT POLICIES
	Slide 28: LEAST-RECENTLY USED
	Slide 29: LEAST-RECENTLY USED
	Slide 30: LEAST-RECENTLY USED
	Slide 31: CLOCK
	Slide 32: CLOCK
	Slide 33: CLOCK
	Slide 34: CLOCK
	Slide 35: CLOCK
	Slide 36: CLOCK
	Slide 37: CLOCK
	Slide 38: CLOCK
	Slide 39: CLOCK
	Slide 40: CLOCK
	Slide 41: OBSERVATION
	Slide 42: SEQUENTIAL FLOODING
	Slide 43: SEQUENTIAL FLOODING
	Slide 44: SEQUENTIAL FLOODING
	Slide 45: SEQUENTIAL FLOODING
	Slide 46: SEQUENTIAL FLOODING
	Slide 47: SEQUENTIAL FLOODING
	Slide 48: BETTER POLICIES: LRU-K
	Slide 49: MYSQL APPROXIMATE LRU-K
	Slide 50: MYSQL APPROXIMATE LRU-K
	Slide 51: MYSQL APPROXIMATE LRU-K
	Slide 52: MYSQL APPROXIMATE LRU-K
	Slide 53: MYSQL APPROXIMATE LRU-K
	Slide 54: MYSQL APPROXIMATE LRU-K
	Slide 55: MYSQL APPROXIMATE LRU-K
	Slide 56: BETTER POLICIES: LOCALIZATION
	Slide 57: BETTER POLICIES: PRIORITY HINTS
	Slide 58: BETTER POLICIES: PRIORITY HINTS
	Slide 59: BETTER POLICIES: PRIORITY HINTS
	Slide 60: BETTER POLICIES: PRIORITY HINTS
	Slide 61: DIRTY PAGES
	Slide 62: BACKGROUND WRITING

	Disk I/O Scheduling
	Slide 63: OBSERVATION
	Slide 64: DISK I/O SCHEDULING
	Slide 65: OS PAGE CACHE
	Slide 66: OS PAGE CACHE
	Slide 67: OS PAGE CACHE
	Slide 68: FSYNC PROBLEMS
	Slide 69: FSYNC PROBLEMS

	Optimizations
	Slide 70: BUFFER POOL OPTIMIZATIONS
	Slide 71: MULTIPLE BUFFER POOLS
	Slide 72: MULTIPLE BUFFER POOLS
	Slide 73: MULTIPLE BUFFER POOLS
	Slide 74: MULTIPLE BUFFER POOLS
	Slide 75: PRE-FETCHING
	Slide 76: PRE-FETCHING
	Slide 77: PRE-FETCHING
	Slide 78: PRE-FETCHING
	Slide 79: PRE-FETCHING
	Slide 80: PRE-FETCHING
	Slide 81: PRE-FETCHING
	Slide 82: PRE-FETCHING
	Slide 83: PRE-FETCHING
	Slide 84: PRE-FETCHING
	Slide 85: PRE-FETCHING
	Slide 86: PRE-FETCHING
	Slide 87: SCAN SHARING
	Slide 88: SCAN SHARING
	Slide 89: SCAN SHARING
	Slide 90: SCAN SHARING
	Slide 91: SCAN SHARING
	Slide 92: SCAN SHARING
	Slide 93: SCAN SHARING
	Slide 94: SCAN SHARING
	Slide 95: SCAN SHARING
	Slide 96: SCAN SHARING
	Slide 97: SCAN SHARING
	Slide 98: SCAN SHARING
	Slide 99: SCAN SHARING
	Slide 100: SCAN SHARING
	Slide 101: SCAN SHARING
	Slide 102: BUFFER POOL BYPASS

	Conclusion
	Slide 103: CONCLUSION
	Slide 104: NEXT CLASS

	Project #1
	Slide 105: PROJECT #1
	Slide 106: TASK #1 – LRU-K REPLACEMENT POLICY
	Slide 107: TASK #2 – DISK SCHEDULER
	Slide 108: TASK #3 – BUFFER POOL MANAGER
	Slide 109: THINGS TO NOTE
	Slide 110: CODE QUALITY
	Slide 111: EXTRA CREDIT
	Slide 112: PLAGIARISM WARNING


