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CMU-DB IAP VISIT DAY (TUE SEPT 17)

Info Session #1 (9:30-10:30am)
→ DataStax: GHC 7101 
→ dbtLabs: GHC 7501 
→ Firebolt: GHC 8115 

Info Session #2 (10:30-11:30am)
→ ClickHouse: GHC 7101 
→ RelationalAI: GHC 7501 
→ StarTree: GHC 8115 

Info Sessions #3 (11:30-12:30pm)
→ Neon: GHC 7101 
→ PingCAP TiDB: GHC 7501 
→ Weaviate: GHC 8115 
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LAST CLASS

Problem #1: How the DBMS represents the 
database in files on disk.

Problem #2: How the DBMS manages its memory 
and move data back-and-forth from disk.
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DATABASE STORAGE

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as 

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write them 

to disk.
→ The goal is to minimize the number of stalls from having 

to read data from disk.
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DISK-ORIENTED DBMS

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

5

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

6

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OTHER MEMORY POOLS

The DBMS needs memory for things other than 
just tuples and indexes.

These other memory pools may not always backed 
by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches
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TODAY'S AGENDA

Buffer Pool Manager

Why MMAP Will Murder Your DBMS

Disk I/O Scheduling

Replacement Policies

Other Memory Pools
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BUFFER POOL ORGANIZATION

Memory region organized as an array 
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an 
exact copy is placed into one of these 
frames.

Dirty pages are buffered and not 
written to disk immediately
→ Write-Back Cache

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

On-Disk File
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frame1

frame2

frame3
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BUFFER POOL META-DATA

The page table keeps track of pages 
that are currently in memory.
→ Usually a fixed-size hash table protected 

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

On-Disk File

Buffer
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page1
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Page
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LOCKS VS. LATCHES

Locks:
→ Protects the database's logical contents from other 

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

←Mutex
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PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids 
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS 

to find on restart.

The page table is the mapping from page ids to a 
copy of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to 

be stored on disk.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to 
store the contents of a file into the 
address space of a program.

OS is responsible for moving file 
pages in and out of memory, so the 
DBMS doesn't need to worry about it.

What if DBMS allows multiple 
threads to access mmap files to hide 
page fault stalls?
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MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
→ OS can flush dirty pages at any time.

Problem #2: I/O Stalls
→ DBMS doesn't know which pages are in memory. The OS 

will stall a thread on page fault.

Problem #3: Error Handling
→ Difficult to validate pages. Any access can cause a SIGBUS 

that the DBMS must handle.

Problem #4: Performance Issues
→ OS data structure contention. TLB shootdowns.
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WHY NOT USE THE OS?

There are some solutions to some of 
these problems:
→ madvise: Tell the OS how you expect to 

read certain pages.
→ mlock: Tell the OS that memory ranges 

cannot be paged out.
→ msync: Tell the OS to flush memory 

ranges out to disk.

Using these syscalls to get the OS to 
behave correctly is just as onerous as 
managing memory yourself.

Full Usage

Partial Usage
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WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself 
and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.
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BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make 
room for a new page, it must decide which page to 
evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LEAST-RECENTLY USED

Maintain a single timestamp of when 
each page was last accessed. When the 
DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce 

the search time on eviction.
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CLOCK

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4 page2

ref=0

ref=0

ref=0

ref=0

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOCK
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OBSERVATION

LRU + CLOCK replacement policies are susceptible 
to sequential flooding.
→ A query performs a sequential scan that reads every page in 

a table one or more times (e.g., blocked nested-loop joins).
→ This pollutes the buffer pool with pages that are read once 

and then never again.

In OLAP workloads, the most recently used page is 
often the best page to evict.

LRU + CLOCK only tracks when a page was last 
accessed, but not how often a page is accessed.
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BETTER POLICIES: LRU-K

Track the history of last K references to 
each page as timestamps and compute the 
interval between subsequent accesses.
→ Can distinguish between reference types

Use this history to estimate the next time 
that page is going to be accessed.
→ Replace the page with the oldest "K-th" access.
→ Balances recency vs. frequency of access.
→ Maintain an ephemeral in-memory cache for 

recently evicted pages to prevent them from 
always being evicted.
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MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.
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BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per 
query basis. This minimizes the pollution of the 
buffer pool from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of 
buffer of buffer pool pages to a query and uses it as a 
circular ring buffer.
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BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid
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BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.
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DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty, 
then the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must 
write back to disk to ensure that its changes are 
persisted.

Trade-off between fast evictions versus dirty 
writing pages that will not be read again in the 
future.
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BACKGROUND WRITING

The DBMS can periodically walk through the page 
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can 
either evict the page or just unset the dirty flag.

Need to be careful that the system doesn't write 
dirty pages before their log records are written…
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OBSERVATION

OS/hardware tries to maximize disk bandwidth by 
reordering and batching I/O requests.

But they do not know which I/O requests are more 
important than others.

Many DBMSs tell you to switch Linux to use the 
deadline or noop (FIFO) scheduler.
→ Example: Oracle, Vertica, MySQL 
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DISK I/O SCHEDULING

The DBMS maintain internal queue(s) to track page 
read/write requests from the entire system.

Compute priorities based on several factors:
→ Sequential vs. Random I/O
→ Critical Path Task vs. Background Task
→ Table vs. Index vs. Log vs. Ephemeral Data
→ Transaction Information
→ User-based SLAs

The OS doesn't know these things and is going to 
get into the way…
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OS PAGE CACHE

O_DIRECT

Most disk operations go through the 
OS API. Unless the DBMS tells it not 
to, the OS maintains its own 
filesystem cache (aka page cache, 
buffer cache).

Most DBMSs use direct I/O 
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

29
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FSYNC PROBLEMS

If the DBMS calls fwrite, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
→ Linux marks the dirty pages as clean.
→ If the DBMS calls fsync again, then Linux tells you that 

the flush was successful. Since the DBMS thought the OS 
was its friend, it assumed the write was successful…

30

Don't
Do This!
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BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass

70
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MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer 
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Partitioning memory across multiple pools helps 
reduce latch contention and improve locality.
→ Avoids contention on LRU tracking meta-data.
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GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

                     
                                 

                      
Buffer Pool #1 Buffer Pool #2
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GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

                     
                                 

                      
Buffer Pool #1 Buffer Pool #2

<ObjectId, PageId, SlotNum> 
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GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
Buffer Pool #1 Buffer Pool #2

HASH(123) % n
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PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.
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page5

Q1
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PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.
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PRE-FETCHING

Buffer Pool

Disk Pages
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SCAN SHARING

Allow multiple queries to attach to a single cursor 
that scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.
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BUFFER POOL BYPASS

The sequential scan operator will not store fetched 
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of 

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.
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CONCLUSION

The DBMS can almost always manage memory 
better than the OS.

Leverage the semantics about the query plan to 
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching
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NEXT CLASS

Hash Tables
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PROJECT #1

You will build the first component of 
your storage manager.
→ LRU-K Replacement Policy
→ Disk Scheduler
→ Buffer Pool Manager Instance

We will provide you with the basic 
APIs for these components.

Due Date:
Sunday Sept 29th @ 11:59pm
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TASK #1 – LRU-K REPLACEMENT POLICY

Build a data structure that tracks the usage of pages 
using the LRU-K policy.

General Hints:
→ Your LRUKReplacer needs to check the "pinned" status of 

a Page.
→ If there are no pages touched since last sweep, then return 

the lowest page id.
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TASK #2 – DISK SCHEDULER

Create a background worker to 
read/write pages from disk.
→ Single request queue.
→ Simulates asynchronous IO using 

std::promise for callbacks.

It's up to you to decide how you want 
to batch, reorder, and issue read/write 
requests to the local disk.

Make sure it is thread-safe!
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TASK #3 – BUFFER POOL MANAGER

Use your LRU-K replacer to manage 
the allocation of pages.
→ Need to maintain internal data

structures to track allocated + free pages.
→ Implement page guards.
→ Use whatever data structure you want

for the page table.

Make sure you get the order of 
operations correct when pinning!

Buffer Pool
(In-Memory)
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THINGS TO NOTE

Do not change any file other than the six that you 
must hand in. Other changes will not be graded.

The projects are cumulative.

We will not be providing solutions.

Post any questions on Piazza or come to office 
hours, but we will not help you debug.
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CODE QUALITY

We will automatically check whether you are 
writing good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit 
your implementation to Gradescope.
→ make format
→ make check-clang-tidy-p1
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EXTRA CREDIT

Gradescope Leaderboard runs your code with a 
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will 
receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

Student with the most bonus points at the end of 
the semester will receive a BusTub schwag!
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PLAGIARISM WARNING

The homework and projects must be your own 
original work. They are not group assignments.

You may not copy source code from other people 
or the web.

Plagiarism is not tolerated. You will get lit up.
→ Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for 
additional information. 
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