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ADMINISTRIVIA

Project #1 is due Sunday Sept 29" @ 11:59pm
— Recitation + Profiling Tutorial: @160

Homework #3 will be released on Sept 25%

Mid-term Exam on Wednesday Oct 9™

— In-class in this room.
— More info next week.
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UPCOMING DATABASE TALKS

DataFusion (DB Seminar) DATA. ¢
— Monday Sept 23" @ 4:30pm ET F U S | J

— Zoom

DataFusion Comet (DB Seminar) &\ e 10N CoMEE
— Monday Sept 30 @ 4:30pm ET

— Zoom

Oracle Talk (DB G ) 2
—>rfll“f1e§daya0ct @ 121:(?(;;311)11 ET ORAC I—E
— GHC 6501
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LAST CLASS

Hash tables are important data structures that are

used all throughout a DBMS.

— Space Complexity: O(n)
— Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal
data structures.
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INDEXES VS. FILTERS

An 1index data structure of a subset of a table's
attributes that are organized and/or sorted to the

location of specific tuples using those attributes.
— Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a record

(likely) exists for a key but not where it is located.
— Example: Bloom Filter



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TODAY'S AGENDA

B+Tree Overview
Design Choices
Optimizations
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B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class

of balanced tree data structures:
— B-Tree (1970)

— B+Tree (1973)

— B*Tree (1977?)

— Blink_-Tree (1981)

— Be-Tree (2003)

— Bw-Tree (2013)
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B-TREE F
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The Ubiquitous B-Tree
DOUGLAS COMER

Computer Seience Department, Purdue Unwersity, West Lafayette, Indiana 47907

B-trees have become, de facto, a standard for file organization. File indexes of users,

dedicated database systems, and general.-|

purpose access methods have all been proposed

and ymplemented using B-trees This Paper reviews B-trees and shows why they have

been so I It di the major

of the B-tree, ially the B*.tree,

contrasting the relatie merits and costs of each implementation. Tt illustrates a general
purpose access method which uses a B-tree.

Keywords and Phrases: B-tree, B*-tree, B*-tree, file organization, index

CR Categories: 373 3.74 4.33 434

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
tomputer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
retrieval commands which can be jllus-
trated by the following examples:
Sequential: “From our employee file, pre-

pare a list of all employees’
names and addresses,” and
Random: “From our employee file, ex-
tract the information about
employee J. Smith”.
We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled “A-
G,” “H-R,” and “S-Z,” while the folders

might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
d ql implies that the her,
guided by the labels on the drawers and
folders, need only extract one folder.
Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired jtem, Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers, Usually the index itself is a file, If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.
Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

Pernussion to copy without fee all or part of this material is granted provided that the copies are not made or

distributed for direct commercial advantage, the ACM o

date appear, and notice 1s given that copying is by p

u]:_iyrixht notice and the title of the publication and its

of the A ion for Ci g Machinery, To

copy otherwise, or to republish, requires a fee and/or specific permission,

© 1979 ACM 0010-4892,/79,/0600-012] §00 75

Computing Surveys, Vol 11, No 2, June 1979



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/doi/10.1145/1734663.1734671
https://dl.acm.org/citation.cfm?doid=356770.356776

B-TREE FAMILY

Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN

There is a specific data structure called  zouom |
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Purdue University
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The B-tree [2] and its variants have been widely used in Trecent years as a data
f : : 3

—_ B+T ree ( 1 9 7 3 ) ;::‘iz:?nf.o:me S‘ulral:nz:dm;a‘l)]f('avenze) search, insartion, and il i

for these structures makes them Quite appealing for database applications,

? A topic of current interest in databag. design is the construction of databases

* I ree 1 9 I that can be ip d ly and ly by several In this

ﬁ Paper, we consider g simple variant of the B-tree (actually of the B*-tree,
Proposed by Wedekingd [15) especially well suited for use in a concurrent database

N Bhnk_Tree ( 1 9 8 1 )  Methods for 8] aament operations on Btrees have been discusseq by Bayer

and Schkolnick [3] and others [6, 12, 13). The solution given in the current paper

—> BS-Tree (2003) Pmni-n‘anlnmpywllhwlludlurunoﬂhkmm-]imhdwvwm&d\ecopiumnm

mdeordim‘buﬁlwﬁmwwﬁmuﬂ.mkmmmhlmﬁ&lld&eu'uenfl.lu
wbﬁraﬂonlndilad.lfelppelr.lndmtietilﬁvunthntcopyin‘hbypemﬂ-ionnflheAMdujnn

T e (2013) (arCcmmlin.M.chinAry.Tocopyolh“h.orwnpubhh.nquimlkelnd/orlpedﬂc
Permission,
—_ B W - r e ohis research was supported by the Nationa! ence Foundation under Grant MCS76.16604,
Authors’ present P. L. Lehman, Department of Computer Science, Carnegie-Mellon
wniversity, Pittsburgh, PA 162135, B. Y so. Mu«&mm&ummwmemw
and Management, University of Maryland, College Park, MD 20742,
© 1981 ACM 0362-5915/81/1200-0650) 30 7.

ACM Transactions on Database Systems, Vol. 6, No, 4, Decernber 1981, Pages 650-670,

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/citation.cfm?id=319663

11
]

README

arnegie-Mellon University
d

BING YAOQ
code B'ame
|

rdue University
EADME
c/backend/access/nbtree/R
‘ sr

formation, especially on
lem of overcoming the inh,

secondary sto
erent difficulty of con
cal storage model. A sing

rage devices. We examine the
curtent operations on such structures, sing
le additional “link” pointer in cach node allows a process to easily

r from tree modifications performed by other concurrent processes, Qur solution compares
bly with earlier solutions in that, the locking scheme is simpler (no read-locks are used) and
(small) constant. number of nodes are locked by any update process at any given time. An
Pal correctness proof for our system is given.
(0rds and Phrases: database, res, B-tree, index organizations, con,
ey controls, locking protocols, correctness, cons;
dexing gories: 373, 3.74, 4.39, 4.
Btree In
|
|
|

p 34,524
ementa o of I Y
recrte cont S a co rect 1im 1 hma and
ion Le ao’'s 33, 4.

t
t d ain
t y
S 1L
|

data structuy

current algorithms,
istency, multiway search trees

RODUCTION
5. Yao ] tree [2] and its variants have been
. hman and
hm (P. Le ions
tree management algorithm ( Trees, ACM Transaction
high-concurrency B- urrent Operations on B-
\ : for Conc
C s Locking
Efficient
|

widely used in recent years as a data
Ire for storing large files of information, especially on secondary storage
[7]. The Buaranteed small (average) se deletion time
l € structures makes them quite apj
also ic of current int,
ber 1981, pp 650-670). We

December !
6 No. 4 r
ems, vol r
ase Syst

on Datab

ications,
erest in database design is the construction of databases
be manipulated concurrently and correctly by severa] Processes. In this
. ¥e consider a simple variant of
ic described in Lanin and
i logic
. eletion
of the d
) ified version
mplifie
use a sl

f the B-tree (actually of the B*-tree,
H by Wedeking [15)) especially wel
ithm,
-Tree Algori
metric Concurrent B-Tre
ha, A Sym
. d D. Shasha,
Lanin an
shasha (V.

1l suited for use in a concurrent database

arch, insertion, and
pealing for database appli

ds for concurrent Operations on B*.trees have been discussed by Bayer

olnick [3] and others [6, 12, 13]. Thy
-389).
uter conference, pp 389 )
Joint Comp
) 1986 Fall
ngs of
Proceedi

e solution given in the current paper

rithm
The basic Lehman & Yao Algo

P. L. Leh
3 16213;8. B. Yao,
ement, Universit,

Carnegie-Mellon
© 1981 ACM 0362-5915/81//

Department of Computer Science and College of Business
y of Maryland, College Park, MD 20742,
1200-0650 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 4, Decomber 1981, Pages 650-670,

5-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/citation.cfm?id=319663
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class

of balanced tree data structures:
— B-Tree (1970)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_-Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)
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B+TREE

A B+Tree is a self-balancing, ordered m-way tree
for searches, sequential access, insertions, and

deletions in O(log,, n) where m is the tree fanout.
— [t is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)
— Every node other than the root is at least half-full
m/2-1 < #keys < m-1
— Every inner node with k keys has k+1 non-null children.
— Optimized for reading/writing large data blocks.

Some real-world implementations relax these
properties, but we will ignore that for now...



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE EXAMPLE

20 Root Node

/ Inner / Non-Leaf

Jt = Nodes

/N

|6 Im |2@ 31 |38 44 (| Leaf Nodes

Index Key(s) Low—High
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B+TREE EXAMPLE

<node*>|<key>|<node*>|<key>|<node*>

20 Root Node

/ # Inner / Non-Leaf
10 35

Nodes

6 Im |2@ 31 |38 44 (| Leaf Nodes
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B+TREE EXAMPLE

<node*>|<key>|<node*>|<key>|<node*>

20 Root Node

<20 ey qe . =20
W g Ponters = Inner / Non-Leaf

Jt = Nodes

<10 210 <3% ¥‘35

6 T_’lm :lze 31 :I38 44 || Leaf Nodes

a
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NODES

Every B+Tree node is comprised of an array of

key/value pairs.

— The keys are derived from the index's target attribute(s).

— The values will differ based on whether the node is
classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.
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B+TREE LEAF NODES

B+Tree Leaf Node

Prev Next

T — — <_| a| K, | V,|-e| K | V, | & |—>

0
0
.
.
.
.
.
.
.
.
.
.
.
te
o
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B+TREE LEAF NODES

B+Tree Leaf Node

Prev Next

— I — PageID4—E K, |V, || K, | V, E—bPageID
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B+TREE LEAF NODES

B+Tree Leaf Node
! : Prev Next
— I — PageID4—| a| K, | a || K, | 1 | & |—>PageID
Key+Value
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B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev  Next
# # o o
¥ 3
Sorted Key/Value Pairs
y y y y K, | a | K, | a | K,| u
K, o K, O leee
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B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev  Next
# # o) o
7 Y

Sorted Keys

. — K, | K | K, | K, | Ks |---| K,
ves ¥ 4 4 ¥
o o o o o cee o
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LEAF NODE VALUES

Approach #1: Record IDs @) PostgreSQL %SQL Server
— A pointer to the location of the tuple to ORACLE

which the index entry corresponds.
— Most common implementation.

Approach #2: Tuple Data o i
— Index-Organized Storage (Lecture #04) ?SQLRQ { SQL Server
— Primary Key Index: Leaf nodes store the

contents of the tuple. RMHSQL,M ORACLE

— Secondary Indexes: Leaf nodes store
tuples' primary key as their values.
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B-TREE VS. B+TREE

The original B-Tree from 1971 stored keys and

values in all nodes in the tree.
— More space-efficient, since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.
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B+TREE - INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.

[f L has enough space, done!

Otherwise, split L keys into L and a new node L,
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L, into parent of L.

To split inner node, redistribute entries evenly, but
push up middle key.

&CMU-DB Source: Chris Re
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B+TREE - INSERT EXAMPLE (1)

4 1112
<4 z:d 212
<12
/\ m
1 3 5 %) 12([13

(
:

-
44444444444444444444
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B+TREE - INSERT EXAMPLE (1)

Insert 6

12

— /“ N

9 13
Node is full’

0CMU -DB


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE - INSERT EXAMPLE (1)

Insert 6
4 (|12
N\ N
1|3 5(19(|10 121113
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B+TREE - INSERT EXAMPLE (1)

Insert 6

\

[
()
/

12([13
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B+TREE - INSERT EXAMPLE (1)

Insert 6
4 [[12
//[4,12)\
N\ N
11| 3 5 (| 6 9 (|10 !| 12]]13
R
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B+TREE - INSERT EXAMPLE (1)

Insert 6
4 (112
1|3 5|6 9|10 121[13
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B+TREE - INSERT EXAMPLE (1)

Insert 6
4 ([ 21112
113 51| 6 9 (/10 12113
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B+TREE - INSERT EXAMPLE (1)

Insert 6
419 |[[12
1|3 5|6 9|10 121[13
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B+TREE - INSERT EXAMPLE (1)

Insert 6
4 (| 9112
/_y/m,g)\gm
1 3 5| 6 91110 1213
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B+TREE - INSERT EXAMPLE (1)

Insert 8

1|3 516 91110 121113
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B+TREE - INSERT EXAMPLE (1)

Insert 8
4 (] 9]l12
1|3 5|[6||8 9 (|10 12([13
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B+TREE - INSERT EXAMPLE (2)

Insert 17

Note: New Example/ Tree.
$2CMU-DB
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B+TREE - INSERT EXAMPLE (2)

Insert 17

Note: New Example/ Tree.
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B+TREE - INSERT EXAMPLE (3)

Insert 16

1113 5117 9|11 13||14(|15[(17]] [|20]|21](23

No space in the node where
the new key ‘belongs’.

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE - INSERT EXAMPLE (3)

Insert 16
5119|1319
113 51(7 9|11 13||14||15{|17|] (|20][21]|23
Split the node!
Copy the middle key.
Push the key up.
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B+TREE - INSERT EXAMPLE (3)

Insert 16
5119|1319
113 51(7 9|11 13||14|[15[|17 20|(21(|23
New Node!
Shuffle keys from the node
that triggered the split.
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B+TREE - INSERT EXAMPLE (3)

Insert 16

—

1113 5117 9|11 13||14{|15 16|17 20(121{|23

But this is an ‘orphan”node!
No parent node points to it.
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B+TREE - INSERT EXAMPLE (3)

Want to create a key, pointer
Insert 16 pair like this. But cannot insert it
in the root node, which is full.

S(]191[13]]19 16|] split the root. Grow the tree!

—

1113 5117 9|11 13||14{|15 16|17 20(121{|23

But this is an ‘orphan”node!
No parent node points to it.

$2CMU-DB
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B+TREE - INSERT EXAMPLE (3)

Insert 16
5119][13]19 16 Split the root. Grow the tree!
1113 5|7 91|11 13|[14{[15 16([17 20!121|]|23
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B+TREE - INSERT EXAMPLE (3)

13
Insert 16
5[9 19 16 Split the root. Grow the tree!
1113 5|7 91|11 13|[14{[15 16([17 20!121|]|23
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B+TREE - INSERT EXAMPLE (3)

13
Insert 16
Next, need to split the “old” root, then
/ | I L point to the split nodes from the new root.
1113 5(|7 91|11 13([14/|15 16([17 20||21|(23
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B+TREE - INSERT EXAMPLE (3)

13
Insert 16 <1y ¥13
\
5(19 16{[19
<5 [5,9) [9,13) [13,16) [16,19) =19
1113 5(|7 91|11 13([14/|15 16([17 20||21|(23
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B+TREE - DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only m/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

&CMU-DB Source: Chris Re

15-445/645 (Fall 2024)
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B+TREE - DELETE EXAMPLE (1)

Delete 6

$2CMU-DB

15-445/645 (Fall 2024)
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B+TREE - DELETE EXAMPLE (1)

Delete 6
4|9
1{[3 5 9 ||10([12

$2CMU-DB
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B+TREE - DELETE EXAMPLE (1)

Delete 6

1|3 | 5 | [ 9][12]]14

Borrow from a “rich” sibling node.
Could borrow from either sibling.
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B+TREE - DELETE EXAMPLE (1)

Delete 6

1 3 5119 12|14

Need to update parent node!
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B+TREE - DELETE EXAMPLE (1)

Delete 6

1 3 5119 12|14

Need to update parent node!
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B+TREE - DELETE EXAMPLE (1)

Delete 6

1 3 5119 12|14

Need to update parent node!

$2CMU-DB
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B+TREE - DELETE EXAMPLE (2)

Delete 15 13
5((9 17/[21
1(|3 5((7 9([11 13{[15 17([19]|20 21{[23

Note: New Example/ Tree.
$2CMU-DB
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B+TREE - DELETE EXAMPLE (2)

Delete 15 13
5((9 17/[21
1(|3 5((7 9([11 13 17([19]|20 21{[23

Note: New Example/ Tree.
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B+TREE - DELETE EXAMPLE (2)

Delete 15 13
5((9 17/[21
TN
1(|3 5((7 9([11 13 17([19]|20 21{[23

Borrow from a “rich”sibling node.

Note: New Example/ Tree.
$2CMU-DB
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B+TREE - DELETE EXAMPLE (2)

Delete 15 13
5((9 17| (21

A
|
|
|
I

1(|3 5((7 9([11 13|[17 19|[20 21{[23

Need to update parent node!
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B+TREE - DELETE EXAMPLE (2)

Delete 15 13
5(|9 19|21

A
|
|
|
I

1(|3 5((7 9([11 13|[17 19|[20 21{[23

Need to update parent node!
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B+TREE - DELETE EXAMPLE (3)

13
Delete 19
|E 19|[21
1|3 5|7 9 [[11 13([17 D20 21([23
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B+TREE - DELETE EXAMPLE (3)

13

Delete 19

N

51(9 19](21

1113 5117 9|11 13|17 MZ@ I 21(|23

Under-filled!
No “rich’ sibling nodes to borrow.
Merge with a sibling
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B+TREE - DELETE EXAMPLE (3)

13
Delete 19
51|19 19
1113 5(17 9111 13([17 MZ@ 21|(23
Under-filled!
No “rich’ sibling nodes to borrow.
Merge with a sibling
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B+TREE - DELETE EXAMPLE (3)

13
Delete 19
} This node is
5|9 [ 19 under-filled!
\ Pull-down.
113 5117 91111 131117 20(121((23
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B+TREE - DELETE EXAMPLE (3)

13
Delete 19
This node is
5|9 | 19 under-filled!
\ Pull-down.
1113 5117 9([11 13|17 20((21]]23
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B+TREE - DELETE EXAMPLE (3)

Delete 19

This node is

=g » . ‘ [Trs | under-fillea:
Pull-down.
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B+TREE - DELETE EXAMPLE (3)

Delete 19
The tree has shrunk in height.
51(9[13(|19
<5 6 4 [13,19) >19
113 5|7 9|11 13](17 20(121||23
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COMPOSITE INDEX

A composite index is when the key is comprised

of two or more attributes.
— Example: Index on <a, b, c>

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

$2CMU-DB

15-445/645 (Fall 2024)

DBMS can use B+Tree index if the query provides a

“prefix’ of composite key.

— Supported: (a=1 AND b=2 AND c=3)
— Supported: (a=1 AND b=2)

— Rarely Supported: (b=2), (c=3)
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COMPOSITE INDEX

A composite index is when the key is comprised

of two or more attributes.
— Example: Index on <a, b, c>

(-Sort Order

CREATE INDEX my_idx ON xxx (a, |b DESC,{c NULLS FIRST);

$2CMU-DB

15-445/645 (Fall 2024)

KNull Handling

DBMS can use B+Tree index if the query provides a

“prefix’ of composite key.

— Supported: (a=1 AND b=2 AND c=3)
— Supported: (a=1 AND b=2)

— Rarely Supported: (b=2), (c=3)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Find Key=(1,2)

IA IA

SELECTION CONDITIONS

3,3

[

1,3
%
-l
1,1|1,2 1,3|]2,1

2,2

2,3

4,1

$2CMU-DB
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SELECTION CONDITIONS

Find Key=(1,2)

—— |

1,1

IA IA

-
N
N
w

’.N
Y

'N
N

'N
w

3,3(|3,4]| 4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

1<1
1,3|(2,2|]3,3
1,1|[1,2 1,3[]2,1 2,2|[2,3 3,3|(3,4| 4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

1<1
1,3([2,2|13,3
1,1|[1,2 1,3[[2,1 2,2|12,3 3,3||3,4][4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

1 <1
1,3(2,2|(3,3
1,1|[1,2 1,3(|2,1 2,2|12,3 3,3|(3,4| 4,1

K| 0.0

$2CMU-DB
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

Find K 1 WAERRIT
1N ey=(*
y=(*,1) 1,3(]2,2/(3,3
1,11,2 1,3]]2,1 2,2|(2,3 3,3|(3,4]|4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)
Find Key=(*,1)

_—

%,1 < %,3

3,3

~ [

2,1

2,2

2,3

4,1

1,1|[1,2
(1,1

$2CMU-DB

15-445/645 (Fall 2024)
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$2CMU-DB
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B+TREE - DUPLICATE KEYS

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.
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B+TREE - APPEND RECORD ID

Insert 6
5[] 9
‘‘‘‘ {14]3 —A|e|[7]]8 9 (|13
<Key,RecordId>
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B+TREE - APPEND RECORD ID

Insert <6, (Page,Slot)>

5|9
111]3 —Ile6|| 7|8 9|13

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»*
Ry

<Key,RecordId>
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B+TREE - APPEND RECORD ID

Insert <6, (Page,Slot)>

5|9
s )
111]3 — || 6 71| 8 9 (|13

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»*
Ry

<Key,RecordId>
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B+TREE - APPEND RECORD ID

Insert <6, (Page,Slot)>

5
s )
{11]3 g |

9
AN
7|8 _

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»*
Ry

<Key,RecordId>
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B+TREE - OVERFLOW LEAF NODES

Insert 6
51| 9
/<5/<7/ >9
1|3 1|6 7]|8 9 (13

$2CMU-DB
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B+TREE - OVERFLOW LEAF NODES

Insert 6

Insert 7 5 (| 9
/<5/<7/ >9
1|3 1|6 7]|8 9 (13
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B+TREE - OVERFLOW LEAF NODES

Insert 6
Insert 7 5 (| 9
Insert 6 ,/’ig___,//kzj >9

$2CMU-DB
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$2CMU-DB
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CLUSTERED INDEXES

The table is stored in the sort order specified by the
primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
— [f a table does not contain a primary key, the DBMS will
automatically make a hidden primary key.

Other DBMSs cannot use them at all.
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CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than
sorting data for each query.

$2CMU-DB

15-445/645 (Fall 2024)

101

102 103

104

Table Pages
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CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than
sorting data for each query.

$2CMU-DB
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101

102 103

104

Table Pages
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INDEX SCAN PAGE SORTING

7\

Retrieving tuples in the order they Scan Direction

appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the 101 102 103 104
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.

$2CMU-DB
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

Scan Direction

A better approach is to find all the 101 102 103 104
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.

$2CMU-DB
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.

$2CMU-DB
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101

102

104

[ Page
[ Page
[ Page

Page
[ Page
[ Page
1 Page

Page
[ Page
[ Page
[ Page
[ Page

102
103
104
104
102
103
102
102
101
103
104
103
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.

$2CMU-DB
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Scan Direction

101 102 103 104
1 Page 102 [ Page 101
] Page 103 Page 101
1 Page 104 1 Page 102

Page 104 Page 102
[ Page 102 Page 102
1 Page 103 Page 102
1 Page 102 [ Page 103

Page 102 Page 103
[ Page 101 Page 103
1 Page 103 [ Page 104
1 Page 104 Page 104
1 Page 103 Page 104
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$2CMU-DB
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B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search
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B+TREE DESIGN

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search

new
e

$2CMU-DB

15-445/645 (Fall 2024)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/citation.cfm?id=2185842
https://www.nowpublishers.com/article/Details/DBS-070

$2CMU-DB

15-445/645 (Fall 2024)

NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MERGE THRESHOLD

Some DBMSs do not always merge nodes when

they are half full.

— Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the amount
of reorganization.

[t may also be better to let smaller nodes exist and
then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).

$2CMU-DB
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VARIABLE-LENGTH KEYS

Approach #1: Pointers

— Store the keys as pointers to the tuple’s attribute.
— Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value list
within the node.
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 115([6]|]|7]]18(9][10

*

$2CMU-DB
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 115([6]|]|7]]18(9][10

*
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INTRA-NODE SEARCH

. o|o|e|o
Approach #1: Linear F 7 A R
— Scan node keys from beginning to end. sllsllell7ls!llallio
— Use SIMD to vectorize comparisons. \ \ ] /

g8|8|8|s

_mm_cmpeq_epi32_mask(a, b)
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INTRA-NODE SEARCH

. 9010]0(0 11000
Approach #1: Linear y N A
— Scan node keys from beginning to end. allsell7 s o ll10
— Use SIMD to vectorize comparisons. \ ‘ /
s|8|s8]|s

_mm_cmpeq_epi32_mask(a, b)
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

$2CMU-DB

15-445/645 (Fall 2024)

Find Key=8

5

6

7

8
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10
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.
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Find Key=8
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6

7
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

$2CMU-DB
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Find Key=8

5

6

7

8

9

10

*



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$2CMU-DB
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Find Key=8
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.

$2CMU-DB
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Offset: (8-4)*7/(10-4)=4
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OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert

Buffered Updates
Many more...

$2CMU-DB
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PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

robbed || robbing|| robot

Instead of storing the entire key each

time, extract common prefix and store ’,
only unique suffix for each key.
— Many variations. Prefix: rob

bed [[bing|| ot

$2CMU-DB
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DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes. K v, [k v, [k v, ]« v,

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key (similar to what
we discussed for hash tables).
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SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".

— We don't need the entire key. abcdefghijk||1mnopq rstuvl]
Store a minimum prefix that is needed } \

to correctly route probes into the

index.
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SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key. abc 1mn|

Store a minimum prefix that is needed & \

to correctly route probes into the
index.
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

$2CMU-DB
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POINTER SWIZZLING

Nodes use page ids to reference other Find Key>3
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

|ERIENI|

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids

address lookups from the page table.

Buffer Pool
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POINTER SWIZZLING

Nodes use page ids to reference other Find Key>3
nodes in the index. The DBMS must

get the memory location from the ~Page #2
page table during traversal. :

[f a page is pinned in the buffer pool,

n

N
.
.
.
.

.

[}

.
.
*e
“x
‘e
*
*

then we can store raw pointers Page #2 » <Page*>

instead of page ids. This avoids

address lookups from the page table.

I-leaderl Heaa’erl Headerl

1 2 (| 3

Buffer Pool<--
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

$2CMU-DB

15-445/645 (Fall 2024)

Page #2

Page #3

Find Key>3

6

9

Page #2 » <Page*>
Page #3 » <Page*>

Buffer Pool«----.........

I-leaderl

Heaa’erl

Headerl

1

2

3



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.
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BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first

sort the keys and then build the index
from the bottom up.
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Sorted Keys: 1, 3,6,7,9,13
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OBSERVATION

Modifying a B+tree is expensive when the DBMS

has to split/merge nodes.

— Worst case is when DBMS reorganizes the entire tree.

— The worker that causes a split/merge is responsible for
doing the work.

What if there was a way to delay updates and then
apply multiple changes together in a batch?
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.

— aka Fractal Trees / Be-trees.
Mod Log » -

20

Updates cascade down to
lower nodes incrementally

when buffers get full. >
Tokutek. @) srinterDS / \
<> Relational AT 4@t romoDB 6 |10
ST So=s
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value

entries in log buffers at inner nodes.
— aka Fractal Trees / Be-trees.

Insert 7

20

Updates cascade down to
lower nodes incrementally

when buffers get full. - [[EE - EE
Tokutek. @) srinterDS / \ / \
© ) oy — — —
<> Relational Al Z&hromoDE 6 |10 | 20 | 38
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying

updates, store changes to key/value
entries in log buffers at inner nodes.

—> aka Fractal Trees / Be-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying

updates, store changes to key/value

Find 10

entries in log buffers at inner nodes.

—> aka Fractal Trees / Be-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value

entries in log buffers at inner nodes.
— aka Fractal Trees / Be-trees.

Insert 40
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value

entries in log buffers at inner nodes.
— aka Fractal Trees / Be-trees.

Insert 40

20

Insert 40

Updates cascade down to
lower nodes incrementally

when buffers get full. 10 - [EE
Tokutek. @) srinterDS / \ / \
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CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.
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NEXT CLASS

Bloom Filters

Tries / Radix Trees / Patricia Trees
Skip Lists

Inverted Indexes

Vector Indexes

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Tree & Filters: B+Trees
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: INDEXES VS. FILTERS
	Slide 6: TODAY'S AGENDA

	B-Tree
	Slide 7: B-TREE FAMILY
	Slide 8: B-TREE FAMILY
	Slide 9: B-TREE FAMILY
	Slide 10: B-TREE FAMILY
	Slide 11: B-TREE FAMILY
	Slide 12: B-TREE FAMILY
	Slide 13: B+TREE
	Slide 14: B+TREE EXAMPLE
	Slide 15: B+TREE EXAMPLE
	Slide 16: B+TREE EXAMPLE
	Slide 17: NODES
	Slide 18: B+TREE LEAF NODES
	Slide 19: B+TREE LEAF NODES
	Slide 20: B+TREE LEAF NODES
	Slide 21: B+TREE LEAF NODES
	Slide 22: B+TREE LEAF NODES
	Slide 23: LEAF NODE VALUES
	Slide 24: B-TREE VS. B+TREE

	B+Tree Insert
	Slide 25: B+TREE – INSERT
	Slide 26: B+TREE – INSERT EXAMPLE (1)
	Slide 27: B+TREE – INSERT EXAMPLE (1)
	Slide 28: B+TREE – INSERT EXAMPLE (1)
	Slide 29: B+TREE – INSERT EXAMPLE (1)
	Slide 30: B+TREE – INSERT EXAMPLE (1)
	Slide 31: B+TREE – INSERT EXAMPLE (1)
	Slide 32: B+TREE – INSERT EXAMPLE (1)
	Slide 33: B+TREE – INSERT EXAMPLE (1)
	Slide 34: B+TREE – INSERT EXAMPLE (1)
	Slide 35: B+TREE – INSERT EXAMPLE (1)
	Slide 36: B+TREE – INSERT EXAMPLE (1)
	Slide 37: B+TREE – INSERT EXAMPLE (2)
	Slide 38: B+TREE – INSERT EXAMPLE (2)
	Slide 39: B+TREE – INSERT EXAMPLE (3)
	Slide 40: B+TREE – INSERT EXAMPLE (3)
	Slide 41: B+TREE – INSERT EXAMPLE (3)
	Slide 42: B+TREE – INSERT EXAMPLE (3)
	Slide 43: B+TREE – INSERT EXAMPLE (3)
	Slide 44: B+TREE – INSERT EXAMPLE (3)
	Slide 45: B+TREE – INSERT EXAMPLE (3)
	Slide 46: B+TREE – INSERT EXAMPLE (3)
	Slide 47: B+TREE – INSERT EXAMPLE (3)

	B+Tree Delete
	Slide 48: B+TREE – DELETE
	Slide 49: B+TREE – DELETE EXAMPLE (1)
	Slide 50: B+TREE – DELETE EXAMPLE (1)
	Slide 51: B+TREE – DELETE EXAMPLE (1)
	Slide 52: B+TREE – DELETE EXAMPLE (1)
	Slide 53: B+TREE – DELETE EXAMPLE (1)
	Slide 54: B+TREE – DELETE EXAMPLE (1)
	Slide 55: B+TREE – DELETE EXAMPLE (2)
	Slide 56: B+TREE – DELETE EXAMPLE (2)
	Slide 57: B+TREE – DELETE EXAMPLE (2)
	Slide 58: B+TREE – DELETE EXAMPLE (2)
	Slide 59: B+TREE – DELETE EXAMPLE (2)
	Slide 60: B+TREE – DELETE EXAMPLE (3)
	Slide 61: B+TREE – DELETE EXAMPLE (3)
	Slide 62: B+TREE – DELETE EXAMPLE (3)
	Slide 63: B+TREE – DELETE EXAMPLE (3)
	Slide 64: B+TREE – DELETE EXAMPLE (3)
	Slide 65: B+TREE – DELETE EXAMPLE (3)
	Slide 66: B+TREE – DELETE EXAMPLE (3)

	B+Tree Additional Info
	Slide 67: COMPOSITE INDEX
	Slide 68: COMPOSITE INDEX
	Slide 69: SELECTION CONDITIONS
	Slide 70: SELECTION CONDITIONS
	Slide 71: SELECTION CONDITIONS
	Slide 72: SELECTION CONDITIONS
	Slide 73: SELECTION CONDITIONS
	Slide 74: SELECTION CONDITIONS
	Slide 75: SELECTION CONDITIONS
	Slide 76: B+TREE – DUPLICATE KEYS
	Slide 77: B+TREE – APPEND RECORD ID
	Slide 78: B+TREE – APPEND RECORD ID
	Slide 79: B+TREE – APPEND RECORD ID
	Slide 80: B+TREE – APPEND RECORD ID
	Slide 81: B+TREE – OVERFLOW LEAF NODES
	Slide 82: B+TREE – OVERFLOW LEAF NODES
	Slide 83: B+TREE – OVERFLOW LEAF NODES

	Use in a DBMS
	Slide 84: CLUSTERED INDEXES
	Slide 85: CLUSTERED B+TREE
	Slide 86: CLUSTERED B+TREE
	Slide 87: INDEX SCAN PAGE SORTING
	Slide 88: INDEX SCAN PAGE SORTING
	Slide 89: INDEX SCAN PAGE SORTING
	Slide 90: INDEX SCAN PAGE SORTING

	Design Choices
	Slide 91: B+TREE DESIGN CHOICES
	Slide 92: B+TREE DESIGN CHOICES
	Slide 93: NODE SIZE
	Slide 94: MERGE THRESHOLD
	Slide 95: VARIABLE-LENGTH KEYS
	Slide 96: INTRA-NODE SEARCH
	Slide 97: INTRA-NODE SEARCH
	Slide 98: INTRA-NODE SEARCH
	Slide 99: INTRA-NODE SEARCH
	Slide 100: INTRA-NODE SEARCH
	Slide 101: INTRA-NODE SEARCH
	Slide 102: INTRA-NODE SEARCH
	Slide 103: INTRA-NODE SEARCH
	Slide 104: INTRA-NODE SEARCH

	Optimizations
	Slide 105: OPTIMIZATIONS
	Slide 106: PREFIX COMPRESSION
	Slide 107: DEDUPLICATION
	Slide 108: DEDUPLICATION
	Slide 109: SUFFIX TRUNCATION
	Slide 110: SUFFIX TRUNCATION
	Slide 111: POINTER SWIZZLING
	Slide 112: POINTER SWIZZLING
	Slide 113: POINTER SWIZZLING
	Slide 114: POINTER SWIZZLING
	Slide 115: POINTER SWIZZLING
	Slide 116: POINTER SWIZZLING
	Slide 117: BULK INSERT

	B-Epsilon Trees
	Slide 118: OBSERVATION
	Slide 119: WRITE-OPTIMIZED B+TREE
	Slide 120: WRITE-OPTIMIZED B+TREE
	Slide 121: WRITE-OPTIMIZED B+TREE
	Slide 122: WRITE-OPTIMIZED B+TREE
	Slide 123: WRITE-OPTIMIZED B+TREE
	Slide 124: WRITE-OPTIMIZED B+TREE

	Conclusion
	Slide 125: CONCLUSION
	Slide 126: NEXT CLASS


