
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Bloom Filters, Tries,
Skip Lists, Inverted
Indexes, Vector Indexes

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

@160

https://ohq.eberly.cmu.edu

Project #1 is due Sunday Sept 29th @ 11:59pm
→ Recitation + Profiling Tutorial: @160
→ Extra Office Hours on Saturday Sept 28th @ 3:00-5:00pm
→ Location: GHC 5207
→ https://ohq.eberly.cmu.edu

Homework #3 is due Sunday Sept 6th @ 11:59pm

Mid-term Exam on Wednesday Oct 9th @ 2:00pm
→ In-class in this room.
→ More info next week.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://piazza.com/class/lzk4t7ue1bu5ph/post/160
https://ohq.eberly.cmu.edu/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INDEXES VS. FILTERS

An index data structure of a subset of a table's
attributes that are organized and/or sorted to the
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a key
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Bloom Filters

Skip Lists

Tries / Radix Trees

Inverted Indexes

Vector Indexes

DB Flash Talk: TiDB

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.pingcap.com/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BLOOM FILTERS

Probabilistic data structure (bitmap) that answers
set membership queries.
→ False negatives will never occur.
→ False positives can sometimes occur.
→ See Bloom Filter Calculator.

Insert(x):
→ Use k hash functions to set bits in the filter to 1.

Lookup(x):
→ Check whether the bits are 1 for each hash function.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://hur.st/bloomfilter/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BLOOM FILTERS

Insert 'RZA'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4

hash1('RZA') = 2222 % 8 = 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BLOOM FILTERS

Insert 'RZA'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4

hash1('RZA') = 2222 % 8 = 6

1 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BLOOM FILTERS

Insert 'GZA'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('GZA') = 7777 % 8 = 1

hash1('GZA') = 5555 % 8 = 3

1 11 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BLOOM FILTERS

Lookup 'RZA'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4

hash1('RZA') = 2222 % 8 = 6

1 11 1

→ TRUE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BLOOM FILTERS

Lookup 'Raekwon'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash1('Raekwon') = 3333 % 8 = 5

3 hash2('Raekwon') = 8899 % 8 =

1 11 1

→ FALSE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BLOOM FILTERS

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash1('ODB') = 6699 % 8 = 3

6 hash2('ODB') = 9966 % 8 =

1 11 1

→ TRUE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OTHER FILTERS

Counting Bloom Filter
→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of

occurrences of a key in a set.

Cuckoo Filter
→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact

matches and range filtering.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OTHER FILTERS

Counting Bloom Filter
→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of

occurrences of a key in a set.

Cuckoo Filter
→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact

matches and range filtering.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF
https://redis.io/docs/latest/develop/data-types/probabilistic/cuckoo-filter/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.

All operations have to linear search.
→ Average Cost: O(n)

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.

All operations have to linear search.
→ Average Cost: O(n)

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SKIP LISTS

Multiple levels of linked lists with
extra pointers to skip over entries.
→ 1st level is a sorted list of all keys.
→ 2nd level links every other key
→ 3rd level links every fourth key
→ Each level has ½ the keys of one below it

Maintains keys in sorted order
without requiring global rebalancing.
→ Approximate O(log n) search times.

Mostly for in-memory data structures.
→ Example: LSM MemTable

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://dl.acm.org/citation.cfm?id=78977

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5
V5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5
V5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5
V5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5
V5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5

K5

K5

K5
V5

Flip a coin to decide how many
levels to add the new key into.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH

11

∞

∞

∞

P=N

P=N/2

P=N/4

K3<K5

Find K3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH

11

∞

∞

∞

P=N

P=N/2

P=N/4

K3<K5

K3>K2

Find K3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH

11

∞

∞

∞

P=N

P=N/2

P=N/4

K3<K5

K3>K2 K3<K4

Find K3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH

11

∞

∞

∞

P=N

P=N/2

P=N/4

K3<K5

K3>K2 K3<K4

Find K3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SKIP LISTS: DELETE

First logically remove a key from the index by
setting a flag to tell threads to ignore.

Then physically remove the key once we know
that no other thread is holding the reference.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE

13

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Delete K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE

13

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE

13

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE

13

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE

13

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

Levels

SKIP LISTS: DELETE

13

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Delete K5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SKIP LISTS

Advantages:
→ Uses less memory than a typical B+Tree if you do not

include reverse pointers.
→ Insertions and deletions do not require rebalancing.

Disadvantages:
→ Not disk/cache friendly because they do not optimize

locality of references.
→ Reverse search is non-trivial.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

The inner node keys in a B+Tree cannot tell you
whether a key exists in the index. You must always
traverse to the leaf node.

This means that you could have (at least) one buffer
pool page miss per level in the tree just to find out a
key does not exist.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be

reconstructed from paths.

16

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

The span of a trie level is the number of bits that
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to the

next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the
physical height of the tree.
→ n-way Trie = Fan-Out of n

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤
¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤
¤ ¤

Ø ¤
Ø ¤

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRIE KEY SPAN

Keys: K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤
¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤
¤ ¤

Ø ¤
Ø ¤

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE

Vertically compressed trie that
compacts nodes with a single child.
→ Also known as Patricia Tree.

Can produce false positives, so the
DBMS always checks the original
tuple to see whether a key matches.

19

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤
Ø ¤
¤ ¤

Repeat 10x

Tuple
Pointer

Node
Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

T

¤

VE

H

A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

T

¤

VE

H

A

Insert HAIR

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

T

¤

VE

H

A

¤

IR

Insert HAIR

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

T

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

RADIX TREE: MODIFICATIONS

20

¤

ELLO

H

A

Insert HAIR

Delete HAT
AIR

¤
Delete HAVE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

The indexes that we've discussed are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and

September 2024.

They are not good at keyword
searches:
→ Example: Find all Wikipedia articles that

contain the word "Pavlo"

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

The indexes that we've discussed are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and

September 2024.

They are not good at keyword
searches:
→ Example: Find all Wikipedia articles that

contain the word "Pavlo"

21

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

CREATE INDEX idx_rev_cntnt
 ON revisions (content);

SELECT pageID FROM revisions
 WHERE content LIKE '%Pavlo%';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX

inverted index

concordance

An inverted index stores a mapping
of terms to records that contain those
terms in the target attribute.
→ Sometimes called a full-text search index.
→ Originally called a concordance (1200s).

Many major DBMSs support these
natively. But there are also specialized
DBMSs and libraries.

22

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

Wu-Tang|2

Carnegie|3

Database|2

Dictionary

⋮

11 44

22 4433

33 44

Posting Lists

Term /
Frequency

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX: LUCENE

Finite State Transducer

compression methods

Uses a Finite State Transducer for
determining offset of terms in
dictionary.

Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

23

Dictionary

BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX: LUCENE

Finite State Transducer

compression methods

Uses a Finite State Transducer for
determining offset of terms in
dictionary.

Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

23

Dictionary

BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0

Find PAV

Offset= 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX: LUCENE

Finite State Transducer

compression methods

Uses a Finite State Transducer for
determining offset of terms in
dictionary.

Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

23

Dictionary

BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0

Find PAV

Offset= 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX: LUCENE

Finite State Transducer

compression methods

Uses a Finite State Transducer for
determining offset of terms in
dictionary.

Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

23

Dictionary

BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0

Find PAV

Offset= 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX: LUCENE

Finite State Transducer

compression methods

Uses a Finite State Transducer for
determining offset of terms in
dictionary.

Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

23

Dictionary

BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0

Find PAV

Offset= 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX: POSTGRESQL

Generalized Inverted Index

Generalized Inverted Index

PostgreSQL's Generalized Inverted
Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.

Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

24

Posting Tree

Posting List

Dictionary

mod log

Pending List

Posting List

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INVERTED INDEX: POSTGRESQL

Generalized Inverted Index

Generalized Inverted Index

PostgreSQL's Generalized Inverted
Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.

Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

24

Posting Tree

Posting List

Dictionary

mod log

Pending List

Posting List

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

Inverted indexes search data based on its contents.
→ There is a little magic to tweak terms based on linguistic

models.
→ Example: Normalization ("Wu-Tang" matches "Wu Tang").

Instead of searching for records containing exact
keywords (e.g., "Wu-Tang"), an application may
want search for records that are related to topics
(e.g., "hip-hop groups with songs about slinging").

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES

Specialized data structures to perform nearest-
neighbor searches on embeddings.
→ An embedding is an array of floating point numbers.
→ May also need to filter data before / after vector searches.

The correctness of a query depends on whether the
result "feels right".

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES

Specialized data structures to perform nearest-
neighbor searches on embeddings.
→ An embedding is an array of floating point numbers.
→ May also need to filter data before / after vector searches.

The correctness of a query depends on whether the
result "feels right".

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups
using a clustering algorithm.

To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups
using a clustering algorithm.

To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups
using a clustering algorithm.

To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups
using a clustering algorithm.

To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: NAVIGABLE SMALL WORLDS

HNSW

Faiss hnswlib

Build a graph where each node
represents a vector and it has edges to
its n nearest neighbors.
→ Can use multiple levels of graphs (HNSW)

To find a match for a given vector,
enter the graph and then greedily
choose the next edge that moves
closer to that vector.

Example: Faiss, hnswlib

28

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: NAVIGABLE SMALL WORLDS

HNSW

Faiss hnswlib

Build a graph where each node
represents a vector and it has edges to
its n nearest neighbors.
→ Can use multiple levels of graphs (HNSW)

To find a match for a given vector,
enter the graph and then greedily
choose the next edge that moves
closer to that vector.

Example: Faiss, hnswlib

28

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

We will see filters again this semester.

B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
→ This is covered in CMU 15-826.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://boston.lti.cs.cmu.edu/classes/11-642/
https://db.cs.cmu.edu/courses/#15-826

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

How to make indexes thread-safe!

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Bloom Filters, Tries, Skip Lists, Inverted Indexes, Vector Indexes
	Slide 2: ADMINISTRIVIA
	Slide 3: INDEXES VS. FILTERS
	Slide 4: TODAY'S AGENDA

	Bloom Filters
	Slide 5: BLOOM FILTERS
	Slide 6: BLOOM FILTERS
	Slide 7: BLOOM FILTERS
	Slide 8: BLOOM FILTERS
	Slide 9: BLOOM FILTERS
	Slide 10: BLOOM FILTERS
	Slide 11: BLOOM FILTERS
	Slide 12: OTHER FILTERS
	Slide 13: OTHER FILTERS

	Skip Lists
	Slide 14: OBSERVATION
	Slide 15: OBSERVATION
	Slide 16: SKIP LISTS
	Slide 17: SKIP LISTS: INSERT
	Slide 18: SKIP LISTS: INSERT
	Slide 19: SKIP LISTS: INSERT
	Slide 20: SKIP LISTS: INSERT
	Slide 21: SKIP LISTS: INSERT
	Slide 22: SKIP LISTS: INSERT
	Slide 23: SKIP LISTS: INSERT
	Slide 24: SKIP LISTS: INSERT
	Slide 25: SKIP LISTS: INSERT
	Slide 26: SKIP LISTS: INSERT
	Slide 27: SKIP LISTS: INSERT
	Slide 28: SKIP LISTS: INSERT
	Slide 29: SKIP LISTS: INSERT
	Slide 30: SKIP LISTS: INSERT
	Slide 31: SKIP LISTS: SEARCH
	Slide 32: SKIP LISTS: SEARCH
	Slide 33: SKIP LISTS: SEARCH
	Slide 34: SKIP LISTS: SEARCH
	Slide 35: SKIP LISTS: DELETE
	Slide 36: SKIP LISTS: DELETE
	Slide 37: SKIP LISTS: DELETE
	Slide 38: SKIP LISTS: DELETE
	Slide 39: SKIP LISTS: DELETE
	Slide 40: SKIP LISTS: DELETE
	Slide 41: SKIP LISTS: DELETE
	Slide 42: SKIP LISTS

	Radix Trees
	Slide 43: OBSERVATION
	Slide 44: TRIE INDEX
	Slide 45: TRIE KEY SPAN
	Slide 46: TRIE KEY SPAN
	Slide 47: TRIE KEY SPAN
	Slide 48: TRIE KEY SPAN
	Slide 49: TRIE KEY SPAN
	Slide 50: TRIE KEY SPAN
	Slide 51: TRIE KEY SPAN
	Slide 52: TRIE KEY SPAN
	Slide 53: TRIE KEY SPAN
	Slide 54: TRIE KEY SPAN
	Slide 55: RADIX TREE
	Slide 56: RADIX TREE: MODIFICATIONS
	Slide 57: RADIX TREE: MODIFICATIONS
	Slide 58: RADIX TREE: MODIFICATIONS
	Slide 59: RADIX TREE: MODIFICATIONS
	Slide 60: RADIX TREE: MODIFICATIONS
	Slide 61: RADIX TREE: MODIFICATIONS
	Slide 62: RADIX TREE: MODIFICATIONS
	Slide 63: RADIX TREE: MODIFICATIONS

	Inverted Index
	Slide 64: OBSERVATION
	Slide 65: OBSERVATION
	Slide 66: INVERTED INDEX
	Slide 67: INVERTED INDEX: LUCENE
	Slide 68: INVERTED INDEX: LUCENE
	Slide 69: INVERTED INDEX: LUCENE
	Slide 70: INVERTED INDEX: LUCENE
	Slide 71: INVERTED INDEX: LUCENE
	Slide 72: INVERTED INDEX: POSTGRESQL
	Slide 73: INVERTED INDEX: POSTGRESQL

	Vector Indexes
	Slide 74: OBSERVATION
	Slide 75: VECTOR INDEXES
	Slide 76: VECTOR INDEXES
	Slide 77: VECTOR INDEXES: INVERTED FILE
	Slide 78: VECTOR INDEXES: INVERTED FILE
	Slide 79: VECTOR INDEXES: INVERTED FILE
	Slide 80: VECTOR INDEXES: INVERTED FILE
	Slide 81: VECTOR INDEXES: NAVIGABLE SMALL WORLDS
	Slide 82: VECTOR INDEXES: NAVIGABLE SMALL WORLDS

	Conclusion
	Slide 83: CONCLUSION
	Slide 84: NEXT CLASS

