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ADMINISTRIVIA

@160

https://ohq.eberly.cmu.edu

Project #1 is due Sunday Sept 29th @ 11:59pm
→ Recitation + Profiling Tutorial: @160
→ Extra Office Hours on Saturday Sept 28th @ 3:00-5:00pm
→ Location: GHC 5207
→ https://ohq.eberly.cmu.edu 

Homework #3 is due Sunday Sept 6th @ 11:59pm

Mid-term Exam on Wednesday Oct 9th @ 2:00pm
→ In-class in this room.
→ More info next week.
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INDEXES VS. FILTERS

An index data structure of a subset of a table's 
attributes that are organized and/or sorted to the 
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set 
membership queries; it tells you whether a key 
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter
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TODAY'S AGENDA

Bloom Filters

Skip Lists

Tries / Radix Trees

Inverted Indexes

Vector Indexes

DB Flash Talk: TiDB
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BLOOM FILTERS

Probabilistic data structure (bitmap) that answers 
set membership queries.
→ False negatives will never occur.
→ False positives can sometimes occur.
→ See Bloom Filter Calculator.

Insert(x):
→ Use k hash functions to set bits in the filter to 1.

Lookup(x):
→ Check whether the bits are 1 for each hash function.
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BLOOM FILTERS

Insert 'RZA'

             

              

                 

             

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4 

hash1('RZA') = 2222 % 8 = 6 
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BLOOM FILTERS

Insert 'RZA'

             

              

                 

             

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4 

hash1('RZA') = 2222 % 8 = 6 

1 1
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BLOOM FILTERS

Insert 'GZA'

              

                 

             

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('GZA') = 7777 % 8 = 1 

hash1('GZA') = 5555 % 8 = 3 

1 11 1
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BLOOM FILTERS

Lookup 'RZA' 

                 

             

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4 

hash1('RZA') = 2222 % 8 = 6 

1 11 1

→ TRUE

https://db.cs.cmu.edu/
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BLOOM FILTERS

Lookup 'Raekwon'

             

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash1('Raekwon') = 3333 % 8 = 5 

3 hash2('Raekwon') = 8899 % 8 = 

1 11 1

→ FALSE

https://db.cs.cmu.edu/
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BLOOM FILTERS

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash1('ODB') = 6699 % 8 = 3 

6 hash2('ODB') = 9966 % 8 = 

1 11 1

→ TRUE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OTHER FILTERS

Counting Bloom Filter
→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of 

occurrences of a key in a set.

Cuckoo Filter
→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead 

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact 

matches and range filtering.
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OTHER FILTERS

Counting Bloom Filter
→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of 

occurrences of a key in a set.

Cuckoo Filter
→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead 

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact 

matches and range filtering.
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K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.

All operations have to linear search.
→ Average Cost: O(n)
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All operations have to linear search.
→ Average Cost: O(n)

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SKIP LISTS

Multiple levels of linked lists with 
extra pointers to skip over entries.
→ 1st level is a sorted list of all keys.
→ 2nd level links every other key
→ 3rd level links every fourth key
→ Each level has ½ the keys of one below it

Maintains keys in sorted order 
without requiring global rebalancing.
→ Approximate O(log n) search times.

Mostly for in-memory data structures.
→ Example: LSM MemTable
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EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT

10

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K5
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EndLevels
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SKIP LISTS: INSERT

10

∞

∞
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P=N

P=N/2

P=N/4

Insert K5

Flip a coin to decide how many 
levels to add the new key into. 
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End
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V1
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SKIP LISTS: SEARCH
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P=N/2

P=N/4

K3<K5

Find K3
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SKIP LISTS: DELETE

First logically remove a key from the index by 
setting a flag to tell threads to ignore.

Then physically remove the key once we know 
that no other thread is holding the reference.
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SKIP LISTS

Advantages:
→ Uses less memory than a typical B+Tree if you do not 

include reverse pointers.
→ Insertions and deletions do not require rebalancing.

Disadvantages:
→ Not disk/cache friendly because they do not optimize 

locality of references.
→ Reverse search is non-trivial.

14
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OBSERVATION

The inner node keys in a B+Tree cannot tell you 
whether a key exists in the index. You must always 
traverse to the leaf node.

This means that you could have (at least) one buffer 
pool page miss per level in the tree just to find out a 
key does not exist.

15
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TRIE INDEX

Use a digital representation of keys to 
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or 

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity 
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be 

reconstructed from paths.

16

Keys:  HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT
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TRIE KEY SPAN

The span of a trie level is the number of bits that 
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to the 

next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the 
physical height of the tree.
→ n-way Trie = Fan-Out of n

17
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TRIE KEY SPAN

Keys:  K10,K25,K31

18

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple 
Pointer

Node 
Pointer
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RADIX TREE

Vertically compressed trie that 
compacts nodes with a single child.
→ Also known as Patricia Tree.

Can produce false positives, so the 
DBMS always checks the original 
tuple to see whether a key matches.

19
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RADIX TREE: MODIFICATIONS
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RADIX TREE: MODIFICATIONS
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OBSERVATION

The indexes that we've discussed are 
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and 

September 2024.

They are not good at keyword 
searches:
→ Example: Find all Wikipedia articles that 

contain the word "Pavlo"

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

The indexes that we've discussed are 
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and 

September 2024.

They are not good at keyword 
searches:
→ Example: Find all Wikipedia articles that 

contain the word "Pavlo"

21

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island, 
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh, 
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data 
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer 
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

CREATE INDEX idx_rev_cntnt
    ON revisions (content);

SELECT pageID FROM revisions
 WHERE content LIKE '%Pavlo%';

https://db.cs.cmu.edu/
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INVERTED INDEX

inverted index

concordance

An inverted index stores a mapping 
of terms to records that contain those 
terms in the target attribute.
→ Sometimes called a full-text search index.
→ Originally called a concordance (1200s).

Many major DBMSs support these 
natively. But there are also specialized 
DBMSs and libraries.

22

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island, 
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh, 
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data 
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer 
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

Wu-Tang|2

Carnegie|3

Database|2

Dictionary

⋮

11 44

22 4433

33 44

Posting Lists

Term /
Frequency
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INVERTED INDEX: LUCENE

Finite State Transducer

compression methods

Uses a Finite State Transducer for 
determining offset of terms in 
dictionary.

Incrementally create dictionary 
segments and then merge them in the 
background.
→ Uses compression methods we previously 

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations 

for terms and occurrences.

23

Dictionary

BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0
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INVERTED INDEX: POSTGRESQL

Generalized Inverted Index

Generalized Inverted Index

PostgreSQL's Generalized Inverted 
Index (GIN) uses a B+Tree for the 
term dictionary that map to a posting 
list data structure.

Posting list contents varies depending 
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to 
avoid incremental updates.

24
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OBSERVATION

Inverted indexes search data based on its contents.
→ There is a little magic to tweak terms based on linguistic 

models.
→ Example: Normalization ("Wu-Tang" matches "Wu Tang").

Instead of searching for records containing exact 
keywords (e.g., "Wu-Tang"), an application may 
want search for records that are related to topics 
(e.g., "hip-hop groups with songs about slinging").

25
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VECTOR INDEXES

Specialized data structures to perform nearest-
neighbor searches on embeddings.
→ An embedding is an array of floating point numbers.
→ May also need to filter data before / after vector searches.

The correctness of a query depends on whether the 
result "feels right".

26
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VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups 
using a clustering algorithm. 

To find a match, use same clustering 
algorithm to map into a group, then 
scan that group's vectors.
→ Also check nearby groups to improve 

accuracy.

Preprocess / quantize vectors to 
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups 
using a clustering algorithm. 

To find a match, use same clustering 
algorithm to map into a group, then 
scan that group's vectors.
→ Also check nearby groups to improve 

accuracy.

Preprocess / quantize vectors to 
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups 
using a clustering algorithm. 

To find a match, use same clustering 
algorithm to map into a group, then 
scan that group's vectors.
→ Also check nearby groups to improve 

accuracy.

Preprocess / quantize vectors to 
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: INVERTED FILE

IVFFlat

Partition vectors into smaller groups 
using a clustering algorithm. 

To find a match, use same clustering 
algorithm to map into a group, then 
scan that group's vectors.
→ Also check nearby groups to improve 

accuracy.

Preprocess / quantize vectors to 
reduce dimensionality.

Example: IVFFlat

27

Chi Zhang

Source: Chi Zhang

 
 

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTOR INDEXES: NAVIGABLE SMALL WORLDS 

HNSW

Faiss hnswlib

Build a graph where each node 
represents a vector and it has edges to 
its n nearest neighbors.
→ Can use multiple levels of graphs (HNSW)

To find a match for a given vector, 
enter the graph and then greedily 
choose the next edge that moves 
closer to that vector.

Example: Faiss, hnswlib

28

Chi Zhang

Source: Chi Zhang
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CONCLUSION

We will see filters again this semester.

B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
→ This is covered in CMU 15-826.
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NEXT CLASS

How to make indexes thread-safe!

30
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