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ADMINISTRIVIA

Homework #3 is due Sunday Sept 6™ @ 11:59pm

Project #2 is due Sunday Sept 29" @ 11:59pm

— Recitation next week

Mid-term Exam on Wednesday Oct 9™ @ 2:00pm

— In-class in this room.
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UPCOMING DATABASE TALKS

DataFusion Comet (DB Seminar) ¥\ e on coMe
— Monday Sept 30% @ 4:30pm ET &

— Zoom

Oracle Talk (DB G ) ®
—>rfll“::1e§daya0ct I @ IZI;(C))(;:)};n ET ORAC I—E
— GHC 8115

ParadeDB (DB Seminar)

— Monday Oct 7" @ 4:30pm ET IIIL Pq ra d e D B
— Zoom
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https://db.cs.cmu.edu/events/building-blocks-paradedb-philippe-noel/
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OBSERVATION

We (mostly) assumed all the data structures that we
have discussed so far are single-threaded.

A modern DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

‘ They Don't Do This!

YOLTDB KX

Redles [@-store
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CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?
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TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching

Leaf Node Scans
Project #2 Announcement
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LOCKS VS. LATCHES

Locks (Transactions)

— Protect the database's logical contents from other
transactions.

— Held for transaction's duration.

— Need to be able to rollback changes.

Latches (Workers)

— Protect the critical sections of the DBMS's internal data
structure from other workers (e.g., threads).

— Held for operation duration.

— Do not need to be able to rollback changes.
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Lecture #15 /,

LOCKS VS. LATCHES

Locks Latches
Separate... Transactions Workers (threads, processes)
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe
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LATCH MODES

Read Mode

_, Multiple threads can read the same object e —-—————— o
B e came time. ~ Compatibility Matrix

— A thread can acquire the read latch if Read Write
another thread has it in read mode. Read v, X

Write Mode  Write| X X

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.
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LATCH IMPLEMENTATION GOALS

Small memory footprint.
Fast execution path when no contention.
Decentralized management of latches.

Avoid expensive system calls.

Source: Filip Pizlo
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LATCH I

Room: Moderated Discussions

The whole post see

ms to be just wrong,
measuring.

and is Measuring something completely different than what the author thinks ang claims it is

First off, spinlocks can only be used if You actually know you're not being scheduled while using them. But the blog post author seems fo be
implementing his own spinlocks in user space with no regard for whether the lock user might be scheduled or not. And the code used for the
claimed "lock not held” timing is complete garbage.

Small memory

It basically re

ads the time befor
the time whe

€ releasing the lock, and then jt reads it after acquiring the Jogk again, and claims that the time difference s
N no lock was held. Which is just inane and pointless and completely wrong.
That's pure garbage. What happens is that

Fast execution

(a} since you're Spinning, you're using CPy time

(b) at a random time, the scheduler will schedule yoy oyt
(c) that random ti

Decentralized

, but before You actually released the spinlock.

e CPU, because You had used Up your time slice, The »
ime when you a

current time" you
re actualfy going to release the lock.

mebody wil) Now spin for g long while, since nobody js releasing it - it's still
i "ok, r time slice”, ang

Somebody else comes inand wants that "spinlock". and that s,
held by that other thread entirely that was Just sched,
schedules the origj

Avoid expens

0d schenario, If you have more threads than CPU's (maybe because of other processes unrelated to your
own test joad), maybe the next thread that gets sheeduled isn't the one that js going to relea
timeslice, so the next thread schedyjeg might be another th
funning right now!

se the lock, No, that one already got its
hat lock that js still being hejq

by the thread ¢

hat isn't even
the code in quest

So ion is pure garbage.
that you are measurj
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L A T C H I ' l . ide of the imiti ! wite co easacons.umerofthem,

The whole Post seems to he Justwrong, ang is Measuring something completely different than what the author thinks ang claims it is
Mmeasuring.

First off, spinlocks can only be used if You actually know you're not being scheduled while using them. But the blog post author seems fo be
r rmplementing his own spinlocks in user space with no regard for whether the lock user might be scheduled or not. And the code used for the
S m all IIlem O Y claimed "lock not held” timing is complete garbage.

It basuca”y reads the time before releasing the lock, and then it reads it after acquiring the Jogk again, and claims that the fime difference is
the time when no lock was held. Which is just inane and pointless and completely wrong.,

That's pure garbage. What happens is that

F aSt eXecutlon (a} since you're Spinning, you're using CPy time

(b) at a random time, the scheduler will schedule yoy oyt

. A (c) that random time might ne just atia
Noacantraliza

me" you

ou
= i ser Space! unless y it's still
: t use spinlocks in u re that the e
| repeat: do no 're doing. And be awa _ ,
ou re H I nII' d to your
alftll'lr?"gdkt'rlwzrvyg: iagw what you are doing is basically
likeliho

In

TYOUVETYMUCH can do them like that, and when you do
ensical values, because what yoy are measuring is | have a lot of busywork,

T kept the Process in place".

Source: Filip Pizlo
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LATCH IMPLEMENTATIONS

Test-and-Set Spinlock
Blocking OS Mutex
Reader-Writer Locks

Advanced approaches:

— Adaptive Spinlock (Apple ParkingLot)
— Queue-based Spinlock (MCS Locks)
— Optimistic Lock Coupling (The Germans)
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LATCH I Locking in WebKit

May 6, 2016 by Filip Pizlo @filpizio

Back in August 2015 we replaced all spinlocks and OS-provided Mutexes in WebKit with the new
WTF::Lock (WTF stands for Web Template Framework). we also replaced aj OS-provided condition
variables with WTF - :Condition . These new primitives have some cool properties:

Test-and-Set Spinlo
Blocking OS Mutex
Reader-Writer Loc

tilock only
needs two bits in that byte. The smaj) size encourages using huge numbers of very fine-grained

locks. OS mutexes often require 64 bytes or more. The small size of WTE: ‘Lock means that
there’s rarely an excuse for not having one, or even multiple, fine

~grained locks in any object that
has things that need to be synchronized.

Advanced approac
— Adaptive Spinlock
— Queue-based Spinlg
— Optimistic Lock Ca

4. WTF::Lock doesn't waste Cpy cycles when a lock is held for a long time., WTF: iLock is
adaptive: it changes its strategy for how to wait for the lock to become available based on how long

it has been trying. If the lock doesn’t become available promptly, WTF::Lock will suspend the
calling thread untj the lock becomes available,
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LATCH I

Locking in WebKit

May 6, 2016 by Filip Pizlo @filpizio

o 1 Back in August 2015 we replaced all spinlocks and OS-provided Mutexes in WebKit with the new
Test" and_ S et Spln O WTF::Lock (WTF stands for Web Template Framework). We also replaced all 0S-provideq condition
variables with WTF - :Condition . These new primitives have some cool properties:
BlOCklng OS MuteX tilock only
. needs two bits in that byte. The smaj) size encourages using huge numbers of very fine-grained
Re ader—wrlter LO C locks. OS mutexes often require 64 bytes or more. The small size of WTF::Lock means that

there’s rarely an excuse for not having one, ~grained locks in any object that

or even multiple, fine
has things that need to be synchronized.

2. WTF::Lock is super fast in the case that matters most- nncantan . [:ion. Paraliel
A aAaNNroaac =t ) that a mature
Acvance hread_mutex , WTF::Lock is 64 times smaller and up to 18‘0 fock() when
- ided locks like pthread_ ' _ ::Condition is y,
compared o OS-provide 0S vided condition variables like pthread_cond , WTF [eads are
: ared to OS-pro
times faster. Comp

ebKit is 10% faster on
ller. Using WTF::Lock instead of pthread_mutex means that W
64 times smaller. 1
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loading test.

5% faster on our page

Y, Speedometer, and

JetStream, 5% faster on

e lock will
STTESTSTeoSt common kind of

holding a lock.

4. WTF::Lock doesn't waste CPU cycles when alock
adaptive: it changes its strategy for how to wait for t
it has been trying. If the lock doesn

is held for a long time., WTF: iLock is

he lock to become available based on how long

"t become available promptly, WTF::Lock will suspend the

calling thread untj the lock becomes available,
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LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.

— Example: std: :atomic<T>

std':atomic<bool>

std: :atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

}

$2CMU-DB

15-445/645 (Fall 2024)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

New

M Address  Value

20 __sync_bool_compare_and_swap(&M, 20, 30)
Compare

$=CMU-DB Value
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COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

20

__sync_bool_compare_and_swap(&M, 20, 30)
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COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

30
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__sync_bool_compare_and_swap(&M, 20, 30) V
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LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —pthread_mutex_t — futex

B OS Latch
std: :mutex m; B Userspace Latch

4 ¥

m.lock();
// Do something special. ..
m.unlock();
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LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —pthread_mutex_t — futex

B OS Latch

std: :mutex m; B Userspace Latch
m.lock(); a E
// Do something special. ..

m.unlock();
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LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

o
read

=0
X =0

» pthread_cond_t

wr1te
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LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t
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LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
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Latch
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LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.
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LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch
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=2
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» pthread_cond_t
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LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

g a a Latch
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HASH TABLE LATCHING

Easy to support concurrent access due to the limited

ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).
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HASH TABLE LATCHING

Approach #1: Page/Block Latches

— Each page/block has its own reader-writer latch that
protects its entire contents.

— Threads acquire either a read or write latch before they
access a page/block.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D o
hash(D)
.‘\’ A|value
C|value
D | value
&CMU-DB
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HASH TABLE: PAGE/BLOCK LATCHES

B|value

g T,: Insert E

T;:Find D
hash(D) nr1 hash(E)
- Alvalue /

C|value

D | value
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HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D o g T,: Insert E
hash(D) hash(E)
Alvalue /

»| C|value

D | value
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HASH TABLE: PAGE/BLOCK LATCHES

B|value

It’s safe to release the
latch on Page #1.

g T,: Insert E

hash(D) = hash(E)
Al value /
C|value

» D|value

$2CMU-DB
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HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D g T,: Insert E

hash(D) hash(E)
Al value /
C|value

» D|value
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HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D g T,: Insert E

hash(D) hash(E)
Al value /
C|value

D | value
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HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D
hash(D)

T,: Insert E
hash(E)

A|value

C|value h

D | value
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HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D | value « g
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HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D

D | value « g
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HASH TABLE: PAGE/BLOCK LATCHES 1

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D

D | value h
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HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
@a C|value
D | value
E| value I«
&CMU-DB
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) @a hash(E)
A | value
C|value

D | value
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R ) hash(E)
D BA|value
C|value
D | value
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R ) hash(E)
D BA|value /
C|value
D | value
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R ) hash(E)
"N a Al
C | value@
D | value
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R ) hash(E)
BAIAN
g C | value@
D | value
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HASH TABLE: SLOT LATCHES

Bl value
T;:Find D T,: Insert E
hay rs \safe to releasethe | R hash(E)
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W
Clvalu
D | value
£=CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value

T;:Find D T,: Insert E
hash(D) hash(E)
A|value

g »| C|value

DI%
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HASH TABLE: SLOT LATCHES

B|value

T;:Find D T,: Insert E
hash(D) hash(E)

n A|value
W 0C|value
D I%ﬁ

$2CMU-DB

15-445/645 (Fall 2024 )



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

T oiada
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

ey
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

ZW o

E|valu
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HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

1) '
‘ n

E | valuet

$2CMU-DB

15-445/645 (Fall 2024 )



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.
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B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/

10 35 B

6 12 H{ Cks 44 ||D

I VN /S \
- 110[11{12]13H 20] 22K 23]31H35] 36 H 38| 41§ 44
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N
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—
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B+TREE MULTI-THREADED EXAMPLE

o] [A 4a T,: Delete 44
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B+TREE MULTI-THREADED EXAMPLE

o 1A T,: Delete 44

/
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B+TREE MULTI-THREADED EXAMPLE

20 A T,: Delete 44

/

10 35 B
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B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/

10 35 B

6 12 H{ Cks 44 (|D
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- 11R12(13M20(22123(31135(36M38(41 «g
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B+TREE MULTI-THREADED EXAMPLE 1

ol 1A T,: Delete 44

/ T,: Find 41
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B+TREE MULTI-THREADED EXAMPLE
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B+TREE MULTI-THREADED EXAMPLE

20 A T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H{ Cks 44 D«
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B+TREE MULTI-THREADED EXAMPLE

20 A T,: Delete 44

/ T,: Find 41
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B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41
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B+TREE MULTI-THREADED EXAMPLE

_ A T,: Delete 44

/ T,: Find 41
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LATCH CRABBING/COUPLING

Protocol to allow multiple threads to access/modify

B+Tree at the same time.

— Get latch for parent
— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.
— Not full (on insertion)
— More than half-full (on deletion)

$2CMU-DB
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LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:

— Acquire R latch on child,
— Then unlatch parent.
— Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is latched,

check if it is safe:
— If child is safe, release all latches on ancestors

$2CMU-DB
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EXAMPLE #1 - FIND 38

sin
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EXAMPLE #1 - FIND 38

320 A

1/ . 35 B«

It is now safe to release
the latch on A.
6 2 73 C |[38]|44| D

I I 11p12(1320(22R023(31135|36 38 4}14
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EXAMPLE #1 - FIND 38
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EXAMPLE #1 - FIND 38
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EXAMPLE #1 - FIND 38
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EXAMPLE #1 - FIND 38

T A T,: Find 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38

?ﬁze A

1/ - 35 B«

(We may need to coalesce B, so
we cant release the latch on A.
38

6 12 23 C 44 ||D

I 110(11R12(1320(22R723(311735|3638 4}14

E F G H I

(08)
N
(@)}
O

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45

?ﬁze A

1/ - 35 B«

We know that if D needs to
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25

20 A

1/ - 35 B«

6 12 H{ Cks 44 (|D

PACIA L S AN

11712[13720|22123|31135|3638
E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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We need to split F, so we need to _
hold the latch on its parent node.
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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OBSERVATION

What was the first step that all the update examples

$2CMU-DB
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did on the B+ Tree?

r

Delete 38

%

.

A

\

J

7

Insert 45

C%

.

A

\

J

7

Insert 25

%

.

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.
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BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming there will be a
split/merge, optimistically traverse
the tree using read latches.

[f a worker guesses wrong, repeat
traversal with pessimistic algorithm.
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Acta Informatica 9, 1-21 (1977)

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used o support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements, An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-u an be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedckind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation 1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

*  Permanent address: Institut fle Informatik der Technischen Universitit Miinchen, Arcisstr, 21,
D-8000 Miinchen 2. Germany (Fed. Rep)
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BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread using
previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.
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EXAMPLE #2 - DELETE 38

sin
_—

10 35 B
6 12 H{ Cks 44 (|D
3|1406|9710[11112[{13[20 35|36 4}14

111 13 22123(311 38
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EXAMPLE #2 - DELETE 38

20 A

1/ . 35 B«

6 12 H{ Cks 44 (|D

I I 11p12(1320(22R023(31135|36 38 4}14

E F G H I

(08)
N
(o))}
<o)
—
S
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EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

(08)
N
(o))}
<o)
—
S

11p12(1320(22R023(31135|36 38
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EXAMPLE #2 - DELETE 38

H/ (R)
23 138 || 44 ||D

20 A
/
10
6 12
AR RN
3|/406|9710[11H12(13H20(22

W
123(31135(36 41
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EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V IN Lk

11R12(13/20(22023(31135(36 1

Node H will not coalesce, I
so were safe!

(08)
N
(@))
<o)
—
S

s2CMU-DB
15-445/645 (F

all 2024)
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EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V IN Lk

11R12(13/20(22023(31135(36 1

Node H will not coalesce, I
so were safe!

(08)
N
(@))
<o)
—
S

s2CMU-DB
15-445/645 (F

all 2024)
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EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V N S

11R12(13M20(22023(31135|36 1

Node H will not coalesce, I
so were safe!

(08)
N
(o))}
<o)
—
S

s2CMU-DB
15-445/645 (F

all 2024)
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EXAMPLE #4 - INSERT 25

20 A
/
10 35 B
6 12 H‘zez/ Cks 44 (|D
;o\ [\ \f
3|4 \:5 9 H10 \1‘2 — 20 35(36 41144

111 13 22123(311 38
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EXAMPLE #4 - INSERT 25

20 A

/

10 35 B

6 12 H‘23/ C “38 44 ||D

Jo\ )\ ; \(‘
| | | | | | | ] | !

I\VeneedtosplitF,sowe 31 6M 38|41 44

w
N

have to restart and re- F G H I

execute like before.
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OBSERVATION

The threads in all the examples so far have acquired

latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is below
its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?
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LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4
1
13 A«
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LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

SO
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LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 If Do Inlot release latch on C ]

/ until thread has latch on B
1 (| 2 [[—H 3| 4

B «C
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LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 If Do Inlot release latch on C ]

until thread has latch on B
}ﬂ 1 || 2 |[[—H 3| 4

B «C
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LEAF NODE SCAN EXAMPLE #1

o WA

B C

T;: Find Keys < 4
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
» : A « T,: Find Keys > 1
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LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
S ,- Find Keys > 1
3 A«
1 (| 2 ([ 3 (| 4
B C
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

L
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

3
« 4

AN

B» I«C
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
: Find Keys > 1
Both T, and T, now hold | Both T, and T, now hold Y
this read latch. this read latch.

4

P
<

B» I«C
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
| Both T, and T, now hol:ljzz Find Keys -

this read latch.
— 11 3| 4 «

B C

Both T, and T, now hold
this read latch.
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
[ Only T, holds } [ Only T holds } T,: Find Keys > 1

this read latch. this read latch.

B C
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1
» B A « 2 Y
1| 2 [[—]| 3] 4
B C
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1
13 A «
1 (| 2 |[; 3 || 4
B C
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

%ﬁ/ nol
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

3 [ T, cannot acquire ]

%/ the read latch on C
N
2 [ s ()] 4m
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

3 [ T, cannot acquire ]
%/ the read latch on C

AN,

2 [ s [(e ) 4

T, does not know
what T, is doing...
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

: ST '
T, Choices? tho read latch on C ]
X Wait I\
@ Kill Ourself 1 — 13 (4) «
R Kill Other Thread

T, does not know
what T, is doing...
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

o 3 [ T, cannot acquire
T, Choices? %/ the read latch on C ]
AN
@ Kill Ourself 1 13 1(e) «

T, does not know
what T, is doing...
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LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed

latch acquisitions.
— Usually transparent to end-user / application.
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CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.
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NEXT CLASS

We are finally going to discuss how to execute some
queries...
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$2CMU-DB

PROJECT #2

You will build a thread-safe B+tree

backed by your buffer pool manager. +
— Page Layout

— Insert/Delete/Find Operations
— Iterator

— Latch Crabbing

A“

We define the API for you. You need
to provide the method W ARNING:

implementations. This is more difficult than Project #1.
Start immediately!

https://15445.courses.cs.cmu.edu/fall2024/project?
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TASKS

Task #1: Page Layouts

— How each node will store its key/values in a page.
— You only need to support unique keys.

Task #2: Operations

— Support point queries (single key).

— Support inserts with node splitting.

— Support removal of keys with sibling stealing + merging.
— Does not need to be thread-safe.
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TASKS

Task #3: Index Iterator

— Create a STL iterator for range scans on leaf nodes.
— You only need to support ascending scans.

Task #4: Concurrent Index

— Introduce latch crabbing/coupling protocol to support safe
concurrent operations.

— Make sure you have splits / merges working correctly
before proceeding with this task.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DEVELOPMENT HINTS

Follow the textbook semantics and algorithm:s.

Set the page size to be small (e.g., 512B) when you
first start so that you can see more splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.
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EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will

receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

You must pass all the test cases to qualify!
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PLAGIARISM WARNING *QO

The homework and projects must be your own
original work. They are not group assignments.

You may not copy source code from other people
or the web.

Plagiarism is not tolerated. You will get lit up.
— Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.
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