Carnegie Mellon University

Uatabase

Systems

Index
Concurrency Control

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #3 is due Sunday Sept 6™ @ 11:59pm

Project #2 is due Sunday Sept 29" @ 11:59pm

— Recitation next week

Mid-term Exam on Wednesday Oct 9™ @ 2:00pm

— In-class in this room.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

UPCOMING DATABASE TALKS

DataFusion Comet (DB Seminar) ¥\ e on coMe
— Monday Sept 30% @ 4:30pm ET &

— Zoom

Oracle Talk (DB G) ®
—>rfll“::1e§daya0ct I @ IZI;(C))(;:)};n ET ORAC I—E
— GHC 8115

ParadeDB (DB Seminar)

— Monday Oct 7" @ 4:30pm ET IIIL Pq ra d e D B
— Zoom

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/building-blocks-apache-datafusion-comet-andy-grove/
https://db.cs.cmu.edu/events/db-seminar-json-relational-duality-converging-the-worlds-of-objects-documents-and-relational/
https://db.cs.cmu.edu/events/building-blocks-paradedb-philippe-noel/

$2CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

We (mostly) assumed all the data structures that we
have discussed so far are single-threaded.

A modern DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

‘ They Don't Do This!

YOLTDB KX

Redles [@-store

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://voltdb.com/
https://redis.io/

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching

Leaf Node Scans
Project #2 Announcement

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOCKS VS. LATCHES

Locks (Transactions)

— Protect the database's logical contents from other
transactions.

— Held for transaction's duration.

— Need to be able to rollback changes.

Latches (Workers)

— Protect the critical sections of the DBMS's internal data
structure from other workers (e.g., threads).

— Held for operation duration.

— Do not need to be able to rollback changes.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Lecture #15 /,

LOCKS VS. LATCHES

Locks Latches
Separate... Transactions Workers (threads, processes)
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LATCH MODES

Read Mode

_, Multiple threads can read the same object e —-—————— o
B e came time. ~ Compatibility Matrix

— A thread can acquire the read latch if Read Write
another thread has it in read mode. Read v, X

Write Mode Write| X X

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATCH IMPLEMENTATION GOALS

Small memory footprint.
Fast execution path when no contention.
Decentralized management of latches.

Avoid expensive system calls.

Source: Filip Pizlo
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://webkit.org/blog/6161/locking-in-webkit/

Source: Filip Pizlo
£2CMU-DB

15-445/645 (Fall 2024)

LATCH I

Room: Moderated Discussions

The whole post see

ms to be just wrong,
measuring.

and is Measuring something completely different than what the author thinks ang claims it is

First off, spinlocks can only be used if You actually know you're not being scheduled while using them. But the blog post author seems fo be
implementing his own spinlocks in user space with no regard for whether the lock user might be scheduled or not. And the code used for the
claimed "lock not held” timing is complete garbage.

Small memory

It basically re

ads the time befor
the time whe

€ releasing the lock, and then jt reads it after acquiring the Jogk again, and claims that the time difference s
N no lock was held. Which is just inane and pointless and completely wrong.
That's pure garbage. What happens is that

Fast execution

(a} since you're Spinning, you're using CPy time

(b) at a random time, the scheduler will schedule yoy oyt
(c) that random ti

Decentralized

, but before You actually released the spinlock.

e CPU, because You had used Up your time slice, The »
ime when you a

current time" you
re actualfy going to release the lock.

mebody wil) Now spin for g long while, since nobody js releasing it - it's still
i "ok, r time slice”, ang

Somebody else comes inand wants that "spinlock". and that s,
held by that other thread entirely that was Just sched,
schedules the origj

Avoid expens

0d schenario, If you have more threads than CPU's (maybe because of other processes unrelated to your
own test joad), maybe the next thread that gets sheeduled isn't the one that js going to relea
timeslice, so the next thread schedyjeg might be another th
funning right now!

se the lock, No, that one already got its
hat lock that js still being hejq

by the thread ¢

hat isn't even
the code in quest

So ion is pure garbage.
that you are measurj

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

L A T C H I ' l . ide of the imiti ! wite co easacons.umerofthem,

The whole Post seems to he Justwrong, ang is Measuring something completely different than what the author thinks ang claims it is
Mmeasuring.

First off, spinlocks can only be used if You actually know you're not being scheduled while using them. But the blog post author seems fo be
r rmplementing his own spinlocks in user space with no regard for whether the lock user might be scheduled or not. And the code used for the
S m all IIlem O Y claimed "lock not held” timing is complete garbage.

It basuca”y reads the time before releasing the lock, and then it reads it after acquiring the Jogk again, and claims that the fime difference is
the time when no lock was held. Which is just inane and pointless and completely wrong.,

That's pure garbage. What happens is that

F aSt eXecutlon (a} since you're Spinning, you're using CPy time

(b) at a random time, the scheduler will schedule yoy oyt

. A (c) that random time might ne just atia
Noacantraliza

me" you

ou
= i ser Space! unless y it's still
: t use spinlocks in u re that the e
| repeat: do no 're doing. And be awa _ ,
ou re H I nII' d to your
alftll'lr?"gdkt'rlwzrvyg: iagw what you are doing is basically
likeliho

In

TYOUVETYMUCH can do them like that, and when you do
ensical values, because what yoy are measuring is | have a lot of busywork,

T kept the Process in place".

Source: Filip Pizlo
£2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

LATCH IMPLEMENTATIONS

Test-and-Set Spinlock
Blocking OS Mutex
Reader-Writer Locks

Advanced approaches:

— Adaptive Spinlock (Apple ParkingLot)
— Queue-based Spinlock (MCS Locks)
— Optimistic Lock Coupling (The Germans)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf

$2CMU-DB

15-445/645 (Fall 2024)

LATCH I Locking in WebKit

May 6, 2016 by Filip Pizlo @filpizio

Back in August 2015 we replaced all spinlocks and OS-provided Mutexes in WebKit with the new
WTF::Lock (WTF stands for Web Template Framework). we also replaced aj OS-provided condition
variables with WTF - :Condition . These new primitives have some cool properties:

Test-and-Set Spinlo
Blocking OS Mutex
Reader-Writer Loc

tilock only
needs two bits in that byte. The smaj) size encourages using huge numbers of very fine-grained

locks. OS mutexes often require 64 bytes or more. The small size of WTE: ‘Lock means that
there’s rarely an excuse for not having one, or even multiple, fine

~grained locks in any object that
has things that need to be synchronized.

Advanced approac
— Adaptive Spinlock
— Queue-based Spinlg
— Optimistic Lock Ca

4. WTF::Lock doesn't waste Cpy cycles when a lock is held for a long time., WTF: iLock is
adaptive: it changes its strategy for how to wait for the lock to become available based on how long

it has been trying. If the lock doesn’t become available promptly, WTF::Lock will suspend the
calling thread untj the lock becomes available,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf
https://webkit.org/blog/6161/locking-in-webkit/

LATCH I

Locking in WebKit

May 6, 2016 by Filip Pizlo @filpizio

o 1 Back in August 2015 we replaced all spinlocks and OS-provided Mutexes in WebKit with the new
Test" and_ S et Spln O WTF::Lock (WTF stands for Web Template Framework). We also replaced all 0S-provideq condition
variables with WTF - :Condition . These new primitives have some cool properties:
BlOCklng OS MuteX tilock only
. needs two bits in that byte. The smaj) size encourages using huge numbers of very fine-grained
Re ader—wrlter LO C locks. OS mutexes often require 64 bytes or more. The small size of WTF::Lock means that

there’s rarely an excuse for not having one, ~grained locks in any object that

or even multiple, fine
has things that need to be synchronized.

2. WTF::Lock is super fast in the case that matters most- nncantan . [:ion. Paraliel
A aAaNNroaac =t) that a mature
Acvance hread_mutex , WTF::Lock is 64 times smaller and up to 18‘0 fock() when
- ided locks like pthread_ ' _ ::Condition is y,
compared o OS-provide 0S vided condition variables like pthread_cond , WTF [eads are
: ared to OS-pro
times faster. Comp

ebKit is 10% faster on
ller. Using WTF::Lock instead of pthread_mutex means that W
64 times smaller. 1

ntended and
loading test.

5% faster on our page

Y, Speedometer, and

JetStream, 5% faster on

e lock will
STTESTSTeoSt common kind of

holding a lock.

4. WTF::Lock doesn't waste CPU cycles when alock
adaptive: it changes its strategy for how to wait for t
it has been trying. If the lock doesn

is held for a long time., WTF: iLock is

he lock to become available based on how long

"t become available promptly, WTF::Lock will suspend the

calling thread untj the lock becomes available,

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/

LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.

— Example: std: :atomic<T>

std':atomic<bool>

std: :atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

}

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

New

M Address Value

20 __sync_bool_compare_and_swap(&M, 20, 30)
Compare

$=CMU-DB Value

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

20

__sync_bool_compare_and_swap(&M, 20, 30)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

30

$2CMU-DB

15-445/645 (Fall 2024)

__sync_bool_compare_and_swap(&M, 20, 30) V

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —pthread_mutex_t — futex

B OS Latch
std: :mutex m; B Userspace Latch

4 ¥

m.lock();
// Do something special. ..
m.unlock();

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —pthread_mutex_t — futex

B OS Latch

std: :mutex m; B Userspace Latch
m.lock(); a E
// Do something special. ..

m.unlock();

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$2CMU-DB

15-445/645 (Fall 2024)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

o
read

=0
X =0

» pthread_cond_t

wr1te

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$2CMU-DB

15-445/645 (Fall 2024)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

#~
read

=1
X =0

» pthread_cond_t

wr1te

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$2CMU-DB

15-445/645 (Fall 2024)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

£-43—

read

=1
X =0

» pthread_cond_t

wr1te

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$2CMU-DB

15-445/645 (Fall 2024)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

£-43—

read

=2
X =0

» pthread_cond_t

wr1te

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$2CMU-DB

15-445/645 (Fall 2024)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

£-43—

read

=2
X =0

» pthread_cond_t

o ﬂ—

wr1te

#

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

g a a Latch

$2CMU-DB

15-445/645 (Fall 2024)

B0

read

-2
X =1

» pthread_cond_t

o ﬁ—

wr1te

#

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

$2CMU-DB

15-445/645 (Fall 2024)

HASH TABLE LATCHING

Easy to support concurrent access due to the limited

ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

HASH TABLE LATCHING

Approach #1: Page/Block Latches

— Each page/block has its own reader-writer latch that
protects its entire contents.

— Threads acquire either a read or write latch before they
access a page/block.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D o
hash(D)
.‘\’ A|value
C|value
D | value
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value

g T,: Insert E

T;:Find D
hash(D) nr1 hash(E)
- Alvalue /

C|value

D | value

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D o g T,: Insert E
hash(D) hash(E)
Alvalue /

»| C|value

D | value

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value

It’s safe to release the
latch on Page #1.

g T,: Insert E

hash(D) = hash(E)
Al value /
C|value

» D|value

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D g T,: Insert E

hash(D) hash(E)
Al value /
C|value

» D|value

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D g T,: Insert E

hash(D) hash(E)
Al value /
C|value

D | value

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T;:Find D
hash(D)

T,: Insert E
hash(E)

A|value

C|value h

D | value

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D | value « g

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D

D | value « g

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES 1

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D

D | value h

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
@a C|value
D | value
E| value I«
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) @a hash(E)
A | value
C|value

D | value

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R) hash(E)
D BA|value
C|value
D | value
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R) hash(E)
D BA|value /
C|value
D | value
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R) hash(E)
"N a Al
C | value@
D | value
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) (R) hash(E)
BAIAN
g C | value@
D | value
&CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

Bl value
T;:Find D T,: Insert E
hay rs \safe to releasethe | R hash(E)

latchon A Al
W
Clvalu
D | value
£=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value

T;:Find D T,: Insert E
hash(D) hash(E)
A|value

g »| C|value

DI%

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value

T;:Find D T,: Insert E
hash(D) hash(E)

n A|value
W 0C|value
D I%ﬁ

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

T oiada

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

ey

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

ZW o

E|valu

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HASH TABLE: SLOT LATCHES

B|value
T;:Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

1) '
‘ n

E | valuet

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/

10 35 B

6 12 H{ Cks 44 ||D

I VN /S \
- 110[11{12]13H 20] 22K 23]31H35] 36 H 38| 41§ 44

E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

o] [A 4a T,: Delete 44

/

10 35 B

6 12 H{ Cks 44 ||D

I VN /S \
- 110[11{12]13H 20] 22K 23]31H35] 36 H 38| 41§ 44

E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

o 1A T,: Delete 44

/

10 35 B

6 12 H{ Cks 44 (|D

VLN /L \
: 110[11H12[13H 20|22 23|31 135|361 38[41€44]) «

E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

20 A T,: Delete 44

/

10 35 B

6 12 H{ Cks 44 (|D

A N N S W

11712[13720|22123|31135|3638 «
E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/

10 35 B

6 12 H{ Cks 44 (|D

j \l l \ / Xl j Rebalance!
- 11R12(13M20(22123(31135(36M38(41 «g
I

E F G H

(08)
N
(@))
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE 1

ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H{ Cks 44 (|D

FU TN /TN e

11112131 20(22H23|31H{35|36 {3441} «g

E F G H I

(08)
N
(@))
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

20 A « T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H{ Cks 44 (|D

FU TN /TN e

11112131 20(22H23|31H{35|36 {3441} «g

E F G H I

(08)
N
(@))
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

20 A T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H{ Cks 44 D«

FU TN /TN e

11112131 20(22H23|31H{35|36 {3441} «g

E F G H I

(08)
N
(@))
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

20 A T,: Delete 44

/ T,: Find 41

10 35 B

° 12 WB/ cks aD @ X

FU TN T\ N e

11112131 20(22H23|31H{35|36 {3441} «
E F G H l

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

AN VAN —

j \l l \ / Xl j Rebalance!
- - 11R12(1320(22123(31135(36013 41 «

E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

B+TREE MULTI-THREADED EXAMPLE

_ A T,: Delete 44

/ T,: Find 41

- 35 B

6 12 H{ Ck8 il

s e O

(08)
N
(o))}
<o)
—
S

£$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to access/modify

B+Tree at the same time.

— Get latch for parent
— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.
— Not full (on insertion)
— More than half-full (on deletion)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:

— Acquire R latch on child,
— Then unlatch parent.
— Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is latched,

check if it is safe:
— If child is safe, release all latches on ancestors

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #1 - FIND 38

sin
_

10 35 B

6 12 H{ Cks 44 (|D

11p12(1320(22R023(31135|36 38

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #1 - FIND 38

320 A

1/ . 35 B«

It is now safe to release
the latch on A.
6 2 73 C |[38]|44| D

I I 11p12(1320(22R023(31135|36 38 4}14

(08)
N
(@))
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #1 - FIND 38

20 A

/

10 35 B

(08)
N
(o))}
<o)
—
S

11p12(1320(22R023(31135|36 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #1 - FIND 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

AR IR R
1 1 11R12(13/20(22023(31135(36 4&

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #1 - FIND 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

AR IR R
1 1 11R12(13/20(22023(31135(36 k

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #1 - FIND 38

T A T,: Find 38

/

10 35 B

6 12 H{ Cks 44 (|D

1MR12(13m20(22723(31135|3638[p1

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

20 A
/
10 35 B
6 12 H‘zez/ Cks 44 (|D
;o\ [\ \f
3|4 \:5 9 H10 \1‘2 — 20 35(36 41144

111 13 22123(311 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

O
/ ©

10 35 B

6 12 H{ Cks 44 (|D

31406|9n010(1112|13Mm20(22123|31135(36[38 4}14

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

?ﬁze A

1/ - 35 B«

(We may need to coalesce B, so
we cant release the latch on A.
38

6 12 23 C 44 ||D

I 110(11R12(1320(22R723(311735|3638 4}14

E F G H I

(08)
N
(@)}
O

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

i 1a
G

10 35 B

6 12 H{ i|; %38 44 ||D «

j \l l We know that D will not |
I merge with C, so it is safe to
: : 1 41 H44

w
N
(@))
(o)
—
S

11 release latcheson A and B. |38
E F G H I

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H‘23/ i|; %38 44 ||D «

j \l l We know that D will not |
I merge with C, so it is safe to
: : 1 41 H44

(08)
N
(@))
<o)
—
S

11 release latcheson A and B. |38
E F G H I

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

AR IR w
1 1 11R12(13/20(22023(31135(36 k

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

AR IR w
1 1 11R12(13/20(22023(31135(36 k

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

LA TN L LN

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

20 A
/
10 35 B
6 12 H‘zez/ Cks 44 (|D
;o\ [\ \f
3|4 \:5 9 H10 \1‘2 — 20 35(36 41144

111 13 22123(311 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

?ﬁze A

1/ - 35 B«

6 12 H{ Cks 44 (|D

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

?ﬁze A

1/ - 35 B«

We know that if D needs to
split, B has room so it is safe
6 to release the latch on A. C |l38!l44!||D
3(406(9n010(11012{13Mm20(22123|3135|3638 4}14

E F G H I

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

20 A

G

10 35 B

(08)
N
(o))}
<o)
—
S

11p12(1320(22R023(31135|36 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

20 A

G

10 35 B

6 12 H‘23/ i|; %38 44 ||D

[V N S

11TH12|113M20(22123(31H35|36138(41
[Node I will not split, so we l

(08)
N
(@))
<o)
—
S

can release B+D.
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V N S

11TH12|113M20(22123(31H35|36138(41
[Node I will not split, so we l

(08)
N
(@))
<o)
—
S

can release B+D.
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V N S

11012(13M™20(22023(31035(36M38(41H
[Node I will not split, so we

(08)
N
(@))
<o)
—
S

can release B+D.
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #3 - INSERT 45

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

11512131 20|22 23|311{35|36 38|41 44 45)

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

?ﬁz@ A

1/ - 35 B«

6 12 H{ Cks 44 (|D

PACIA L S AN

11712[13720|22123|31135|3638
E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

1/ - 35 B«

6 12 H{ Cks 44 (|D

PACIA L S AN

11712[13720|22123|31135|3638
E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

G

10 35 B

(08)
N
(o))}
<o)
—
S

11p12(1320(22R023(31135|36 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

/

10 35 B

(08)
N
(o))}
<o)
—
S

11p12(1320(22R023(31135|36 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

/

10 35 B

35(3638 4}14

. 9 H10l11H12[13201278®
We need to split F, so we need to _
hold the latch on its parent node.

(08)
S
(@)}
o)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

/

10 35 B

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

/

10 35 B

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

w
N

44

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #4 - INSERT 25

20 A

/

10

(08)
N
(o))}
<o)
—
S

11p12(13 44

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OBSERVATION

What was the first step that all the update examples

$2CMU-DB

15-445/645 (Fall 2024)

did on the B+ Tree?

r

Delete 38

%

.

A

\

J

7

Insert 45

C%

.

A

\

J

7

Insert 25

%

.

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming there will be a
split/merge, optimistically traverse
the tree using read latches.

[f a worker guesses wrong, repeat
traversal with pessimistic algorithm.

$2CMU-DB

15-445/645 (Fall 2024)

Acta Informatica 9, 1-21 (1977)

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used o support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements, An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-u an be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedckind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation 1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 1o the profile of the current set of users. Another property of the

* Permanent address: Institut fle Informatik der Technischen Universitit Miinchen, Arcisstr, 21,
D-8000 Miinchen 2. Germany (Fed. Rep)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://link.springer.com/article/10.1007/BF00263762

101

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread using
previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

102

EXAMPLE #2 - DELETE 38

sin
_—

10 35 B
6 12 H{ Cks 44 (|D
3|1406|9710[11112[{13[20 35|36 4}14

111 13 22123(311 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

103

EXAMPLE #2 - DELETE 38

20 A

1/ . 35 B«

6 12 H{ Cks 44 (|D

I I 11p12(1320(22R023(31135|36 38 4}14

E F G H I

(08)
N
(o))}
<o)
—
S

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

104

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

(08)
N
(o))}
<o)
—
S

11p12(1320(22R023(31135|36 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE #2 - DELETE 38

H/ (R)
23 138 || 44 ||D

20 A
/
10
6 12
AR RN
3|/406|9710[11H12(13H20(22

W
123(31135(36 41

$2CMU-DB

15-445/645 (Fall 2024)

105

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

106

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V IN Lk

11R12(13/20(22023(31135(36 1

Node H will not coalesce, I
so were safe!

(08)
N
(@))
<o)
—
S

s2CMU-DB
15-445/645 (F

all 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

107

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V IN Lk

11R12(13/20(22023(31135(36 1

Node H will not coalesce, I
so were safe!

(08)
N
(@))
<o)
—
S

s2CMU-DB
15-445/645 (F

all 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

108

EXAMPLE #2 - DELETE 38

20 A

/

10 35 B

6 12 H{ Cks 44 (|D

[V N S

11R12(13M20(22023(31135|36 1

Node H will not coalesce, I
so were safe!

(08)
N
(o))}
<o)
—
S

s2CMU-DB
15-445/645 (F

all 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

109

EXAMPLE #4 - INSERT 25

20 A
/
10 35 B
6 12 H‘zez/ Cks 44 (|D
;o\ [\ \f
3|4 \:5 9 H10 \1‘2 — 20 35(36 41144

111 13 22123(311 38

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

110

EXAMPLE #4 - INSERT 25

20 A

/

10 35 B

6 12 H‘23/ C “38 44 ||D

Jo\)\ ; \(‘
| | | | | | |] | !

I\VeneedtosplitF,sowe 31 6M 38|41 44

w
N

have to restart and re- F G H I

execute like before.
£2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

111

OBSERVATION

The threads in all the examples so far have acquired

latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is below
its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

112

LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4
1
13 A«

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

113

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

SO

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

114

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 If Do Inlot release latch on C]

/ until thread has latch on B
1 (| 2 [[—H 3| 4

B «C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

115

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 If Do Inlot release latch on C]

until thread has latch on B
}ﬂ 1 || 2 |[[—H 3| 4

B «C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

116

LEAF NODE SCAN EXAMPLE #1

o WA

B C

T;: Find Keys < 4

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

117

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
» : A « T,: Find Keys > 1

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

118

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
S ,- Find Keys > 1
3 A«
1 (| 2 ([3 (| 4
B C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

119

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

L

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

120

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

121

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

3
« 4

AN

B» I«C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

122

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
: Find Keys > 1
Both T, and T, now hold | Both T, and T, now hold Y
this read latch. this read latch.

4

P
<

B» I«C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

123

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
| Both T, and T, now hol:ljzz Find Keys -

this read latch.
— 11 3| 4 «

B C

Both T, and T, now hold
this read latch.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

124

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
[Only T, holds } [Only T holds } T,: Find Keys > 1

this read latch. this read latch.

B C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

125

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1
» B A « 2 Y
1| 2 [[—]| 3] 4
B C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

126

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1
13 A «
1 (| 2 |[; 3 || 4
B C

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

127

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

%ﬁ/ nol

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

128

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

3 [T, cannot acquire]

%/ the read latch on C
N
2 [s ()] 4m

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

129

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

3 [T, cannot acquire]
%/ the read latch on C

AN,

2 [s [(e) 4

T, does not know
what T, is doing...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

130

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

: ST '
T, Choices? tho read latch on C]
X Wait I\
@ Kill Ourself 1 — 13 (4) «
R Kill Other Thread

T, does not know
what T, is doing...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

131

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

o 3 [T, cannot acquire
T, Choices? %/ the read latch on C]
AN
@ Kill Ourself 1 13 1(e) «

T, does not know
what T, is doing...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

132

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed

latch acquisitions.
— Usually transparent to end-user / application.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

133

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

134

NEXT CLASS

We are finally going to discuss how to execute some
queries...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

PROJECT #2

You will build a thread-safe B+tree

backed by your buffer pool manager. +
— Page Layout

— Insert/Delete/Find Operations
— Iterator

— Latch Crabbing

A“

We define the API for you. You need
to provide the method W ARNING:

implementations. This is more difficult than Project #1.
Start immediately!

https://15445.courses.cs.cmu.edu/fall2024/project?

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024/project2

$2CMU-DB

15-445/645 (Fall 2024)

TASKS

Task #1: Page Layouts

— How each node will store its key/values in a page.
— You only need to support unique keys.

Task #2: Operations

— Support point queries (single key).

— Support inserts with node splitting.

— Support removal of keys with sibling stealing + merging.
— Does not need to be thread-safe.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

TASKS

Task #3: Index Iterator

— Create a STL iterator for range scans on leaf nodes.
— You only need to support ascending scans.

Task #4: Concurrent Index

— Introduce latch crabbing/coupling protocol to support safe
concurrent operations.

— Make sure you have splits / merges working correctly
before proceeding with this task.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DEVELOPMENT HINTS

Follow the textbook semantics and algorithm:s.

Set the page size to be small (e.g., 512B) when you
first start so that you can see more splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will

receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

You must pass all the test cases to qualify!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

140

PLAGIARISM WARNING *QO

The homework and projects must be your own
original work. They are not group assignments.

You may not copy source code from other people
or the web.

Plagiarism is not tolerated. You will get lit up.
— Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

	Introduction
	Slide 1: Index Concurrency Control
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: OBSERVATION
	Slide 5: CONCURRENCY CONTROL
	Slide 6: TODAY'S AGENDA

	Latches
	Slide 7: LOCKS VS. LATCHES
	Slide 8: LOCKS VS. LATCHES
	Slide 9: LATCH MODES
	Slide 10: LATCH IMPLEMENTATION GOALS
	Slide 11: LATCH IMPLEMENTATION GOALS
	Slide 12: LATCH IMPLEMENTATION GOALS
	Slide 13: LATCH IMPLEMENTATIONS
	Slide 14: LATCH IMPLEMENTATIONS
	Slide 15: LATCH IMPLEMENTATIONS
	Slide 16: LATCH IMPLEMENTATIONS
	Slide 17: COMPARE-AND-SWAP
	Slide 18: COMPARE-AND-SWAP
	Slide 19: COMPARE-AND-SWAP
	Slide 20: LATCH IMPLEMENTATIONS
	Slide 21: LATCH IMPLEMENTATIONS
	Slide 22: LATCH IMPLEMENTATIONS
	Slide 23: LATCH IMPLEMENTATIONS
	Slide 24: LATCH IMPLEMENTATIONS
	Slide 25: LATCH IMPLEMENTATIONS
	Slide 26: LATCH IMPLEMENTATIONS
	Slide 27: LATCH IMPLEMENTATIONS

	Hash Table Latching
	Slide 29: HASH TABLE LATCHING
	Slide 30: HASH TABLE LATCHING
	Slide 31: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 32: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 33: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 34: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 35: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 36: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 37: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 38: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 39: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 40: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 41: HASH TABLE: PAGE/BLOCK LATCHES
	Slide 42: HASH TABLE: SLOT LATCHES
	Slide 43: HASH TABLE: SLOT LATCHES
	Slide 44: HASH TABLE: SLOT LATCHES
	Slide 45: HASH TABLE: SLOT LATCHES
	Slide 46: HASH TABLE: SLOT LATCHES
	Slide 47: HASH TABLE: SLOT LATCHES
	Slide 48: HASH TABLE: SLOT LATCHES
	Slide 49: HASH TABLE: SLOT LATCHES
	Slide 50: HASH TABLE: SLOT LATCHES
	Slide 51: HASH TABLE: SLOT LATCHES
	Slide 52: HASH TABLE: SLOT LATCHES
	Slide 53: HASH TABLE: SLOT LATCHES

	Latch Crabbing/Coupling
	Slide 54: B+TREE CONCURRENCY CONTROL
	Slide 55: B+TREE MULTI-THREADED EXAMPLE
	Slide 56: B+TREE MULTI-THREADED EXAMPLE
	Slide 57: B+TREE MULTI-THREADED EXAMPLE
	Slide 58: B+TREE MULTI-THREADED EXAMPLE
	Slide 59: B+TREE MULTI-THREADED EXAMPLE
	Slide 60: B+TREE MULTI-THREADED EXAMPLE
	Slide 61: B+TREE MULTI-THREADED EXAMPLE
	Slide 62: B+TREE MULTI-THREADED EXAMPLE
	Slide 63: B+TREE MULTI-THREADED EXAMPLE
	Slide 64: B+TREE MULTI-THREADED EXAMPLE
	Slide 65: B+TREE MULTI-THREADED EXAMPLE
	Slide 66: LATCH CRABBING/COUPLING
	Slide 67: LATCH CRABBING/COUPLING
	Slide 68: EXAMPLE #1 – FIND 38
	Slide 69: EXAMPLE #1 – FIND 38
	Slide 70: EXAMPLE #1 – FIND 38
	Slide 71: EXAMPLE #1 – FIND 38
	Slide 72: EXAMPLE #1 – FIND 38
	Slide 73: EXAMPLE #1 – FIND 38
	Slide 74: EXAMPLE #2 – DELETE 38
	Slide 75: EXAMPLE #2 – DELETE 38
	Slide 76: EXAMPLE #2 – DELETE 38
	Slide 77: EXAMPLE #2 – DELETE 38
	Slide 78: EXAMPLE #2 – DELETE 38
	Slide 79: EXAMPLE #2 – DELETE 38
	Slide 80: EXAMPLE #2 – DELETE 38
	Slide 81: EXAMPLE #2 – DELETE 38
	Slide 82: EXAMPLE #3 – INSERT 45
	Slide 83: EXAMPLE #3 – INSERT 45
	Slide 84: EXAMPLE #3 – INSERT 45
	Slide 85: EXAMPLE #3 – INSERT 45
	Slide 86: EXAMPLE #3 – INSERT 45
	Slide 87: EXAMPLE #3 – INSERT 45
	Slide 88: EXAMPLE #3 – INSERT 45
	Slide 89: EXAMPLE #3 – INSERT 45
	Slide 90: EXAMPLE #4 – INSERT 25
	Slide 91: EXAMPLE #4 – INSERT 25
	Slide 92: EXAMPLE #4 – INSERT 25
	Slide 93: EXAMPLE #4 – INSERT 25
	Slide 94: EXAMPLE #4 – INSERT 25
	Slide 95: EXAMPLE #4 – INSERT 25
	Slide 96: EXAMPLE #4 – INSERT 25
	Slide 97: EXAMPLE #4 – INSERT 25
	Slide 98: EXAMPLE #4 – INSERT 25

	Optimistic Coupling
	Slide 99: OBSERVATION
	Slide 100: BETTER LATCHING ALGORITHM
	Slide 101: BETTER LATCHING ALGORITHM
	Slide 102: EXAMPLE #2 – DELETE 38
	Slide 103: EXAMPLE #2 – DELETE 38
	Slide 104: EXAMPLE #2 – DELETE 38
	Slide 105: EXAMPLE #2 – DELETE 38
	Slide 106: EXAMPLE #2 – DELETE 38
	Slide 107: EXAMPLE #2 – DELETE 38
	Slide 108: EXAMPLE #2 – DELETE 38
	Slide 109: EXAMPLE #4 – INSERT 25
	Slide 110: EXAMPLE #4 – INSERT 25

	Leaf Node Scans
	Slide 111: OBSERVATION
	Slide 112: LEAF NODE SCAN EXAMPLE #1
	Slide 113: LEAF NODE SCAN EXAMPLE #1
	Slide 114: LEAF NODE SCAN EXAMPLE #1
	Slide 115: LEAF NODE SCAN EXAMPLE #1
	Slide 116: LEAF NODE SCAN EXAMPLE #1
	Slide 117: LEAF NODE SCAN EXAMPLE #2
	Slide 118: LEAF NODE SCAN EXAMPLE #2
	Slide 119: LEAF NODE SCAN EXAMPLE #2
	Slide 120: LEAF NODE SCAN EXAMPLE #2
	Slide 121: LEAF NODE SCAN EXAMPLE #2
	Slide 122: LEAF NODE SCAN EXAMPLE #2
	Slide 123: LEAF NODE SCAN EXAMPLE #2
	Slide 124: LEAF NODE SCAN EXAMPLE #2
	Slide 125: LEAF NODE SCAN EXAMPLE #3
	Slide 126: LEAF NODE SCAN EXAMPLE #3
	Slide 127: LEAF NODE SCAN EXAMPLE #3
	Slide 128: LEAF NODE SCAN EXAMPLE #3
	Slide 129: LEAF NODE SCAN EXAMPLE #3
	Slide 130: LEAF NODE SCAN EXAMPLE #3
	Slide 131: LEAF NODE SCAN EXAMPLE #3
	Slide 132: LEAF NODE SCANS

	Conclusion
	Slide 133: CONCLUSION
	Slide 134: NEXT CLASS

	Project #2
	Slide 135: PROJECT #2
	Slide 136: TASKS
	Slide 137: TASKS
	Slide 138: DEVELOPMENT HINTS
	Slide 139: EXTRA CREDIT
	Slide 140: PLAGIARISM WARNING

