
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Sorting &
Aggregations

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

Homework #3 is due Sunday Oct 6th @ 11:59pm

Project #2 is due Sunday Oct 27th @ 11:59pm
→ Recitation on Thursday Oct 10th @ 8:00pm (Zoom)

Mid-term Exam on Wednesday Oct 9th @ 2:00pm
→ In-class in this room.
→ Study guide is available online (see @295)

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024/midterm-guide.html
https://piazza.com/class/lzk4t7ue1bu5ph/post/295

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COURSE STATUS

We are now going to talk about how
to execute queries using the DBMS
components we have discussed so far.

Next four lectures:
→ Operator Algorithms
→ Query Processing Models
→ Runtime Architectures

3

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.
→ We will discuss the granularity of the data

movement next week.

The output of the root node is the
result of the query.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely in
memory, a disk-oriented DBMS cannot assume that
query results fit in memory.

We will use the buffer pool to implement
algorithms that need to spill to disk.

We are also going to prefer algorithms that
maximize the amount of sequential I/O.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a
specific way (ORDER BY).

But even if a query does not specify an order, we
may still want to sort to do other things:
→ Trivial to support duplicate elimination (DISTINCT).
→ Bulk loading sorted tuples into a B+Tree index is faster.
→ Aggregations (GROUP BY).

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

IN-MEMORY SORTING

If data fits in memory, then we can use a standard
sorting algorithm like Quicksort / TimSort.
→ Many online visualization tools.

If data does not fit in memory, then we need to use
a technique that is aware of the cost of reading and
writing disk pages …

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.toptal.com/developers/sorting-algorithms

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Top-N Heap Sort

External Merge Sort

Aggregations

DB Flash Talk: dbt

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.getdbt.com/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap

3 4 6 2 9 1 4 4

Original Data
8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3

3 4 6 2 9 1 4 4

Original Data
8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4

3 4 6 2 9 1 4 4

Original Data
8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4 6

3 4 6 2 9 1 4 4

Original Data
8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4 62

3 4 6 2 9 1 4 4

Original Data
8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4 62

3 4 6 2 9 1 4 4

Original Data
8

Skip!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-N HEAP SORT

heapsort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for heapsort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

10

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4 4

Skip and done!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Heapsort

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXTERNAL MERGE SORT

Divide-and-conquer algorithm that splits data into
separate runs, sorts them individually, and then
combines them into longer sorted runs.

Phase #1 – Sorting
→ Sort chunks of data that fit in memory and then write back

the sorted chunks to a file on disk.

Phase #2 – Merging
→ Combine sorted runs into larger chunks.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SORTED RUN

A run is a list of key/value pairs.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

12

Late Materialization

• • •K1 ¤ K2 ¤ ¤Kn

Record ID

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

2-WAY EXTERNAL MERGE SORT

We will start with a simple example of a 2-way
external merge sort.
→ “2” is the number of runs that we are going to merge into a

new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool
pages to hold input and output data.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read one page of the table into memory
→ Sort page into a “run” and write it back to disk
→ Repeat until the whole table has been sorted into runs

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Need at least 3 buffer pages (2 for input, 1 for output)

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

15

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

15

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

15

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

_|_2|_2|3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

15

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

4|6

2|_2|3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

15

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

4|6

4|7

8|9

1|3

5|6

1|92|_2|3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

15

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

4-Page
Runs

Pass #2

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

4|6

4|7

8|9

1|3

5|6

1|9

4|4

6|7

8|9

2|3 1|1

3|5

6|9

2|_2|3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

15

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

4-Page
Runs

Pass #2

8-Page
Runs

Pass #3

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

4|6

4|7

8|9

1|3

5|6

1|9

4|4

6|7

8|9

2|3 1|1

3|5

6|9

1|1

2|3

3|4

4|5

6|6

7|8

9|9

2|_2|3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

This algorithm only requires three buffer pool pages
to perform the sorting (B=3).
→ Two input pages, one output page

But even if we have more buffer space available
(B>3), it does not effectively utilize them if the
worker must block on disk I/O…

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GENERAL EXTERNAL MERGE SORT

Pass #0
→ Use B buffer pages
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., M-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE

Determine how many passes it takes to sort 108
pages with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each

(last run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each

(last run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 80

pages and second one has 28 pages.
→ Pass #3: Sorted file of 108 pages.

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉
 = 4 passes

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store it
in a second buffer while the system is processing the
current run.
→ Reduces the wait time for I/O requests at each step by

continuously utilizing the disk.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Disk

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

35

Buffer

Buffer

Buffer

Buffer

output

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Disk

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

36

Buffer

Buffer

Buffer

Buffer

output

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Disk

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

37

Buffer

Buffer

Buffer

Buffer

output
Merged Page To Disk

Buffer Pool

Sorted run
Sorted run
Sorted Run

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Disk

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

38

Buffer

Buffer

Buffer

Buffer

output
Buffer

Buffer

Buffer

Buffer

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Disk

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

39

Buffer

Buffer

Buffer

Buffer

output
Merged Page

Buffer

Buffer

Buffer

Buffer

To Disk

Buffer Pool

Sorted run
Sorted run
Sorted Run

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Disk

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

40

Buffer

Buffer

Buffer

Buffer

output
Merged Page

Buffer

Buffer

Buffer

BufferMerged Page

To Disk

To Disk

Buffer Pool

Sorted run
Sorted run
Sorted Run

Sorted run
Sorted run
Sorted Run

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COMPARISON OPTIMIZATIONS

Approach #1: Code Specialization
→ Instead of providing a comparison function as a pointer to

sorting algorithm, create a hardcoded version of sort that is
specific to a key type.

Approach #2: Suffix Truncation
→ First compare a binary prefix of long VARCHAR keys instead

of slower string comparison. Fallback to slower version if
prefixes are equal.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

USING B+TREES FOR SORTING

If the table that must be sorted already has a B+Tree
index on the sort attribute(s), then we can use that
to accelerate sorting.
→ Some DBMSs support prefix key scans for sorting.

Retrieve tuples in desired sort order by simply
traversing the leaf pages of the tree.

Cases to consider:
→ Clustered B+Tree
→ Unclustered B+Tree

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CASE #1 – CLUSTERED B+TREE

Traverse to the left-most leaf page,
and then retrieve tuples from all leaf
pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

B+Tree Index

101 102 103 104

Tuple Pages

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CASE #2 – UNCLUSTERED B+TREE

Chase each pointer to the page that
contains the data.

This is almost always a bad idea
except for Top-N queries where N is
small enough relative to total number
of tuples in table.
→ In general, one I/O per data record.

101 102 103 104

Tuple Pages

B+Tree Index

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AGGREGATIONS

Collapse values for a single attribute from multiple
tuples into a single scalar value.

The DBMS needs a way to quickly find tuples with
the same distinguishing attributes for grouping.

Two implementation choices:
→ Sorting
→ Hashing

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

SortFilter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

49

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

Sort

Eliminate
Duplicates

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

50

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ALTERNATIVES TO SORTING

What if we do not need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
→ Only need to remove duplicates, no need for ordering.
→ Can be computationally cheaper than sorting.

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS
scans the table. For each record, check whether
there is already an entry in the hash table:
→ DISTINCT: Discard duplicate
→ GROUP BY: Perform aggregate computation

If everything fits in memory, then this is easy.

If the DBMS must spill data to disk, then we need to
be smarter…

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXTERNAL HASHING AGGREGATE

Divide-and-conquer approach to computing an
aggregation when data does not fit in memory.

Phase #1 – Partition
→ Split tuples into buckets based on hash key
→ Write them out to disk when they get full

Phase #2 – ReHash
→ Build in-memory hash table for each partition and

compute the aggregation

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #1 – PARTITION

Use a hash function h1 to split tuples into
partitions on disk.
→ A partition is one or more pages that contain the set of

keys with the same hash value.
→ Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1
buffer for the input data.

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #1 – PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445 15-445
15-445 15-312
15-312 15-445

…

55

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #1 – PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445 15-445
15-445 15-312
15-312 15-445

…

56

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #1 – PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445
15-312

…

57

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #2 – REHASH

For each partition on disk:
→ Read it into memory and build an in-memory hash table

based on a second hash function h2.
→ Then go through each bucket of this hash table to bring

together matching tuples.

This assumes that each partition fits in memory.

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #2 – REHASH

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

B-1
Partitions

59

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #2 – REHASH

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

15-445

Hash Table

60

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #2 – REHASH

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

15-445

Hash Table

61

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #2 – REHASH

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

15-445

cid

15-445
15-826

Hash Table

Final Result
15-826

62

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHASE #2 – REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮ h2

Phase #1 Buckets

cid

15-445
15-826

Final Result

15-721

Hash Table

15-721

63

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HASHING SUMMARIZATION

During the rehash phase, store pairs of the form
(GroupKey→RunningVal)

When we want to insert a new tuple into the hash
table as we compute the aggregate:
→ If we find a matching GroupKey, just update the

RunningVal appropriately
→ Else insert a new GroupKey→RunningVal

64

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table
cid AVG(gpa)

15-445 3.66

15-826 3.33

15-721 2.89

Final Result

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

67

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

Choice of sorting vs. hashing is subtle and depends
on optimizations done in each case.

We already discussed the optimizations for sorting:
→ Chunk I/O into large blocks to amortize costs
→ Double-buffering to overlap CPU and I/O

68

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Nested Loop Join

Sort-Merge Join

Hash Join

69

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Sorting & Aggregations
	Slide 2: ADMINISTRIVIA
	Slide 3: COURSE STATUS
	Slide 4: QUERY PLAN
	Slide 5: DISK-ORIENTED DBMS
	Slide 6: WHY DO WE NEED TO SORT?
	Slide 7: IN-MEMORY SORTING
	Slide 9: TODAY'S AGENDA

	Heap Sort
	Slide 10: TOP-N HEAP SORT
	Slide 11: TOP-N HEAP SORT
	Slide 12: TOP-N HEAP SORT
	Slide 13: TOP-N HEAP SORT
	Slide 14: TOP-N HEAP SORT
	Slide 15: TOP-N HEAP SORT
	Slide 16: TOP-N HEAP SORT
	Slide 17: TOP-N HEAP SORT
	Slide 18: TOP-N HEAP SORT
	Slide 19: TOP-N HEAP SORT

	External Merge Sort
	Slide 20: EXTERNAL MERGE SORT
	Slide 21: SORTED RUN
	Slide 22: 2-WAY EXTERNAL MERGE SORT
	Slide 23: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 24: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 25: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 26: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 27: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 28: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 29: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 30: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 31: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 32: GENERAL EXTERNAL MERGE SORT
	Slide 33: EXAMPLE
	Slide 34: DOUBLE BUFFERING OPTIMIZATION
	Slide 35: DOUBLE BUFFERING
	Slide 36: DOUBLE BUFFERING
	Slide 37: DOUBLE BUFFERING
	Slide 38: DOUBLE BUFFERING
	Slide 39: DOUBLE BUFFERING
	Slide 40: DOUBLE BUFFERING
	Slide 44: COMPARISON OPTIMIZATIONS

	Tree Sorting
	Slide 45: USING B+TREES FOR SORTING
	Slide 46: CASE #1 – CLUSTERED B+TREE
	Slide 47: CASE #2 – UNCLUSTERED B+TREE

	Aggregations
	Slide 48: AGGREGATIONS
	Slide 49: SORTING AGGREGATION
	Slide 50: SORTING AGGREGATION
	Slide 51: ALTERNATIVES TO SORTING
	Slide 52: HASHING AGGREGATE
	Slide 53: EXTERNAL HASHING AGGREGATE
	Slide 54: PHASE #1 – PARTITION
	Slide 55: PHASE #1 – PARTITION
	Slide 56: PHASE #1 – PARTITION
	Slide 57: PHASE #1 – PARTITION
	Slide 58: PHASE #2 – REHASH
	Slide 59: PHASE #2 – REHASH
	Slide 60: PHASE #2 – REHASH
	Slide 61: PHASE #2 – REHASH
	Slide 62: PHASE #2 – REHASH
	Slide 63: PHASE #2 – REHASH
	Slide 64: HASHING SUMMARIZATION
	Slide 65: HASHING SUMMARIZATION
	Slide 66: HASHING SUMMARIZATION
	Slide 67: HASHING SUMMARIZATION

	Conclusion
	Slide 68: CONCLUSION
	Slide 69: NEXT CLASS

