
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Query
Execution I

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

Project #2 is due Sunday Oct 27th @ 11:59pm
→ Saturday Office Hours on Oct 26th @ 3:00-5:00pm

Homework #4 is due Sunday Nov 3rd @ 11:59pm

Mid-term exam grades will be posted tomorrow.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

UPCOMING DATABASE TALKS

Spice.ai (DB Seminar)
→ Monday Oct 21st @ 4:30pm
→ Zoom

Exon (DB Seminar)
→ Monday Oct 28th @ 4:30pm
→ Zoom

Synnada (DB Seminar)
→ Monday Nov 4th @ 4:30pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/building-blocks-accelerating-data-and-ai-with-spice-ai-open-source-software-luke-kim/
https://db.cs.cmu.edu/events/building-blocks-exon-trent-hauck/
https://db.cs.cmu.edu/events/building-blocks-synnada-mehmet-ozan-kabak/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY EXECUTION

A query plan is a DAG of operators.

A pipeline is a sequence of operators
where tuples continuously flow
between them without intermediate
storage.

A pipeline breaker is an operator
that cannot finish until all its children
emit all their tuples.
→ Joins (Build Side), Subqueries, Order By

4

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY EXECUTION

A query plan is a DAG of operators.

A pipeline is a sequence of operators
where tuples continuously flow
between them without intermediate
storage.

A pipeline breaker is an operator
that cannot finish until all its children
emit all their tuples.
→ Joins (Build Side), Subqueries, Order By

4

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

Pipeline #1

Pipeline #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Processing Models

Access Methods

Modification Queries

Expression Evaluation

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROCESSING MODEL

A DBMS's processing model defines how the
system executes a query plan and moves data from
one operator to the next.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types of
execution paths:
→ Control Flow: How the DBMS invokes an operator.
→ Data Flow: How an operator sends its results.

The output of an operator can be either whole
tuples (NSM) or subsets of columns (DSM).

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROCESSING MODEL

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

7

Most Common

Rare

Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ITERATOR MODEL

Each query plan operator implements a Next()
function.
→ On each invocation, the operator returns either a single

tuple or a EOF marker if there are no more tuples.
→ The operator implements a loop that calls Next() on its

children to retrieve their tuples and then process them.

Each operator implementation also has Open() and
Close() functions.
→ Analogous to constructors/destructors, but for operators.

Also called Volcano or Pipeline Model.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

9

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

Next()

Next()

Next() Next()

Next()

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

9

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3

Single Tuple

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

9

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

9

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

Pipeline #1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ITERATOR MODEL

9

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

Pipeline #1

Pipeline #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ITERATOR MODEL

The Iterator model is used in almost every DBMS.
→ Easy to implement / debug.
→ Output control works easily with this approach.

Allows for pipelining where the DBMS tries to
process each tuple through as many operators as
possible before retrieving the next tuple.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

Each operator processes its input all at once and
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid

scanning too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM).
→ Originally developed by MonetDB in the 1990s to process

entire columns at a time instead of single tuples.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

12

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

All Tuples

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

12

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

12

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

12

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

12

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

12

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝



out = []
for t in S:
 if evalPred(t): out.add(t)
return out

Control Flow
Data Flow

Operator Fusion

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MATERIALIZATION MODEL

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not ideal for OLAP queries with large intermediate
results because DBMS must allocate buffers.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a Next() function, but…

Each operator emits a batch of tuples instead of a
single tuple.
→ The operator's internal loop processes multiple tuples at a

time.
→ The size of the batch can vary based on hardware or query

properties.
→ Each batch will contain one or more columns each their

own null bitmaps.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORIZATION MODEL

15

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

Tuple Batch

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORIZATION MODEL

15

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

Tuple Batch

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORIZATION MODEL

15

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

Tuple Batch

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute
operators over batches of tuples.
→ Operators perform work in tight for-loops over arrays,

which compilers know how to optimize / vectorize.
→ No data or control dependencies.
→ Hot instruction cache.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute
operators over batches of tuples.
→ Operators perform work in tight for-loops over arrays,

which compilers know how to optimize / vectorize.
→ No data or control dependencies.
→ Hot instruction cache.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

In the previous examples, the DBMS starts
executing a query by invoking Next() at the root of
the query plan and pulling data up from leaf
operators.

This is the how most DBMSs implement their
execution engine.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed between operators using function

calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ Can "fuse" operators together within a for-loop to

minimize intermediate result staging.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed between operators using function

calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ Can "fuse" operators together within a for-loop to

minimize intermediate result staging.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed between operators using function

calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ Can "fuse" operators together within a for-loop to

minimize intermediate result staging.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

19

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)

1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

Operator Fusion

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

19

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)

1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

Scheduler

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

PUSH-BASED ITERATOR MODEL

19

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)

1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

Scheduler

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)
→ Easy to control output via LIMIT.
→ Parent operator blocks until its child returns with a tuple.
→ Additional overhead because operators' Next() functions

are implemented as virtual functions.
→ Branching costs on each Next() invocation.

Approach #2: Bottom-to-Top (Push)
→ Allows for tighter control of caches/registers in pipelines.
→ May not have exact control of intermediate result sizes.
→ Difficult to implement some operators (Sort-Merge Join).

20

Most Common

Rare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

ACCESS METHODS

An access method is the way that the
DBMS accesses the data stored in a
table.
→ Not defined in relational algebra.

Three basic approaches:
→ Sequential Scan.
→ Index Scan (many variants).
→ Multi-Index Scan.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEQUENTIAL SCAN

For each page in the table:
→ Retrieve it from the buffer pool.
→ Iterate over each tuple and check whether

to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot it
examined.

for page in table.pages:
 for t in page.tuples:
 if evalPred(t):
 // Do Something!

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEQUENTIAL SCAN OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

Lecture #06

Lecture #14

Lecture #14

Lecture #08

Lecture #12

Lecture #5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA SKIPPING

Approach #1: Approximate Queries (Lossy)
→ Execute queries on a sampled subset of the entire table to

produce approximate results.
→ Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle,

Snowflake, Google BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)
→ Pre-compute columnar aggregations per page that allow

the DBMS to check whether queries need to access it.
→ Trade-off between page size vs. filter efficacy.
→ Examples: Oracle, Vertica, SingleStore, Netezza,

Snowflake, Google BigQuery

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ZONE MAPS

Pre-computed aggregates for the attribute values in
a page. DBMS checks the zone map first to decide
whether it wants to access the page.

Zone Map

val

100

400

280

1400

type

MIN
MAX
AVG
SUM

5COUNT

Original Data

val

100

200

300

400

400

SELECT * FROM table
 WHERE val > 600

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ZONE MAPS

Pre-computed aggregates for the attribute values in
a page. DBMS checks the zone map first to decide
whether it wants to access the page.

Zone Map

val

100

400

280

1400

type

MIN
MAX
AVG
SUM

5COUNT

Original Data

val

100

200

300

400

400

SELECT * FROM table
 WHERE val > 600

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INDEX SCAN

The DBMS picks an index to find the tuples that the
query needs.

Which index to use depends on:
→ What attributes the index contains
→ What attributes the query references
→ The attribute's value domains
→ Predicate composition
→ Whether the index has unique or non-unique keys

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INDEX SCAN

Suppose that we have a single table
with 100 tuples and two indexes:
→ Index #1: age
→ Index #2: dept

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

There are 99 people
under the age of 30 but
only 2 people in the CS
department.

Scenario #1

There are 99 people in
the CS department but
only 2 people under the
age of 30.

Scenario #2

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MULTI-INDEX SCAN

If there are multiple indexes that the DBMS can use
for a query:
→ Compute sets of Record IDs using each matching index.
→ Combine these sets based on the query’s predicates (union

vs. intersect).
→ Retrieve the records and apply any remaining predicates.

Examples:
→ DB2 Multi-Index Scan
→ PostgreSQL Bitmap Scan
→ MySQL Index Merge

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MULTI-INDEX SCAN

Given the following query on a
database with an index #1 on age and
an index #2 on dept:
→ We can retrieve the Record IDs satisfying

age<30 using index #1.
→ Then retrieve the Record IDs satisfying

dept='CS' using index #2.
→ Take their intersection.
→ Retrieve records and check

country='US'.

47

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MULTI-INDEX SCAN

Set intersection can be done
efficiently with bitmaps or hash
tables.

age<30 dept='CS'

record ids record ids

country='US'fetch records

48

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MODIFICATION QUERIES

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for modifying the
target table and its indexes.
→ Constraint checks can either happen immediately inside of

operator or deferred until later in query/transaction.

The output of these operators can either be Record
Ids or tuple data (i.e., RETURNING).

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MODIFICATION QUERIES

UPDATE/DELETE:
→ Child operators pass Record IDs for target tuples.
→ Must keep track of previously seen tuples.

INSERT:
→ Choice #1: Materialize tuples inside of the operator.
→ Choice #2: Operator inserts any tuple passed in from child

operators.

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(999,Andy)

51

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(999,Andy)

52

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(999,Andy)

53

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(1099,Andy)

54

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

55

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(1099,Andy)

56

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(1099,Andy)

57

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CREATE INDEX idx_salary
 ON people (salary);

UPDATE QUERY PROBLEM

for t in child.Next():
 removeFromIndex(idx_salary, t.salary, t)
 updateTuple(t.salary = t.salary + 100)
 insertIntoIndex(idx_salary, t.salary, t)

for t in Indexpeople:
 if t.salary < 1100:
 emit(t)

UPDATE people
 SET salary = salary + 100
 WHERE salary < 1100

Index(people.salary)

(1199,Andy)

58

Control Flow
Data Flow

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HALLOWEEN PROBLEM

Anomaly where an update operation changes the
physical location of a tuple, which causes a scan
operator to visit the tuple multiple times.
→ Can occur on clustered tables or index scans.

First discovered by IBM researchers while working
on System R on Halloween day in 1976.

Solution: Track modified record ids per query.

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Halloween_Problem

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100;

EXPRESSION EVALUATION

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent
different expression types:
→ Comparisons (=, <, >, !=)
→ Conjunction (AND), Disjunction (OR)
→ Arithmetic Operators (+, -, *, /, %)
→ Constant Values
→ Tuple Attribute References
→ Functions Attribute(S.id)

=

Attribute(R.id)

AND

>

Attribute(value) Constant(100)

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Execution Context

EXPRESSION EVALUATION

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

1000

Execution Context

EXPRESSION EVALUATION

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

1000

991

Execution Context

EXPRESSION EVALUATION

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

63

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

1000

991 9

Execution Context

EXPRESSION EVALUATION

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

64

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

1000

991 9

1000

Execution Context

EXPRESSION EVALUATION

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

65

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

1000

991 9

true

1000

Execution Context

EXPRESSION EVALUATION

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXPRESSION EVALUATION

Evaluating predicates by traversing a
tree is terrible for the CPU.
→ The DBMS traverses the tree and for each

node that it visits, it must figure out what
the operator needs to do.

A better approach is to evaluate the
expression directly.

An even better approach is to
vectorize it evaluate a batch of tuples
at the same time…

Constant(1)

=

Attribute(s.val)

bool check(val) {
 return (val == 1);
}

Machine Code

gcc, Clang, LLVM, …

67

SELECT * WHERE s.val = 1;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:
→ Identify redundant / unnecessary

operations that are wasteful.
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

38

=

UPPER() UPPER()

Constant('wutang')Attribute(col1)

WHERE UPPER(col1) = UPPER('wutang');

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:
→ Identify redundant / unnecessary

operations that are wasteful.
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

38

=

UPPER()

Attribute(col1)

Constant('WUTANG')

WHERE UPPER(col1) = UPPER('wutang');

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:
→ Identify redundant / unnecessary

operations that are wasteful.
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

Common Sub-Expr. Elimination:
→ Identify repeated sub-expressions that can

be shared across expression tree.
→ Compute once and then reuse result.

38

=

UPPER()

Attribute(col1)

Constant('WUTANG')

STRPOS()

OR

Op(<)

Constant('x') Attribute(col1)

Constant(2)

Op(>)

Constant(8)STRPOS()

Constant('x') Attribute(col1)

WHERE UPPER(col1) = UPPER('wutang');

WHERE STRPOS('x', col1) < 2
 OR STRPOS('x', col1) > 8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:
→ Identify redundant / unnecessary

operations that are wasteful.
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

Common Sub-Expr. Elimination:
→ Identify repeated sub-expressions that can

be shared across expression tree.
→ Compute once and then reuse result.

38

=

UPPER()

Attribute(col1)

Constant('WUTANG')

STRPOS()

OR

Op(<)

Constant('x') Attribute(col1)

Constant(2)

Op(>)

Constant(8)

WHERE UPPER(col1) = UPPER('wutang');

WHERE STRPOS('x', col1) < 2
 OR STRPOS('x', col1) > 8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:
→ Identify redundant / unnecessary

operations that are wasteful.
→ Compute a sub-expression on a constant

value once and reuse result per tuple.

Common Sub-Expr. Elimination:
→ Identify repeated sub-expressions that can

be shared across expression tree.
→ Compute once and then reuse result.

38

=

UPPER()

Attribute(col1)

Constant('WUTANG')

STRPOS()

OR

Op(<)

Constant('x') Attribute(col1)

Constant(2)

Op(>)

Constant(8)

WHERE UPPER(col1) = UPPER('wutang');

WHERE STRPOS('x', col1) < 2
 OR STRPOS('x', col1) > 8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

The same query plan can be executed in multiple
different ways.

(Most) DBMSs will want to use index scans as much
as possible.

Expression trees are flexible but slow.
JIT compilation can (sometimes) speed them up.

73

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Parallel Query Execution

74

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Query Execution I
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: QUERY EXECUTION
	Slide 5: QUERY EXECUTION
	Slide 6: TODAY'S AGENDA

	Processing Models
	Slide 7: PROCESSING MODEL
	Slide 8: PROCESSING MODEL
	Slide 9: ITERATOR MODEL
	Slide 10: ITERATOR MODEL
	Slide 11: ITERATOR MODEL
	Slide 12: ITERATOR MODEL
	Slide 13: ITERATOR MODEL
	Slide 14: ITERATOR MODEL
	Slide 15: ITERATOR MODEL
	Slide 16: MATERIALIZATION MODEL
	Slide 17: MATERIALIZATION MODEL
	Slide 18: MATERIALIZATION MODEL
	Slide 19: MATERIALIZATION MODEL
	Slide 20: MATERIALIZATION MODEL
	Slide 21: MATERIALIZATION MODEL
	Slide 22: MATERIALIZATION MODEL
	Slide 23: MATERIALIZATION MODEL
	Slide 24: VECTORIZATION MODEL
	Slide 25: VECTORIZATION MODEL
	Slide 26: VECTORIZATION MODEL
	Slide 27: VECTORIZATION MODEL
	Slide 28: VECTORIZATION MODEL
	Slide 29: VECTORIZATION MODEL

	Push vs Pull
	Slide 30: OBSERVATION
	Slide 31: PLAN PROCESSING DIRECTION
	Slide 32: PLAN PROCESSING DIRECTION
	Slide 33: PLAN PROCESSING DIRECTION
	Slide 34: PUSH-BASED ITERATOR MODEL
	Slide 35: PUSH-BASED ITERATOR MODEL
	Slide 36: PUSH-BASED ITERATOR MODEL
	Slide 37: PLAN PROCESSING DIRECTION

	Access Methods
	Slide 38: ACCESS METHODS
	Slide 39: SEQUENTIAL SCAN
	Slide 40: SEQUENTIAL SCAN OPTIMIZATIONS
	Slide 41: DATA SKIPPING
	Slide 42: ZONE MAPS
	Slide 43: ZONE MAPS
	Slide 44: INDEX SCAN
	Slide 45: INDEX SCAN
	Slide 46: MULTI-INDEX SCAN
	Slide 47: MULTI-INDEX SCAN
	Slide 48: MULTI-INDEX SCAN

	Modifications
	Slide 49: MODIFICATION QUERIES
	Slide 50: MODIFICATION QUERIES
	Slide 51: UPDATE QUERY PROBLEM
	Slide 52: UPDATE QUERY PROBLEM
	Slide 53: UPDATE QUERY PROBLEM
	Slide 54: UPDATE QUERY PROBLEM
	Slide 55: UPDATE QUERY PROBLEM
	Slide 56: UPDATE QUERY PROBLEM
	Slide 57: UPDATE QUERY PROBLEM
	Slide 58: UPDATE QUERY PROBLEM
	Slide 59: HALLOWEEN PROBLEM

	Expression Evaluation
	Slide 60: EXPRESSION EVALUATION
	Slide 61: EXPRESSION EVALUATION
	Slide 62: EXPRESSION EVALUATION
	Slide 63: EXPRESSION EVALUATION
	Slide 64: EXPRESSION EVALUATION
	Slide 65: EXPRESSION EVALUATION
	Slide 66: EXPRESSION EVALUATION
	Slide 67: EXPRESSION EVALUATION
	Slide 68: EXPRESSION EVALUATION: OPTIMIZATIONS
	Slide 69: EXPRESSION EVALUATION: OPTIMIZATIONS
	Slide 70: EXPRESSION EVALUATION: OPTIMIZATIONS
	Slide 71: EXPRESSION EVALUATION: OPTIMIZATIONS
	Slide 72: EXPRESSION EVALUATION: OPTIMIZATIONS

	Conclusion
	Slide 73: CONCLUSION
	Slide 74: NEXT CLASS

