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ADMINISTRIVIA

Project #2 is due Sunday Oct 27th @ 11:59pm
— Saturday Office Hours on Oct 26™ @ 3:00-5:00pm

Homework #4 is due Sunday Nov 3™ @ 11:59pm
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PARALLEL QUERY EXECUTION

The database is spread across multiple resources to

— Deal with large data sets that don't fit on a single
machine/node

— Higher performance

— Redundancy/Fault-tolerance

Appears as a single logical database instance to the

application, regardless of physical organization.
— SQL query for a single-resource DBMS should generate
the same result on a parallel or distributed DBMS.
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PARALLEL VS. DISTRIBUTED

Parallel DBMSs

— Resources are physically close to each other.
— Resources communicate over high-speed interconnect.
— Communication is assumed to be cheap and reliable.

Distributed DBMSs

— Resources can be far from each other.
— Resources communicate using slow(er) interconnect.
— Communication costs and problems cannot be ignored.

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TODAY’S AGENDA

Process Models

Execution Parallelism
I/O Parallelism
DB Flash Talk: ClickHouse
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PROCESS MODEL

A DBMS'’s process model defines how the system
is architected to support concurrent requests /
queries.

A worker is the DBMS component responsible for
executing tasks on behalf of the client and returning
the results.
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PROCESS MODEL

Approach #1: Process per DBMS Worker
Approach #2: Thread per DBMS Worker « Most Common

Approach #3: Embedded DBMS

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PROCESS PER WORKER

Each worker is a separate OS process.
— Relies on the OS dispatcher.
— Use shared-memory for global data structures.

— A process crash does not take down the entire system. ORACLE
— Examples: IBM DB2, Postgres, Oracle
& Q] &
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Application Dispatcher W orker Processes
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PROCESS PER WORKER

Each worker is a separate OS process.

— Relies on the OS dispatcher.

— Use shared-memory for global data structures.
— A process crash does not take down the entire system. ORACLE
— Examples: IBM DB2, Postgres, Oracle

PostgreSQL

SQL Commands

Application Dispatcher W orker Processes
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THREAD PER WORKER

Single process with multiple worker threads. %%Qi_ Server
— DBMS (mostly) manages its own scheduling.
— May or may not use a dispatcher thread. RMQSQL,M

— Thread crash (may) kill the entire system.
— Examples: MSSQL, MySQL, DB2, Oracle (2014)
Almost every DBMS created in the last 20 years!
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THREAD PER WORKER

Single process with multiple worker threads. %%Qi_ Server
— DBMS (mostly) manages its own scheduling.
— May or may not use a dispatcher thread. RMHSQL,M

— Thread crash (may) kill the entire system.
— Examples: MSSQL, MySQL, DB2, Oracle (2014)
Almost every DBMS created in the last 20 years!

ORACLE

SQL Commands
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EMBEDDED DBMS

DBMS runs inside the same address space as the ?‘SQLite
application. Application is (primarily) responsible o eDB
for threads and scheduling.
Q puckos
The application may support outside connections.
— Examples: BerkeleyDB, SQLite, RocksDB, LevelDB @ levelos
Yetta®®
WIREDTIGER
% @) spuinTERDE
= bitcask
%\
Application
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SCHEDULING

For each query plan, the DBMS decides where,

when, and how to execute it.

— How many tasks should it use?

— How many CPU cores should it use?

— What CPU core should the tasks execute on?
— Where should a task store its output?

The DBMS nearly always knows more than the OS.
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PROCESS MODELS

Advantages of a multi-threaded architecture:
— Less overhead per context switch.
— Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

DBMS from the last 15 years use native OS threads
unless they are Redis or Postgres forks.
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PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously

to improve hardware utilization.

— Active tasks do not need to belong to the same query.

— High-level approaches do not vary on whether the DBMS
is multi-threaded, multi-process, or multi-node.

Approach #1: Inter-Query Parallelism
Approach #2: Intra-Query Parallelism
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INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple

queries to execute simultaneously.
— Most DBMSs use a simple first-come, first-served policy.

[f queries are read-only, then this requires almost

no explicit coordination between the queries.
— Buffer pool can handle most of the sharing if necessary.

Lecture 414

[f multiple queries are updating the database at the
same time, then this is tricky to do correctly...
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INTRA-QUERY PARALLELISM

Improve the performance of a single query by

executing its operators in parallel.
— Think of the organization of operators in terms of a
producer/consumer paradigm.

Approach #1: Intra-Operator (Horizontal)
Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel versions of every operator.
— Can either have multiple threads access centralized data
structures or use partitioning to divide work up.
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PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

R(id, name)

HT :  S(id,value,cdate)

max
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PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

HT, HT

R(id,name) : : S(id,value,cdate)
 BE T
@55 @ B
S © :

max
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INTRA-QUERY PARALLELISM -

Approach #1: Intra-Operator (Horizontal) « Most Common
Approach #2: Inter-Operator (Vertical) « Less Common

Approach #3: Bushy « Higher-end Systems
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INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)

— Operators are decomposed into independent instances that
perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple

children/parent operators.
— Postgres calls this “gather”
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

t
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

Exchange
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

N
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
Exchange FROM A JOIN B
ON A.id = B.1id
WHERE A.value < 99
<]

AND B.value > 100
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

TC

Exchange
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EXCHANGE OPERATOR

Exchange Type #1 — Gather
— Combine the results from multiple workers
into a single output stream.

Exchange Type #2 — Distribute

— Split a single input stream into multiple
output streams.

Exchange Type #3 — Repartition

— Shuffle multiple input streams across
multiple output streams.

— Some DBMSs always perform this step after
every pipeline (e.g., Dremel/BigQuery).

Source: Craig Freedman
$=CMU-DB
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INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)

— Operations are overlapped to pipeline data from one stage
to the next without materialization.

— Workers execute multiple operators from different
segments of a query plan at the same time.

— Still need exchange operators to combine intermediate
results from segments.

Also called pipelined parallelism.
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INTER-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.1id
WHERE A.value < 99
AND B.value > 100

TC

for r, € outer: /| l

QM for r, € inner: G G

emit(r, >r,) 7 N
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INTER-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99

a for r € incoming: AND B.value > 100
n emit(m(r))

for r, € outer:
QM for r, € inner: G G

emit(r,><r,) el N

A B
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INTER-OPERATOR PARALLELISM

SELECT A.id, B.value
I g FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
@ for r € incoming: AND B.value > 100
n emit(m(r))
for r, € outer:
QM for r, € inner: G G

emit(r, >r,) 7 N

A B
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BUSHY PARALLELISM

Approach #3: Bushy Parallelism

— Hybrid of intra- and inter-operator parallelism where
workers execute multiple operators from different
segments of a query plan at the same time.

— Still need exchange operators to combine intermediate
results from segments.
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BUSHY PARALLELISM

SELECT =*
FROM A
JOIN B
JOIN C
JOIN D
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OBSERVATION

Using additional processes/threads to execute
queries in parallel won't help if the disk is always the
main bottleneck.

[t can sometimes make the DBMS'’s performance
worse if a worker is accessing different segments of
the disk at the same time.
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I70 PARALLELISM

Split the DBMS across multiple storage devices to
improve disk bandwidth latency.

Many different options that have trade-offs:
— Multiple Disks per Database

— One Database per Disk

— One Relation per Disk

— Split Relation across Multiple Disks

Some DBMSs support this natively. Others require
admin to configure outside of DBMS.
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MULTI-DISK PARALLELISM

Store data across multiple disks to

) " File of 6 pages (logical view):
improve performance + durability.

page || page || page || page || page || page
1 2 3 4 5 6

Striping (RAID 0)

Physical layout of pages across disks
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MULTI-DISK PARALLELISM

Store data across multiple disks to

) " File of 6 pages (logical view):
improve performance + durability.

page || page || page || page || page || page
1 2 3 4 5 6

Mirroring (RAID 1)

Physical layout of pages across disks
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MULTI-DISK PARALLELISM

Store data across multiple disks to

) " File of 6 pages (logical view):
improve performance + durability.

page || page | page || page || page || page
1 2 3 4 5 6

Hardware-based: I/O controller Mirroring (RAID 1)
makes multiple physical devices

appear as single logical device.
— Transparent to DBMS (e.g., RAID).

S
— Faster and more flexible.

— s erasure codes at the file/object level. Physical layout of pages across disks
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MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller Performance

makes multiple physical devices

appear as single logical device.
— Transparent to DBMS (e.g., RAID).

S
— Faster and more flexible.

— s erasure codes at the file/object level.
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DATABASE PARTITIONING

Some DBMSs allow you to specify the disk location

of each individual database.
— The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the

DBMS stores each database in a separate directory.
— The DBMS recovery log file might still be shared if
transactions can update multiple databases.
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PARTITIONING

Split a single logical table into disjoint physical
segments that are stored/managed separately.

Partitioning should (ideally) be transparent to the

application.
— The application should only access logical tables and not
have to worry about how things are physically stored.

W e will cover this further when we talk about
distributed databases.
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CONCLUSION

Parallel execution is important, which is why
(almost) every major DBMS supports it.

However, it is hard to get right.
— Coordination Overhead

— Scheduling

— Concurrency Issues

— Resource Contention
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NEXT CLASS

Query Optimization
— Logical vs Physical Plans
— Search Space of Plans
— Cost Estimation of Plans
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