
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Query
Execution II

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

Project #2 is due Sunday Oct 27th @ 11:59pm
→ Saturday Office Hours on Oct 26th @ 3:00-5:00pm

Homework #4 is due Sunday Nov 3rd @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PARALLEL QUERY EXECUTION

The database is spread across multiple resources to
→ Deal with large data sets that don’t fit on a single

machine/node
→ Higher performance
→ Redundancy/Fault-tolerance

Appears as a single logical database instance to the
application, regardless of physical organization.
→ SQL query for a single-resource DBMS should generate

the same result on a parallel or distributed DBMS.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PARALLEL VS. DISTRIBUTED

Parallel DBMSs
→ Resources are physically close to each other.
→ Resources communicate over high-speed interconnect.
→ Communication is assumed to be cheap and reliable.

Distributed DBMSs
→ Resources can be far from each other.
→ Resources communicate using slow(er) interconnect.
→ Communication costs and problems cannot be ignored.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY’S AGENDA

Process Models

Execution Parallelism

I/O Parallelism

DB Flash Talk: ClickHouse

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://clickhouse.com/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROCESS MODEL

A DBMS’s process model defines how the system
is architected to support concurrent requests /
queries.

A worker is the DBMS component responsible for
executing tasks on behalf of the client and returning
the results.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROCESS MODEL

Approach #1: Process per DBMS Worker

Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS

9

Most Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle

10

Application Dispatcher Worker Processes

Connect

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle

10

Application Dispatcher Worker Processes

SQL Commands

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

THREAD PER WORKER

Oracle (2014)

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

 Almost every DBMS created in the last 20 years!

11

Application Dispatcher Worker Threads

Connect

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.oracle.com/database/121/CNCPT/process.htm#CNCPT901

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

THREAD PER WORKER

Oracle (2014)

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

 Almost every DBMS created in the last 20 years!

11

Application Dispatcher Worker Threads

SQL Commands

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.oracle.com/database/121/CNCPT/process.htm#CNCPT901

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EMBEDDED DBMS

DBMS runs inside the same address space as the
application. Application is (primarily) responsible
for threads and scheduling.

The application may support outside connections.
→ Examples: BerkeleyDB, SQLite, RocksDB, LevelDB

14

Application

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCHEDULING

For each query plan, the DBMS decides where,
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS nearly always knows more than the OS.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROCESS MODELS

Advantages of a multi-threaded architecture:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

DBMS from the last 15 years use native OS threads
unless they are Redis or Postgres forks.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously
to improve hardware utilization.
→ Active tasks do not need to belong to the same query.
→ High-level approaches do not vary on whether the DBMS

is multi-threaded, multi-process, or multi-node.

Approach #1: Inter-Query Parallelism

Approach #2: Intra-Query Parallelism

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.
→ Most DBMSs use a simple first-come, first-served policy.

If queries are read-only, then this requires almost
no explicit coordination between the queries.
→ Buffer pool can handle most of the sharing if necessary.

If multiple queries are updating the database at the
same time, then this is tricky to do correctly…

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.
→ Think of the organization of operators in terms of a

producer/consumer paradigm.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel versions of every operator.
→ Can either have multiple threads access centralized data

structures or use partitioning to divide work up.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

20

h1
⋮

HTR

h1
⋮

HTS
0
1
2

max

R(id,name) S(id,value,cdate)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

20

h1
⋮

HTR

h1
⋮

HTS
0
1
2

max

R(id,name) S(id,value,cdate)
1

2

3

n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

21

Most Common

Higher-end Systems

Less Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple
children/parent operators.
→ Postgres calls this “gather”

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3
1 2 3

A B

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3
1 2 3

A B

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3
1 2 3

A B

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝

B1 B2 B3
1 2 3

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝

B1 B2 B3
1 2 3

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝

B1 B2 B3
1 2 3

Probe HT Probe HT Probe HT

⨝

Exchange

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM

23

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝

B1 B2 B3
1 2 3

Probe HT Probe HT Probe HT

⨝

Exchange

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXCHANGE OPERATOR

Exchange Type #1 – Gather
→ Combine the results from multiple workers

into a single output stream.

Exchange Type #2 – Distribute
→ Split a single input stream into multiple

output streams.

Exchange Type #3 – Repartition
→ Shuffle multiple input streams across

multiple output streams.
→ Some DBMSs always perform this step after

every pipeline (e.g., Dremel/BigQuery).

24

Gather

Operator Operator Operator

Repartition

Operator Operator Operator

Operator Operator

Operator Operator Operator

Distribute

Craig Freedman

Source: Craig Freedman

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped to pipeline data from one stage

to the next without materialization.
→ Workers execute multiple operators from different

segments of a query plan at the same time.
→ Still need exchange operators to combine intermediate

results from segments.

Also called pipelined parallelism.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTER-OPERATOR PARALLELISM

26

1 ⨝
for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A B

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTER-OPERATOR PARALLELISM

26

1 ⨝
for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

2 for r ∊ incoming:
 emit((r))

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A B

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTER-OPERATOR PARALLELISM

26

1 ⨝
for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

2 for r ∊ incoming:
 emit((r))

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A B

⨝

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BUSHY PARALLELISM

Approach #3: Bushy Parallelism
→ Hybrid of intra- and inter-operator parallelism where

workers execute multiple operators from different
segments of a query plan at the same time.

→ Still need exchange operators to combine intermediate
results from segments.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT *
 FROM A
 JOIN B
 JOIN C
 JOIN D

BUSHY PARALLELISM

28

A B

⨝

C D

⨝

⨝

A

⨝
B

⨝
C D

⨝

Exchange Exchange

Exchange

⨝
3 4

1 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

Using additional processes/threads to execute
queries in parallel won’t help if the disk is always the
main bottleneck.

It can sometimes make the DBMS’s performance
worse if a worker is accessing different segments of
the disk at the same time.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

I/O PARALLELISM

Split the DBMS across multiple storage devices to
improve disk bandwidth latency.

Many different options that have trade-offs:
→ Multiple Disks per Database
→ One Database per Disk
→ One Relation per Disk
→ Split Relation across Multiple Disks

Some DBMSs support this natively. Others require
admin to configure outside of DBMS.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

31

Physical layout of pages across disks

page
4

page
1

page
5

page
2

page
6

page
3

Striping (RAID 0)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

31

Physical layout of pages across disks

page
2

page
1

page
2

page
1

page
2

page
1

Mirroring (RAID 1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

S

→ Faster and more flexible.
→ s erasure codes at the file/object level.

31

Physical layout of pages across disks

page
2

page
1

page
2

page
1

page
2

page
1

Mirroring (RAID 1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

S

→ Faster and more flexible.
→ s erasure codes at the file/object level.

31

Performance

CapacityDurability

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABASE PARTITIONING

Some DBMSs allow you to specify the disk location
of each individual database.
→ The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the
DBMS stores each database in a separate directory.
→ The DBMS recovery log file might still be shared if

transactions can update multiple databases.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PARTITIONING

Split a single logical table into disjoint physical
segments that are stored/managed separately.

Partitioning should (ideally) be transparent to the
application.
→ The application should only access logical tables and not

have to worry about how things are physically stored.

We will cover this further when we talk about
distributed databases.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

Parallel execution is important, which is why
(almost) every major DBMS supports it.

However, it is hard to get right.
→ Coordination Overhead
→ Scheduling
→ Concurrency Issues
→ Resource Contention

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Query Optimization
→ Logical vs Physical Plans
→ Search Space of Plans
→ Cost Estimation of Plans

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Query Execution II
	Slide 2: ADMINISTRIVIA
	Slide 3: PARALLEL QUERY EXECUTION
	Slide 4: PARALLEL VS. DISTRIBUTED
	Slide 5: TODAY’S AGENDA

	Process Models
	Slide 6: PROCESS MODEL
	Slide 7: PROCESS MODEL
	Slide 8: PROCESS PER WORKER
	Slide 9: PROCESS PER WORKER
	Slide 10: THREAD PER WORKER
	Slide 11: THREAD PER WORKER
	Slide 12: EMBEDDED DBMS
	Slide 13: SCHEDULING
	Slide 14: PROCESS MODELS

	Query Execution
	Slide 15: PARALLEL EXECUTION
	Slide 16: INTER-QUERY PARALLELISM
	Slide 17: INTRA-QUERY PARALLELISM
	Slide 18: PARALLEL GRACE HASH JOIN
	Slide 19: PARALLEL GRACE HASH JOIN
	Slide 20: INTRA-QUERY PARALLELISM
	Slide 21: INTRA-OPERATOR PARALLELISM
	Slide 22: INTRA-OPERATOR PARALLELISM
	Slide 23: INTRA-OPERATOR PARALLELISM
	Slide 24: INTRA-OPERATOR PARALLELISM
	Slide 25: INTRA-OPERATOR PARALLELISM
	Slide 26: INTRA-OPERATOR PARALLELISM
	Slide 27: INTRA-OPERATOR PARALLELISM
	Slide 28: INTRA-OPERATOR PARALLELISM
	Slide 29: INTRA-OPERATOR PARALLELISM
	Slide 30: INTRA-OPERATOR PARALLELISM
	Slide 31: EXCHANGE OPERATOR
	Slide 32: INTER-OPERATOR PARALLELISM
	Slide 33: INTER-OPERATOR PARALLELISM
	Slide 34: INTER-OPERATOR PARALLELISM
	Slide 35: INTER-OPERATOR PARALLELISM
	Slide 36: BUSHY PARALLELISM
	Slide 37: BUSHY PARALLELISM

	I/O Parallelism
	Slide 38: OBSERVATION
	Slide 39: I/O PARALLELISM
	Slide 40: MULTI-DISK PARALLELISM
	Slide 41: MULTI-DISK PARALLELISM
	Slide 42: MULTI-DISK PARALLELISM
	Slide 43: MULTI-DISK PARALLELISM
	Slide 44: DATABASE PARTITIONING
	Slide 45: PARTITIONING

	Conclusion
	Slide 46: CONCLUSION
	Slide 47: NEXT CLASS

