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ADMINISTRIVIA

Project #3 is due Sunday Nov 17th @ 11:59pm
→ Recitation will be next week

Homework #4 is due Sunday Nov 3rd @ 11:59pm
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UPCOMING DATABASE TALKS

Exon (DB Seminar)
→ Monday Oct 28th @ 4:30pm
→ Zoom

Synnada (DB Seminar)
→ Monday Nov 4th @ 4:30pm
→ Zoom

InfluxDB (DB Seminar)
→ Monday Nov 11th @ 4:30pm
→ Zoom
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LAST CLASS

We talked about how to design the DBMS's 
architecture to execute queries in parallel.

The query plan is comprised of physical operators 
that specify the algorithm to invoke at each step of 
the plan.
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LAST CLASS

We talked about how to design the DBMS's 
architecture to execute queries in parallel.

The query plan is comprised of physical operators 
that specify the algorithm to invoke at each step of 
the plan.

But how do we go from SQL to a query plan?
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MOTIVATION

5

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

×

σEmp.did = Dept.did

https://db.cs.cmu.edu/
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1,000,000 reads + 2,000 writes
(FK join, 10k tuples in temp T2)

2,000 reads + 4 writes
(10K/500 = 20 emps per dept)

MOTIVATION

5

4 reads + 1 write

Total: 2M I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

×

σEmp.did = Dept.did

(50 + 50,000) reads
+  1,000,000 writes 

Write temp file T1
5 tuples per page in T1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

6

Total: 54k I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

(50 + 50,000) reads
+  2,000 writes 

Page Nested-Loop Join
Write Temp T1

clustered unclustered unclustered

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

6

Total: 54k I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

(50 + 50,000) reads
+  2,000 writes 

Page Nested-Loop Join
Write Temp T1

clustered unclustered unclustered
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

7

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept| =

3,150 reads + 2,000 writes 
Sort-Merge Join (50 Buffers)

Write Temp T1

clustered unclustered unclustered

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

7

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept| =

3,150 reads + 2,000 writes 
Sort-Merge Join (50 Buffers)

Write Temp T1

Materialization Model

clustered unclustered unclustered
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

7

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept| =

3,150 reads + 2,000 writes 
Sort-Merge Join (50 Buffers)

Write Temp T1

Materialization Model

Total: 3,151 I/OsVectorization Model

clustered unclustered unclustered
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MOTIVATION

8

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

clustered unclustered unclustered
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MOTIVATION

8

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

Emp

clustered unclustered unclustered
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1 + 3 (idx) + 20 (ptr chase) reads
+ 4 writes

Index Nested-Loop Join

4 reads + 1 writes
Read temp T2

MOTIVATION

8

Total: 37 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Dept

πename

σdname = 'Toy'
3 reads + 1 writes 

Access: Index(dname)

⋈Emp.did = Dept.did

Emp

clustered unclustered unclustered

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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TODAY'S AGENDA

Background

Heuristic / Ruled-based Optimization

Cost-based Optimization

Cost Model Estimation

                          

                                             
                     

                                                  
                                     

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ARCHITECTURE OVERVIEW

10

Parser

System
Catalog

Cost
Model

Binder

Optimizer
SQL Query1

Abstract
Syntax
Tree

2 Logical 
Plan

3

Physical 
Plan

4

Application

Name→Internal ID

Schema Info

Estimates

https://db.cs.cmu.edu/
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LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical 
algebra expression to the optimal equivalent 
physical algebra expression.

Physical operators define a specific execution 
strategy using an access path.
→ They can depend on the physical format of the data that 

they process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

11
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QUERY OPTIMIZATION (QO)

1. Identify candidate equivalent trees 
(logical). It is an NP-hard 
problem, so the space is large.

2. For each candidate, find the 
execution plan (physical). 
Estimate the cost of each plan.

3. Choose the best (physical) plan.

Practically: Choose from a subset 
of all possible plans.

13

Entire search space very 
large, as QO is NP-hard

(w.r.t. # joins)

p2

p1

pi

pn

p3

https://db.cs.cmu.edu/
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QUERY OPTIMIZATION

Heuristics / Rules
→ Rewrite the query to remove (guessed) inefficiencies.
→ Examples: always do selections first or push down 

projections as early as possible.
→ These techniques may need to examine catalog, but they do 

not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick 

the one with the lowest cost.

14
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LOGICAL PLAN OPTIMIZATION

Transform a logical plan into an equivalent logical 
plan using pattern matching rules.

The goal is to increase the likelihood of 
enumerating the optimal plan in the search.
→ Many equivalence rules for relational algebra!

Cannot compare plans because there is no cost 
model but can "direct" a transformation to a 
preferred side.

15
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PREDICATE PUSHDOWN

16

πename (σdname = 'Toy' (Dept ⋈ Emp)) πename (Emp ⋈ σdname = 'Toy' (Dept))Rewrite

Dept Emp

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

πename

Dept

Emp

⋈Emp.did = Dept.did

σdname = 'Toy'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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REPLACE CARTESIAN PRODUCT

17

… (σDept.did = Emp.did (Dept × Emp))

Emp Dept

σEmp.did = Dept.did

×

… (Emp ⋈Emp.did = Dept.did Dept)

Emp Dept

⋈Emp.did = Dept.did

Rewrite

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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PROJECTION PUSHDOWN

18

πEmp.ename (… ⋈did Emp) Rewrite

… Emp

πename

⋈Emp.did = Dept.did

πEmp.ename (… ⋈did (πename, did Emp))

…

Emp

πename

⋈Emp.did = Dept.did

πename,did

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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QUERY OPTIMIZATION

Heuristics / Rules
→ Rewrite the query to remove (guessed) inefficiencies.
→ Examples: always do selections first or push down 

projections as early as possible.
→ These techniques may need to examine catalog, but they do 

not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick 

the one with the lowest cost.

20
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COST-BASED QUERY OPTIMIZATION

We will start with cost-based, bottom-up QO
→ Aka the "classic" IBM System R optimizer

Approach: Enumerate different plans for the query 
and estimate their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query 
after exhausting all plans or some timeout.

21
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SINGLE-RELATION QUERY PLANNING

Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

22
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MULTI-RELATION QUERY PLANNING

Approach #1: Generative / Bottom-Up
→ Start with nothing and then iteratively assemble and add 

building blocks to generate a query plan. 
→ Examples: System R, Starburst

Approach #2: Transformation / Top-Down
→ Start with the outcome that the query wants, and then 

transform it to equivalent alternative sub-plans to find the 
optimal plan that gets to that goal.

→ Examples: Volcano, Cascades

23
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BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, Postgres, 
most open-source DBMSs.

24
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SYSTEM R OPTIMIZER

Break query into blocks and generate 
logical operators for each block.

For each logical operator, generate a 
set of physical operators that 
implement it.
→ All combinations of join algorithms and 

access paths

Then, iteratively construct a “left-deep” 
join tree that minimizes the estimated 
amount of work to execute the plan.

25

Left-Deep Tree

BA

C

D

outer inner

Bushy Tree

BA DC
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SYSTEM R OPTIMIZER

Break query into blocks and generate 
logical operators for each block.

For each logical operator, generate a 
set of physical operators that 
implement it.
→ All combinations of join algorithms and 

access paths

Then, iteratively construct a “left-deep” 
join tree that minimizes the estimated 
amount of work to execute the plan.

25

Left-Deep Tree

BA

C

D

outer inner

Bushy Tree

BA DC
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SYSTEM R OPTIMIZER

26

Step #1: Choose the best access paths 
to each table 

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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SYSTEM R OPTIMIZER

26

Step #1: Choose the best access paths 
to each table 

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  ×  ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮           ⋮          ⋮

Step #2: Enumerate all possible join 
orderings for tables

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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SYSTEM R OPTIMIZER

26

Step #1: Choose the best access paths 
to each table 

Step #3: Determine the join ordering 
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  ×  ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮           ⋮          ⋮

Step #2: Enumerate all possible join 
orderings for tables

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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SYSTEM R OPTIMIZER

27

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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SYSTEM R OPTIMIZER

27

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

27

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) MERGE_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) MERGE_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •MERGE_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

27

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST

• • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

https://db.cs.cmu.edu/
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SYSTEM R OPTIMIZER

27

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

The query has ORDER BY on 
ARTIST.ID but the logical plans 
do not contain sorting properties.

Hack: Keep track of best plans with and 
without data in proper physical form, 
and then check whether tacking on a sort 
operator at the end is better.
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TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query 
to be. Perform a branch-and-bound search to 
traverse the plan tree by converting logical 
operators into physical operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities 

during planning.

Examples: MSSQL, Greenplum, CockroachDB

29
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION

30

ARTIST ⨝ APPEARS ⨝ ALBUM
ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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OBSERVATION

Applications often execute nested queries.
→ We could optimize each block using the methods we have 

discussed.
→ However, this may be inefficient since we optimize each 

block separately without a global approach.

What if we could flatten a nested query into a single 
block and optimize it? 
→ Then, apply single-block query optimization methods.
→ Even if one cannot flatten to a single block, flattening to 

fewer blocks is still beneficial.

31
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NESTED SUB-QUERIES

The DBMS treats nested sub-queries in the where 
clause as functions that take parameters and return 
a single value or set of values.

Approach #1: Rewrite to de-correlate and/or 
flatten them.

Approach #2: Decompose nested query and 
store results in a temporary table.

32
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NESTED SUB-QUERIES: REWRITE

33

SELECT name FROM sailors AS S
 WHERE EXISTS (
    SELECT * FROM reserves AS R
     WHERE S.sid = R.sid
       AND R.day = '2022-10-25'
 )

https://db.cs.cmu.edu/
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NESTED SUB-QUERIES: REWRITE

33

SELECT name FROM sailors AS S
 WHERE EXISTS (
    SELECT * FROM reserves AS R
     WHERE S.sid = R.sid
       AND R.day = '2022-10-25'
 )

SELECT name
  FROM sailors AS S, reserves AS R
 WHERE S.sid = R.sid
   AND R.day = '2022-10-25'
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DECOMPOSING QUERIES

For harder queries, the optimizer breaks up queries 
into blocks and then concentrates on one block at a 
time.

Sub-queries are written to temporary tables that are 
discarded after the query finishes.

34
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DECOMPOSING QUERIES

35

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block
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DECOMPOSING QUERIES

35

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors
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DECOMPOSING QUERIES

35

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

###
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DECOMPOSING QUERIES

35

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Outer Block

SELECT MAX(rating) FROM sailors

###

Inner Block
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EXPRESSION REWRITING

An optimizer transforms a query’s expressions (e.g., 
WHERE/ON clause predicates) into the minimal set of 
expressions.

Implemented using if/then/else clauses or a 
pattern-matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.

36
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

37

SELECT * FROM A WHERE 1 = 0;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

37

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

37

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE NOW() IS NULL;

SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

37

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

Merging Predicates

37

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 100
    OR val BETWEEN 50 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

Merging Predicates

37

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;
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OBSERVATION

We have formulas for the operator 
algorithms (e.g. the cost formulas for 
hash join, sort merge join, …), but we 
also need to estimate the size of the 
output that an operator produces.

                                    
                                    

38

Dept

Emp

πename

⋈Emp.did = Dept.did

σename,did
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OBSERVATION

We have formulas for the operator 
algorithms (e.g. the cost formulas for 
hash join, sort merge join, …), but we 
also need to estimate the size of the 
output that an operator produces.

This is hard because the output of 
each operators depends on its input.

38

Dept

Emp

πename

⋈Emp.did = Dept.did

σename,did

???

???

???
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COST ESTIMATION

The DBMS uses a cost model to predict the 
behavior of a query plan given a database state.
→ This is an internal cost that allows the DBMS to compare 

one plan with another.

It is too expensive to run every possible plan to 
determine this information, so the DBMS need a 
way to derive this information.

39
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COST MODEL COMPONENTS

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM consumption,  

network messages…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate output size per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

40
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POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are 
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident 
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a 

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

41
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POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are 
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident 
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a 

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

41
2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.postgresql.org/docs/current/static/runtime-config-query.html


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STATISTICS

The DBMS stores internal statistics about tables, 
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS

42
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SELECTION CARDINALITY

The selectivity (sel) of a predicate P 
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
          

43

SELECT * FROM people 
 WHERE age = 9

Distinct values
of attribute

# of occurrences
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SELECTION CARDINALITY

The selectivity (sel) of a predicate P 
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

43

SC(age=9)=4

SELECT * FROM people 
 WHERE age = 9

Distinct values
of attribute

# of occurrences
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SELECTION CARDINALITY

The selectivity (sel) of a predicate P 
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

43

SC(age=9)=4

SELECT * FROM people 
 WHERE age = 9

4/45

Distinct values
of attribute

# of occurrences
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SELECTION CARDINALITY

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is 

the same.

Assumption #2: Independent Predicates
→ The predicates on attributes are independent

Assumption #3: Inclusion Principle
→ The domain of join keys overlap such that each key in the 

inner relation will also exist in the outer table.

44
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CORRELATED ATTRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

 And the following query:
→  (make=“Honda” AND model=“Accord”)

With the independence and uniformity 
assumptions,  the selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real 
selectivity is 1/100 = 0.01

45

Guy Lohman

Source: Guy Lohman
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STATISTICS

Choice #1: Histograms
→ Maintain an occurrence count per value (or range of 

values) in a column.

Choice #2: Sketches
→ Probabilistic data structure that gives an approximate 

count for a given value.

Choice #3: Sampling
→ DBMS maintains a small subset of each table that it then 

uses to evaluate expressions to compute selectivity.

46
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HISTOGRAMS

Our formulas are nice, but we assume that data 
values are uniformly distributed.

47
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EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of 
each unique key. All buckets have the same width 
(i.e., same # of value).

48
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EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of 
each unique key. All buckets have the same width 
(i.e., same # of value).
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Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

Bucket Ranges
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EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of 
each unique key. All buckets have the same width 
(i.e., same # of value).
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.
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SKETCHES

Probabilistic data structures that generate 
approximate statistics about a data set.

Cost-model can replace histograms with sketches to 
improve its selectivity estimate accuracy.

Most common examples:
→ Count-Min Sketch (1988): Approximate frequency count 

of elements in a set.
→ HyperLogLog (2007): Approximate the number of distinct 

elements in a set.
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SAMPLING

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

51

⋮
1 billion tuples

SELECT AVG(age)
  FROM people 
 WHERE age > 50

id name age status

1001 Obama 63 Rested

1002 Swift 34 Paid

1003 Tupac 25 Dead

1004 Bieber 30 Crunk

1005 Andy 43 Illin

1006 TigerKing 61 Jailed

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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SAMPLING

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

51

⋮
1 billion tuples

SELECT AVG(age)
  FROM people 
 WHERE age > 50

id name age status

1001 Obama 63 Rested

1002 Swift 34 Paid

1003 Tupac 25 Dead

1004 Bieber 30 Crunk

1005 Andy 43 Illin

1006 TigerKing 61 Jailed1001 Obama 63 Rested

1003 Tupac 25 Dead

1005 Andy 43 Illin

Table Sample

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SAMPLING

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

51

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
  FROM people 
 WHERE age > 50

id name age status

1001 Obama 63 Rested

1002 Swift 34 Paid

1003 Tupac 25 Dead

1004 Bieber 30 Crunk

1005 Andy 43 Illin

1006 TigerKing 61 Jailed1001 Obama 63 Rested

1003 Tupac 25 Dead

1005 Andy 43 Illin

Table Sample
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CONCLUSION

Query optimization is critical for a database system. 
→ SQL → Logical Plan → Physical Plan
→ Flatten queries before going to the optimization part. 

Expression handling is also important.
→ Estimate costs using models based on summarizations.

QO enumeration can be bottom-up or top-down.

If you like this and want to make cash money after 
you leave CMU, take 15-799 in spring 2025.
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NEXT CLASS

Transactions!
→ aka the second hardest part about database systems

53
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