Carnegie Mellon University

Uatabase
Systems

Concurrency . N
Control Theory =

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #3 is due Sunday Nov 17th @ 11:59pm
— Recitation: Monday Nov 4™ @ 8:00pm (Zoom)

Homework #4 is due Sunday Nov 3™ @ 11:59pm

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

COURSE STATUS

... Query Planning

A DBMS’s concurrency control and C Control
recovery components permeate oncurrency Lontro

throughout the design of its entire Operator Execution
architecture.

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #1

Application Logic
B Read(A);
Check(A > $25);
Pay($25);
A=A - $25;
Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

Read Balance: $100

—

AN

Bank Balance : $100

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #1

Application Logic

Read (A) - Read Balance: $100
| B =
» Check (A > $25) X Sufficient funds?
Bank Balance : $100

Pay($25); @

A=A - $25;
Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #1

Application Logic

Read (A) . Read Balance: $100
| b =
Check(A > $25); Sufficient funds?
; Bank Balance : $100

» Pay($25); Pay $25 @

A=A - $25;
Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #1

Application Logic

Read (A) . Read Balance: $100
| : =
Check(A > $25); Sufficient funds?

P ($25) ; Bank Balance : $100
ay 5 Pay $25
- oo =
» A=A $25 ’ New balance: $75

Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #1

Application Logic
Read(A);
Check(A > $25);
Pay($25);

A=A - $25;

»Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

Read Balance: $100

¥

Sufficient funds?

—

¥

AN

Pay $25

Bank Balance : $100

¥

New balance: $75

¥

Write Balance: $75

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #1

Application Logic
Read(A);
Check(A > $25);
Pay($25);

A=A - $25;

»Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

Read Balance: $100

¥

Sufficient funds?

—

¥

Pay $25

Bank Balance : $75

¥

New balance: $75

¥

Write Balance: $75

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #1

Application Logic
Read(A);
Check(A > $25);
Pay($25);

$¢0
o wme

$2CMU-DB

15-445/645 (Fall 2024)

Read Balance: $100

¥

Sufficient funds?

AN

—

¥

Pay $25

Bank Balance : $100

4
277

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #2

Application Logic |
Read (A) ’ Read Bala;nce: $100 Read Balice: $100
’
Check (A > $25) : Sufficient funds? Sufficient funds?
P ($2 5) ; ; Bank Balance : $100
ay ; Pay;$25 PaﬁZS @
» A=A - $25 ’ New balance: $75 New balance: $75
Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION EXAMPLE #2

Application Logic
Read(A);
Check(A > $25);
Pay($25);

A=A - $25;

»Write(A);

$2CMU-DB

15-445/645 (Fall 2024)

Read Balance: $100

Read Balance: $100

¥

¥

Sufficient funds?

Sufficient funds?

¥

¥

Pay $25

Pay $25

¥

2

New balance: $75

New balance: $75

¥

¥

Write Balance: $75

Write Balance: $75

Bank Balance : $75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.

— One and only one txn can be running simultaneously in
the DBMS.

Before a txn starts, copy the entire database to a

new file and make all changes to that file.

— If the txn completes successfully, overwrite the original file
with the new one.

— If the txn fails, just remove the dirty copy.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:

— Correctness
— Fairness

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the “outside world” are beyond the scope of the
DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g., A,
B,C,...).

— We do not need to define what these objects are now.
— We will discuss how to handle inserts/deletes next week.

Transaction: A sequence of read and write
operations (e.g., R(A), W(B),...)
— DBMS'’s abstract view of a user program.

— A new txn starts with the BEGIN command.
— The txn stops with either COMMIT or ROLLBACK

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

$2CMU-DB

15-445/645 (Fall 2024)

All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
T will survive...”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

$2CMU-DB

15-445/645 (Fall 2024)

All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
T will survive...”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

TODAY'S AGENDA

Atomicity

Consistency

[solation

Durability

DB Flash Talk: Firebolt

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.firebolt.io/

ﬂ ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:

— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From user's point of view: txn always either executes all its
actions or executes no actions at all.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ﬂ MECHANISMS FOR ENSURING ATOMICITY

$2CMU-DB

15-445/645 (Fall 2024)

Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.

— Audit Trail
— Efficiency Reasons

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ﬂ MECHANISMS FOR ENSURING ATOMICITY

*ad
’Q’ » Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page made
visible to others.

— Originally from IBM System R.

Don't
Do This!

Few systems do this:
— CouchDB

— Tokyo Cabinet
— LMDB (OpenLDAP)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

CONSISTENCY

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g., key
definitions, CHECK and ADD CONSTRAINT) and the DBMS
will enforce them.

— Application must define these constraints.

— DBMS ensures that all ICs are true before and after the
transaction ends.

A note on Eventual Consistency.
— A committed transaction may see inconsistent results (e.g.,

may not see the updates of an older committed txn).
— Difficult for developers to reason about such semantics.
— The trend is to move away from such models.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Eventual_consistency

" ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

were running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving
the actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of operations
from multiple transactions.

Two categories of protocols:

— Pessimistic: Don't let problems arise in the first place.

— Optimistic: Assume conflicts are rare; deal with them
after they happen.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE

Assume at first A and B each have $1000.
T, transfers $100 from A’s account to B’s
T, credits both accounts with 6% interest.

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EXAMPLE

Assume at first A and B each have $1000.

W hat are the possible outcomes of running T, and T.,?

T

T,

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*x1.06
B=B*1.06
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T.,?

Many! But A+B should be:
— $2000%1.06=$2120

There is no guarantee that T, will execute before T,
or vice-versa, if both are submitted together.

But the net effect must be equivalent to these two
transactions running serially in some order.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE

Legal outcomes:
— A=954,B=1166 » A+B=$2120
— A=960,B=1160 - A+B=$2120

The outcome depends on whether T, executes
before T, or vice versa.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" SERIAL EXECUTION EXAMPLE

$2CMU-DB

15-445/645 (Fall 2024)

Schedule Schedule
T1 T2 T1 T2
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT _ COMMIT
BEGIN — BEGIN
A=Ax1.06 A=A-100
B=B*1.06 B=B+100
COMMIT COMMIT
A=954, B=1166 A=960, B=1160

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

SERIAL EXECUTION EXAMPLE

Schedule
T1 T2
BEGIN
A=A-100
B=B+100
COMMIT
BEGIN
A=A%1.06
B=Bx1.06
COMMIT

| A=954, B=1166 |«

Schedule
T1 TZ
BEGIN
A=A%1.06
B=Bx1.06
COMMIT
BEGIN
A=A-100
B=B+100
COMMIT

» A=960, B=1160]

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.
— Slow disk/network I/0O.
— Multi-core CPUs,

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing and
make forward progress.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" INTERLEAVING EXAMPLE (GOOD)

Schedule Schedule
T, T, T, T,
BEGIN BEGIN
A=A-100 A=A-100
iEilN o B=B+100
—Ax1. .
B=B+100 — COMMIT BEGIN
COMMIT A=Ax1.06
B=B*1.06 B=B*1.06
COMMIT COMMIT
A=954, B=1166 A=960, B=1160

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" INTERLEAVING EXAMPLE (GOOD)

Schedule
T1 T2

BEGIN
A=A-100

(B=B+100 D
COMMIT

BEGIN
A=A%x1.06

COMMIT

B=B*1.06

| A=954, B=1166 |«

Schedule

BEGIN

A=A-100

B=B+100

COMMIT SECIN
A=Ax1.06
B=B*1.06
COMMIT

» A=960, B=1160 |

A+B=$2120

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" INTERLEAVING EXAMPLE (BAD)

Schedule
T1 TZ
BEGIN
A=A-100
BEGIN A=954, B=1166
i | F or
B=B+100 A=960, B=1160

COMMIT

A=954, B=1160

__Off by 6!
A+B=$2114

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
T1 T2 T1 Tz
BEGIN BEGIN
A=A-100 R(A)
BEGIN W(A)
A=A%1.06 BEGIN
B=B*1.06 R(A)
COMMIT W(A)
B=B+100 R(B)
COMMIT W(B)
COMMIT
Coen e R(B)
A=954, B=1160 W)
COMMIT

A+B=%$2114

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

INTERLEAVING EXAMPLE (BAD)

$2CMU-DB

15-445/645 (Fall 2024)

A+B=%$2114

Schedule DBMS View
T1 T2 T1 T2
BEGIN BEGIN
A=A-100 =——— j R(A)
BEGIN W(A)
A=A%1.06 BEGIN
B=Bx1.06 R(A)
COMMIT W(A)
B=B+100 R(B)
COMMIT ~~'."'====::=: W(B)
\ COMMIT
_ _ R(B)
A=954, B=1160 W(B
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" INTERLEAVING EXAMPLE (BAD)

Schedule
T 1 T2

BEGIN

A=A-100
BEGIN
A=A%1.06
B=B*1.06
COMMIT

B=B+100

COMMIT

A=954, B=1160

A+B=%$2114

$=CMU-DB

15-445/645 (Fall 2024)

How do we judge whether a
schedule is correct?

If the schedule is equivalent to
some serial execution.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

— A schedule that does not interleave the actions of different
transactions.

Equivalent Schedules

— For any database state, the effect of executing the first
schedule is identical to the effect of executing the second
schedule.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

— [f each transaction preserves consistency, every serializable
schedule preserves consistency.

Serializability is a less intuitive notion of correctness
compared to txn initiation time or commit order,
but it provides the DBMS with more flexibility in

scheduling operations.
— More flexibility means better parallelism.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:

— They are by different transactions,
— They are on the same object and one of them is a write.

Interleaved Execution Anomalies
— Read-WTrite Conflicts (R-W)

— Write-Read Conflicts (W-R)

— Write-Write Conflicts (W-W)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
L P 4 BEGIN
R(A) $10
A - A W(A) $19
COMMIT
$19 4mmR(A)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

BEGIN

R(A) $12
W(A) $14
COMMIT

(ROLLBACK

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what

it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:
— Conflict Serializability
— View Serializability

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what

it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels o ialicalils
— Conflict Serializability<— Mot DEMSstryfo
— View Serializability support inis.

’_/’
No DBMS can do this.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions.
— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

— Intuition: You can transform S into a serial schedule by
swapping consecutive non-conflicting operations of
different transactions.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" DEPENDENCY GRAPHS

One node per txn.
Edge from T; to T if:

— An operation 0; of T, conflicts with an
operation O; of T, and

— 0, appears earlier in the schedule than 0;.

Dependency Graph

Also known as a precedence graph.
A schedule is conflict serializable iff its
dependency graph is acyclic.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #1

Schedule Dependency Graph
T, T, A
BEGIN BEGIN
7 oo
W(A)
R(A)
W(A)
R(B)
W(B)
COMMIT
R(B)
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #1

Schedule
T1 T2
BEGIN BEGIN
R(A)
N

R(A)
L i 4 WOA)

R(B)
o™ . (B)

COMMIT
R(B)/
W(B)

COMMIT

Dependency Graph
A

(7., (7.,
r—ﬂ -
Th O

e cycle in the graph reveals the

problem.
The output of T,dependsonT,,

$2CMU-DB

15-445/645 (Fall 2024)

and vice-versa.
_ Yy,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

A oo
BEGIN
R(A)
W(A) BEGIN A
\R(A)
o (7

BEGIN | COMMIT

R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

RSN oL o
BEGIN
R(A) A
W(A BEGIN
)\R(A) G
W(A)

BEGIN | COMMIT

R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

A oo
BEGIN
R(A)
W(A) BEGIN A
\R(A)
o (7

BEGIN | COMMIT

R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph
T1 TZ T3
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B)/ COMMIT
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph
T, T, T,
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B) L . .
W(B) Is this equivalent to a serial execution?
R(B)‘(/'COMMIT
COMMIT — Notice that T, should go after T,

although it starts before it!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #3 - INCONSISTENT ANALYSIS

Schedule Dependency Graph
T, T, A
BEGIN BEGIN
R(A)
A = A-10
W(A)
0
sum = A
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #3 - INCONSISTENT ANALYSIS

Schedule Dependency Graph
T, T, A
BEGIN BEGIN
R(A)
A = A-10
W(A)
R(A)
sum = A
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #3 - INCONSISTENT ANALYSIS

Schedule Dependency Graph
T, T, A
BEGIN BEGIN
R(A)
A = A-10
W(A)
RCA)
O ® s - A B
)
sum += B
4 4 ECHO sum
R(B) COMMIT
B = 10
W(B)
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #3 - INCONSISTENT ANALYSIS

Schedule Dependency Graph
T1 T2 A
BEGIN BEGIN
RCA)
A= A-10
W(A)
RCA)
’ 0 sum = A B
R(B) : : :
Q sum += B [s it possible to modify only the
4 2 ECHO sum . . .
R(B) COMMIT application logic so that schedule
B = pf10 produces a “correct” result but is
W(B) . . -
COMMIT still not conflict serializable?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" EXAMPLE #3 - INCONSISTENT ANALYSIS

Schedule Dependency Graph
T, T, A
BEGIN BEGIN
R(A)
A= A-10
W(A)
R(A)
if(A=0): cnt++ B
R(B) L : : :
if(Bz0): cnt++] Is it possible to modify only the
R(B) S Cnt application logic so that schedule
\?v (;)B“ 0 produces a “correct” result but is
COMMIT still not conflict serializable?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S, and S, are view equivalent if:

— If T, reads initial value of A in S,, then T, also reads initial
value of Ain S,

— If T, reads value of A written by T, in S,, then T, also reads
value of A written by T, in S,

— If T, writes final value of A in S;, then T, also writes final
value of Ain S,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" VIEW SERIALIZABILITY

Schedule Dependency Graph
T1 T2 T3 A
oo
R(A)S\g BEGIN
\W(A)
BEGIN
W(A)

W(A)
COMMIT | COMMIT | COMMIT @

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" VIEW SERIALIZABILITY

Schedule Dependency Graph
ORROo
A

COMMIT | COMMIT | COMMIT G

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" VIEW SERIALIZABILITY

Schedule Dependency Graph
T 1 T2 T3
BEGIN
R(A)S\g BEGIN
W(A)
BEGIN
W(A)

W(A)
COMMIT | COMMIT | COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" VIEW SERIALIZABILITY

Schedule Dependency Graph

COMMIT | COMMIT | COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" VIEW SERIALIZABILITY

Schedule Dependency Graph

COMMIT | COMMIT | COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

VIEW SERIALIZABILITY

$2CMU-DB

15-445/645 (Fall 2024)

Schedule Schedule
T1 TZ T3 T1 TZ T3
BEGIN BEGIN
R(A) | BEGIN R(A)
W(A) W(A)
BEGIN VIEW| *| commIT
W(A) _— BEGIN
W(A) W(A)
COMMIT | COMMIT | COMMIT COMMIT
BEGIN
W(A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

VIEW SERIALIZABILITY

$2CMU-DB

15-445/645 (Fall 2024)

Schedule Schedule
T1 T2 T3 T1 T2 T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
COMMIT
W(A) BEGIN
C W(A)
COMMIT | COMMIT COMMIT
BEGIN
Allows all conflict W)
serializable schedules + COMMIT
)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But it is difficult to enforce efficiently.

Neither definition allows all schedules that you

would consider “serializable.”

— This is because they don't understand the meanings of the
operations or the data (recall example #3)

— In practice, Conflict Serializability is what systems support
because it can be enforced efficiently.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

" UNIVERSE OF SCHEDULES
All Schedules

View Serializable

Conflict Serializable

| Serial |

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

TRANSACTION DURABILITY

All the changes of committed transactions should be

persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow paging
to ensure that all changes are durable.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

T CORRECTNESS CRITERIA: ACID

Mechanism
Atomicity All actions in txn happen, or none happen.
Integrity Y “All or nothing...”
Constraints
Consistency [f each txn is consistent and the DB starts
consistent, then it ends up consistent.
Concurrency “It looks correct to me...”
solation Execution of one txn is isolated from that
B of other txns.
Redo/Undo All by myself...

Durability [f a txn commits, its effects persist.
‘I will survive...”

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONCLUSION

Concurrency control and recovery are
among the most important functions

provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock
requests and schedules actions of different
txns.

— Ensures that resulting execution is
equivalent to executing the txns one after
the other in some order.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONCLUS

Spanner; Google’s Clobally-l)istribuled Database

James C. Corber, Jeffrey Dean, Michael Epstein, Andrew Fikes, (] hristopher Frosi, JJ Furman,
Sanjay Ghemeawar, Andrey Gubarey, Christopher Heiser Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lioyd, Sergey Melnik, David Mwaura,

Ve ry ar e David Nagle, Sean Qm‘m‘qfr. Rﬂ'j‘(‘:\!i‘ -‘?urj'. Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
ntr Ol an d r e C O Christopher Tavior, Ruth Wang, Dale Woodford
Concurrency co

Google, Ine.

I n Ct i O n S Abstract ey over higher availability, as long as they can survive
among the most important fu I

. R . I or 2 datacenter Tatlures.
Spanner is Google’s scalable, multi-version, globally-

ted, and \ynchmnumly-mplw.ucd database. 1t Spanner’s main focu: managing cross-datacenter

. the first system (o distribute data at global scale andsup- 1eplicated data, but we have also speat a great deal of
1 I ed Y a . port externally-consistent distributed transactions. This time in designing and :mplemennng important database

paper describes how Spanner s st ructured, its feature ser, features on top of our d.islrl'humdrs)'ileln% infrastructure.

the raionale underlying various design decisions, gy . Even Hhough many projects happily wse Bigtable). we

. novel time AP that exposes clock uncertainty. This Api ~ have also cnn:&mlemly‘ received complaints from users

. t].C and s implementation are criical to suppeing o that Bigiable can be difficult 1o use for some kinds of ap-

1S a l I tO I I I a nal consistency and a varicty of powertul features; pop- Plications: those that have complex, evolving schemas,

(O ncurre I l C 5; CO I l r blocking reads in the past, fock free read-only transac. OF those that wan strong consistency in the presence of

tions. and atomic schema changes, across all of Spanner. Wide-area replication. (Similar claims have been made

¥ other authors (37).) Many applications a Google
1 1 tS 10 Ck/unlo Ck It::)w:chn.\en to use Megastore {5} because of its semi-
— System automatically inser T T

anecte and echedulec actinne of differen . Shanet has evolved from 3 Bigtabie ke
re

. . fey-value store into 5 temporal multi-version

e lt 4t is stored in schematized semi-relational

We e leV is versioned, and each version is automati-
pmped with its commit time; old versions of

dject to configurabje garbage-colfection poli-
pPlications can read data at old 1 nestamps.
[Ports general-purpose transactions, and pro-

. - * er—
1s better to have application programmers deal with p

ally-distributed database, Spanner provides
esting features. First, the replication con-
Pr data can be dynamically controlied at a

i bot- o
formance problems due to overuse of transactions as b

is from its users (to control read latency),

Fs are from each other (to controf write fa.

- lack fpammoa
. Odln around the Sty an o mined 10 con-
tlenecks arise, r atheI' than always ¢ g b oy moved e

centers. Second, Spanner has two features
o implement in a distributed database: it

of transactions.

T 1

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

NEXT CLASS

Two-Phase Locking
[solation Levels

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Concurrency Control Theory
	Slide 2: ADMINISTRIVIA
	Slide 3: COURSE STATUS
	Slide 4: MOTIVATION EXAMPLE #1
	Slide 5: MOTIVATION EXAMPLE #1
	Slide 6: MOTIVATION EXAMPLE #1
	Slide 7: MOTIVATION EXAMPLE #1
	Slide 8: MOTIVATION EXAMPLE #1
	Slide 9: MOTIVATION EXAMPLE #1
	Slide 10: MOTIVATION EXAMPLE #1
	Slide 11: MOTIVATION EXAMPLE #2
	Slide 12: MOTIVATION EXAMPLE #2
	Slide 13: STRAWMAN SYSTEM
	Slide 14: PROBLEM STATEMENT
	Slide 15: PROBLEM STATEMENT
	Slide 16: FORMAL DEFINITIONS
	Slide 17: CORRECTNESS CRITERIA: ACID
	Slide 18: CORRECTNESS CRITERIA: ACID
	Slide 19: TODAY'S AGENDA

	Atomicity
	Slide 20: ATOMICITY OF TRANSACTIONS
	Slide 21: MECHANISMS FOR ENSURING ATOMICITY
	Slide 22: MECHANISMS FOR ENSURING ATOMICITY

	Consistency
	Slide 23: CONSISTENCY

	Isolation
	Slide 24: ISOLATION OF TRANSACTIONS
	Slide 25: MECHANISMS FOR ENSURING ISOLATION
	Slide 26: EXAMPLE
	Slide 27: EXAMPLE
	Slide 28: EXAMPLE
	Slide 29: EXAMPLE
	Slide 30: SERIAL EXECUTION EXAMPLE
	Slide 31: SERIAL EXECUTION EXAMPLE
	Slide 32: INTERLEAVING TRANSACTIONS
	Slide 33: INTERLEAVING EXAMPLE (GOOD)
	Slide 34: INTERLEAVING EXAMPLE (GOOD)
	Slide 35: INTERLEAVING EXAMPLE (BAD)
	Slide 36: INTERLEAVING EXAMPLE (BAD)
	Slide 37: INTERLEAVING EXAMPLE (BAD)
	Slide 38: INTERLEAVING EXAMPLE (BAD)
	Slide 39: FORMAL PROPERTIES OF SCHEDULES
	Slide 40: FORMAL PROPERTIES OF SCHEDULES
	Slide 41: CONFLICTING OPERATIONS
	Slide 42: READ-WRITE CONFLICTS
	Slide 43: WRITE-READ CONFLICTS
	Slide 44: WRITE-WRITE CONFLICTS
	Slide 45: FORMAL PROPERTIES OF SCHEDULES
	Slide 46: FORMAL PROPERTIES OF SCHEDULES
	Slide 47: CONFLICT SERIALIZABLE SCHEDULES
	Slide 48: DEPENDENCY GRAPHS
	Slide 49: EXAMPLE #1
	Slide 50: EXAMPLE #1
	Slide 51: EXAMPLE #2 – THREE TRANSACTIONS
	Slide 52: EXAMPLE #2 – THREE TRANSACTIONS
	Slide 53: EXAMPLE #2 – THREE TRANSACTIONS
	Slide 54: EXAMPLE #2 – THREE TRANSACTIONS
	Slide 55: EXAMPLE #2 – THREE TRANSACTIONS
	Slide 56: EXAMPLE #3 – INCONSISTENT ANALYSIS
	Slide 57: EXAMPLE #3 – INCONSISTENT ANALYSIS
	Slide 58: EXAMPLE #3 – INCONSISTENT ANALYSIS
	Slide 59: EXAMPLE #3 – INCONSISTENT ANALYSIS
	Slide 60: EXAMPLE #3 – INCONSISTENT ANALYSIS
	Slide 61: VIEW SERIALIZABILITY
	Slide 62: VIEW SERIALIZABILITY
	Slide 63: VIEW SERIALIZABILITY
	Slide 64: VIEW SERIALIZABILITY
	Slide 65: VIEW SERIALIZABILITY
	Slide 66: VIEW SERIALIZABILITY
	Slide 67: VIEW SERIALIZABILITY
	Slide 68: VIEW SERIALIZABILITY
	Slide 69: SERIALIZABILITY
	Slide 70: UNIVERSE OF SCHEDULES

	Durability
	Slide 71: TRANSACTION DURABILITY

	Conclusion
	Slide 72: CORRECTNESS CRITERIA: ACID
	Slide 73: CONCLUSION
	Slide 74: CONCLUSION
	Slide 75: NEXT CLASS

