
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Two-Phase
Locking

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

Project #3 is due Sunday Nov 17th @ 11:59pm
→ Recitation: Monday Nov 4th @ 8:00pm (Zoom)

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

UPCOMING DATABASE TALKS

Synnada (DB Seminar)
→ Monday Nov 4th @ 4:30pm
→ Zoom

InfluxDB (DB Seminar)
→ Monday Nov 11th @ 4:30pm
→ Zoom

GlareDB (DB Seminar)
→ Monday Nov 18th @ 4:30pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/building-blocks-synnada-mehmet-ozan-kabak/
https://db.cs.cmu.edu/events/building-blocks-building-influxdb-3-0-with-the-fdap-stack-apache-flight-datafusion-arrow-and-parquet-paul-dix/
https://db.cs.cmu.edu/events/building-blocks-glaredb-sean-smith/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LAST CLASS

Conflict Serializable
→ Verify using either the “swapping” method or dependency

graphs.
→ Any DBMS that says that they support “serializable”

isolation does this.

View Serializable
→ No efficient way to verify.
→ No DBMS that supports this.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

We need a way to guarantee that all execution
schedules are correct (i.e., serializable) without
knowing the entire schedule ahead of time.

Solution: Use locks to protect database objects.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOCKS VS. LATCHES

Locks Latches

Separate… Transactions Workers (threads, processes)

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Goetz Graefe

Source: Goetz Graefe

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Lock Manager

EXECUTING WITH LOCKS

7

Granted (T1→A)

Denied!

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule
T1 T2

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Lock Manager

EXECUTING WITH LOCKS

7

Granted (T1→A)

Denied!

Released (T1→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule
T1 T2

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Lock Manager

EXECUTING WITH LOCKS

7

Granted (T1→A)

Denied!

Granted (T2→A)

Released (T1→A)

Released (T2→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule
T1 T2

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Lock Types

Two-Phase Locking

Deadlock Detection + Prevention

Hierarchical Locking

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.

9

Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.

9

Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix

Table

Description automatically generated

Table

Description automatically generated

Calendar

Description automatically generated

Table

Description automatically generated

Table

Description automatically generated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.ibm.com/docs/en/db2-for-zos/13?topic=locks-lock-modes-compatibility
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16#lock_modes
https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm#i5242
https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-TABLES
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html#innodb-intention-locks

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXECUTING WITH LOCKS

Transactions request locks (or upgrades).

Lock manager grants or blocks requests.

Transactions release locks.

Lock manager updates its internal lock-table.
→ It keeps track of what transactions hold what locks and

what transactions are waiting to acquire any locks.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS

11

Granted (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS

11

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS

11

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS

11

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS

11

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCURRENCY CONTROL PROTOCOL

Two-phase locking (2PL) is a concurrency control
protocol that determines whether a txn can access
an object in the database at runtime.

The protocol does not need to know all the queries
that a txn will execute ahead of time.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Two-phase_locking

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TWO-PHASE LOCKING

Phase #1: Growing
→ Each txn requests the locks that it needs from the DBMS’s

lock manager.
→ The lock manager grants/denies lock requests.

Phase #2: Shrinking
→ The txn is allowed to only release/downgrade locks that it

previously acquired. It cannot acquire new locks.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

14

o

f
L

o
ck

s

TIME

Growing Phase Shrinking Phase

Transaction Lifetime

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

15

TIME

Transaction Lifetime

o

f
L

o
ck

s

2PL Violation!

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL

16

Granted (T1→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL

16

Granted (T1→A)

Denied!

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL

16

Granted (T1→A)

Denied!

Released (T1→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL

16

Granted (T1→A)

Denied!

Released (T2→A)

Released (T1→A)

Granted (T2→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TWO-PHASE LOCKING

2PL on its own is sufficient to guarantee conflict
serializability because it generates schedules whose
precedence graph is acyclic.

But it is subject to cascading aborts.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

2PL: CASCADING ABORTS

18

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

ABORT

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1 cannot
be “leaked” to the outside world.

Any computation performed must
be rolled back.

18

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

ABORT

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1 cannot
be “leaked” to the outside world.

Any computation performed must
be rolled back.

18

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

Wasted work!

ABORT

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

2PL OBSERVATIONS

There are potential schedules that are serializable
but would not be allowed by 2PL because locking
limits concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STRONG STRICT TWO-PHASE LOCKING

The txn is only allowed to release locks after it has
ended (i.e., committed or aborted).

Allows only conflict serializable schedules, but it is
often stronger than needed for some apps.

20

TIME

o

f
L

o
ck

s

Release all locks at
end of txn.

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STRONG STRICT TWO-PHASE LOCKING

A schedule is strict if a value written by a txn is not
read or overwritten by other txns until that txn
finishes.

Advantages:
→ Does not incur cascading aborts.
→ Aborted txns can be undone by just restoring original

values of modified tuples.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLES

T1 – Move $100 from Andy’s account (A) to his
bookie’s account (B).

T2 – Compute the total amount in all accounts and
return it to the application.

22

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
ECHO A+B
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

NON-2PL EXAMPLE

23

A=1000, B=1000

Initial Database State

A+B=1900

T2 Output

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

2PL EXAMPLE

24

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

A+B=2000

T2 Output

T
IM

E
A=1000, B=1000

Initial Database State

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

STRONG STRICT 2PL EXAMPLE

25

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

T
IM

E
A=1000, B=1000

Initial Database State

A+B=2000

T2 Output

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

All Schedules

UNIVERSE OF SCHEDULES

26

View Serializable

Conflict Serializable

No Cascading
Aborts Strong Strict 2PL

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

2PL OBSERVATIONS

There are potential schedules that are serializable
but would not be allowed by 2PL because locking
limits concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL

28

Granted (T1→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL

28

Granted (T1→A)

Granted (T2→B)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL

28

Granted (T1→A)

Denied!

Granted (T2→B)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL

28

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

2PL DEADLOCKS

A deadlock is a cycle of transactions waiting for
locks to be released by each other.

Two ways of dealing with deadlocks:
→ Approach #1: Deadlock Detection
→ Approach #2: Deadlock Prevention

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep track
of what locks each txn is waiting to acquire:
→ Nodes are transactions
→ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

The system periodically checks for cycles in waits-
for graph and then decides how to break it.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2 T3

DEADLOCK DETECTION

31

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Waits-For Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2 T3

DEADLOCK DETECTION

31

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Waits-For Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Schedule
T1 T2 T3

DEADLOCK DETECTION

31

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Waits-For Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK HANDLING

When the DBMS detects a deadlock, it will select a
“victim” txn to rollback to break the cycle.

The victim txn will either restart or abort (more
common) depending on how it was invoked.

There is a trade-off between the frequency of
checking for deadlocks and how long txns wait
before deadlocks are broken.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK HANDLING: VICTIM SELECTION

Selecting the proper victim depends on a lot of
different variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

We also should consider the # of times a txn has
been restarted in the past to prevent starvation.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK HANDLING: ROLLBACK LENGTH

After selecting a victim txn to abort, the DBMS can
also decide on how far to rollback the txn's changes.

Approach #1: Completely
→ Rollback entire txn and tell the application it was aborted.

Approach #2: Partial (Savepoints)
→ DBMS rolls back a portion of a txn (to break deadlock) and

then attempts to re-execute the undone queries.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK PREVENTION

When a txn tries to acquire a lock that is held by
another txn, the DBMS kills one of them to prevent
a deadlock.

This approach does not require a waits-for graph or
detection algorithm.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK PREVENTION

Assign priorities based on timestamps:
→ Older Timestamp = Higher Priority (e.g., T1 > T2)

Wait-Die (“Old Waits for Young”)
→ If requesting txn has higher priority than holding txn, then

requesting txn waits for holding txn.
→ Otherwise requesting txn aborts.

Wound-Wait (“Young Waits for Old”)
→ If requesting txn has higher priority than holding txn, then

holding txn aborts and releases lock.
→ Otherwise requesting txn waits.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK PREVENTION

37

BEGIN

X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮ BEGIN

X-LOCK(A)
 ⋮

Wait-Die

T1

Wound-Wait

T2

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK PREVENTION

37

BEGIN

X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮ BEGIN

X-LOCK(A)
 ⋮

Wait-Die

T1

Wound-Wait

T2

Wait-Die

T2

Wound-Wait

T2

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Only one “type” of direction allowed when waiting
for a lock.

When a txn restarts, what is its (new) priority?

Its original timestamp to prevent it from getting
starved for resources like an old man at a corrupt
senior center.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

All these examples have a one-to-one mapping
from database objects to locks.

If a txn wants to update one billion tuples, then it
must acquire one billion locks.

Acquiring locks is a more expensive operation than
acquiring a latch even if that lock is available.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOCK GRANULARITIES

When a txn wants to acquire a “lock”, the DBMS
can decide the granularity (i.e., scope) of that lock.
→ Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of
locks that a txn needs.

Trade-off between parallelism versus overhead.
→ Fewer Locks, Larger Granularity vs. More Locks, Smaller

Granularity.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABASE LOCK HIERARCHY

41

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

Very Common

Slightly Rare

Common

Rare

Very Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTENTION LOCKS

An intention lock allows a higher-level node to be
locked in shared or exclusive mode without
having to check all descendent nodes.

If a node is locked in an intention mode, then some
txn is doing explicit locking at a lower level in the
tree.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTENTION LOCKS

Intention-Shared (IS)
→ Indicates explicit locking at lower level with S locks.

→ Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)
→ Indicates explicit locking at lower level with X locks.

→ Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)
→ The subtree rooted by that node is locked explicitly in S

mode and explicit locking is being done at a lower level

with X locks.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COMPATIBILITY MATRIX

44

IS IX S SIX X

IS ×

IX × × ×

S × × ×

SIX × × × ×

X × × × × ×

T
1 H

ol
ds

T2 Wants

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOCKING PROTOCOL

Each txn obtains appropriate lock at highest level of
the database hierarchy.

To get S or IS lock on a node, the txn must hold at
least IS on parent node.

To get X, IX, or SIX on a node, must hold at least IX
on parent node.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE

T1 – Get the balance of Andy’s off-shore bank
account.

T2 – Increase bookie’s account balance by 1%.

What locks should these txns obtain?
→ Exclusive + Shared for leaf nodes of lock tree.
→ Special Intention locks for higher levels.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

Read

Read Andy’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

IS
T1

Read

Read Andy’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

Read

Read Andy’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

T2

Write

Update bookie’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

Update bookie’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

Assume three txns execute at same time:
→ T1 – Scan all tuples in R and update one tuple.
→ T2 – Read a single tuple in R.
→ T3 – Scan all tuples in R.

48

Table R

Tuple 2Tuple 1 Tuple n…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

Read Read+Write

Tuple 2

Read

Scan all tuples in R and
update one tuple.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

Tuple 2

Scan all tuples in R and
update one tuple.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

Tuple 2

Scan all tuples in R and
update one tuple.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Read

T3

Tuple 2

Read Read

Scan all tuples in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

S

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

T3

Tuple 2

Scan all tuples in R.

S

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T3

Tuple 2

Scan all tuples in R.

S
T3

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOCK ESCALATION

The DBMS can automatically switch to coarser-
grained locks when a txn acquires too many low-
level locks.

This reduces the number of requests that the lock
manager must process.

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOCKING IN PRACTICE

Applications typically do not acquire a txn's locks
manually (i.e., explicit SQL commands).

Sometimes you need to provide the DBMS with
hints to help it to improve concurrency.
→ Update a tuple after reading it.
→ Skip any tuple that is locked.

Explicit locks are also useful when doing major
changes to the database.

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT...FOR UPDATE

Perform a SELECT and then sets an
exclusive lock on the matching tuples.

Can also set shared locks:
→ Postgres: FOR SHARE
→ MySQL: LOCK IN SHARE MODE

52

SELECT * FROM <table>
 WHERE <qualification> FOR UPDATE;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT...SKIP LOCKED

Perform a SELECT and automatically ignore any
tuples that are already locked in an incompatible
mode.
→ Useful for maintaining queues inside of a DBMS.

53

SELECT * FROM <table>
 WHERE <qualification> SKIP LOCKED;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

2PL is used in almost every DBMS.

Automatically generates correct interleaving:
→ Locks + protocol (2PL, SS2PL ...)
→ Deadlock detection + handling
→ Deadlock prevention

Many more things not discussed…
→ Nested Transactions
→ Savepoints

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROJECT #3 – QUERY EXECUTION

You will add support for optimizing
and executing queries in BusTub.

BusTub supports (basic) SQL with a
rule-based optimizer for converting
AST into physical plans.

55

Prompt: Red and white bus driving on a road through
mountains. The bus has a bubbly bath as its roof with a
showerhead. The bus has crazy eyes and a mouth in the front.
There are bold red letters that say "CMU" on the side of the bus

https://15445.courses.cs.cmu.edu/fall2024/project3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024/project3

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROJECT #3 – QUERY EXECUTION

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROJECT #3 – TASKS

Plan Node Executors
→ Access Methods: Sequential Scan, Index Scan
→ Modifications: Insert, Delete, Update
→ Joins: Nested-Loop, Index Nested-Loop Hash Join
→ Miscellaneous: External Merge-Sort, Limit

Optimizer Rule:
→ Convert Nested Loops to Hash Join
→ Convert Sequential Scan to Index Scan

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PROJECT #3 - LEADERBOARD

The leaderboard requires you to add additional rules
to the optimizer to generate query plans.
→ It will be impossible to get a top ranking by just having the

fastest implementations in Project #1 + Project #2.

Tasks:
→ Column Pruning
→ More Aggressive Predicate Pushdown
→ Bloom Filter for Hash Join

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DEVELOPMENT HINTS

Implement the Insert and Sequential Scan
executors first so that you can populate tables and
read from it.

You do not need to worry about transactions.

The aggregation hash table does not need to be
backed by your buffer pool (i.e., use STL)

Gradescope is for meant for grading, not debugging.
Write your own local tests.

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

THINGS TO NOTE

Do not change any file other than the ones that you
submit to Gradescope.

Make sure you pull in the latest changes from the
BusTub main branch.

Post your questions on Piazza or come to TA office
hours.

Compare against our solution in your browser!

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024/bustub/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PLAGIARISM WARNING

The homework and projects must be your own
original work. They are not group assignments.

You may not copy source code from other people
or the web.

Plagiarism is not tolerated. You will get lit up.
→ Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.

93

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Timestamp Ordering Concurrency Control

Isolation Levels

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Two-Phase Locking
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: OBSERVATION
	Slide 6: LOCKS VS. LATCHES
	Slide 7: EXECUTING WITH LOCKS
	Slide 8: EXECUTING WITH LOCKS
	Slide 9: EXECUTING WITH LOCKS
	Slide 10: TODAY'S AGENDA

	Lock Types
	Slide 11: BASIC LOCK TYPES
	Slide 12: BASIC LOCK TYPES
	Slide 13: EXECUTING WITH LOCKS
	Slide 14: EXECUTING WITH LOCKS
	Slide 15: EXECUTING WITH LOCKS
	Slide 16: EXECUTING WITH LOCKS
	Slide 17: EXECUTING WITH LOCKS
	Slide 18: EXECUTING WITH LOCKS

	Two-Phase Locking
	Slide 19: CONCURRENCY CONTROL PROTOCOL
	Slide 20: TWO-PHASE LOCKING
	Slide 21: TWO-PHASE LOCKING
	Slide 22: TWO-PHASE LOCKING
	Slide 23: EXECUTING WITH 2PL
	Slide 24: EXECUTING WITH 2PL
	Slide 25: EXECUTING WITH 2PL
	Slide 26: EXECUTING WITH 2PL
	Slide 27: TWO-PHASE LOCKING
	Slide 28: 2PL: CASCADING ABORTS
	Slide 29: 2PL: CASCADING ABORTS
	Slide 30: 2PL: CASCADING ABORTS
	Slide 31: 2PL OBSERVATIONS
	Slide 32: STRONG STRICT TWO-PHASE LOCKING
	Slide 33: STRONG STRICT TWO-PHASE LOCKING
	Slide 34: EXAMPLES
	Slide 35: NON-2PL EXAMPLE
	Slide 36: 2PL EXAMPLE
	Slide 37: STRONG STRICT 2PL EXAMPLE
	Slide 38: UNIVERSE OF SCHEDULES
	Slide 39: 2PL OBSERVATIONS

	Deadlocks
	Slide 40: IT JUST GOT REAL
	Slide 41: IT JUST GOT REAL
	Slide 42: IT JUST GOT REAL
	Slide 43: IT JUST GOT REAL
	Slide 44: 2PL DEADLOCKS
	Slide 45: DEADLOCK DETECTION
	Slide 46: DEADLOCK DETECTION
	Slide 47: DEADLOCK DETECTION
	Slide 48: DEADLOCK DETECTION
	Slide 49: DEADLOCK HANDLING
	Slide 50: DEADLOCK HANDLING: VICTIM SELECTION
	Slide 51: DEADLOCK HANDLING: ROLLBACK LENGTH
	Slide 52: DEADLOCK PREVENTION
	Slide 53: DEADLOCK PREVENTION
	Slide 54: DEADLOCK PREVENTION
	Slide 55: DEADLOCK PREVENTION
	Slide 56: DEADLOCK PREVENTION
	Slide 57: OBSERVATION

	Lock Granularities
	Slide 58: LOCK GRANULARITIES
	Slide 59: DATABASE LOCK HIERARCHY
	Slide 60: INTENTION LOCKS
	Slide 61: INTENTION LOCKS
	Slide 62: COMPATIBILITY MATRIX
	Slide 63: LOCKING PROTOCOL
	Slide 64: EXAMPLE
	Slide 65: EXAMPLE – TWO-LEVEL HIERARCHY
	Slide 66: EXAMPLE – TWO-LEVEL HIERARCHY
	Slide 67: EXAMPLE – TWO-LEVEL HIERARCHY
	Slide 68: EXAMPLE – TWO-LEVEL HIERARCHY
	Slide 69: EXAMPLE – TWO-LEVEL HIERARCHY
	Slide 70: EXAMPLE – THREE TXNS
	Slide 71: EXAMPLE – THREE TXNS
	Slide 72: EXAMPLE – THREE TXNS
	Slide 73: EXAMPLE – THREE TXNS
	Slide 74: EXAMPLE – THREE TXNS
	Slide 75: EXAMPLE – THREE TXNS
	Slide 76: EXAMPLE – THREE TXNS
	Slide 77: EXAMPLE – THREE TXNS
	Slide 78: EXAMPLE – THREE TXNS
	Slide 79: EXAMPLE – THREE TXNS
	Slide 80: EXAMPLE – THREE TXNS
	Slide 81: EXAMPLE – THREE TXNS
	Slide 82: LOCK ESCALATION

	Locking in Pratice
	Slide 83: LOCKING IN PRACTICE
	Slide 84: SELECT...FOR UPDATE
	Slide 85: SELECT...SKIP LOCKED

	Conclusion
	Slide 86: CONCLUSION

	Project #3
	Slide 87: PROJECT #3 – QUERY EXECUTION
	Slide 88: PROJECT #3 – QUERY EXECUTION
	Slide 89: PROJECT #3 – TASKS
	Slide 90: PROJECT #3 - LEADERBOARD
	Slide 91: DEVELOPMENT HINTS
	Slide 92: THINGS TO NOTE
	Slide 93: PLAGIARISM WARNING
	Slide 94: NEXT CLASS

