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ADMINISTRIVIA

Project #3 is due Sunday Nov 17th @ 11:59pm
→ Recitation: Monday Nov 4th @ 8:00pm (Zoom)
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UPCOMING DATABASE TALKS

Synnada (DB Seminar)
→ Monday Nov 4th @ 4:30pm
→ Zoom

InfluxDB (DB Seminar)
→ Monday Nov 11th @ 4:30pm
→ Zoom

GlareDB (DB Seminar)
→ Monday Nov 18th @ 4:30pm
→ Zoom
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LAST CLASS

Conflict Serializable
→ Verify using either the “swapping” method or dependency 

graphs.
→ Any DBMS that says that they support “serializable” 

isolation does this.

View Serializable
→ No efficient way to verify.
→ No DBMS that supports this.
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OBSERVATION

We need a way to guarantee that all execution 
schedules are correct (i.e., serializable) without 
knowing the entire schedule ahead of time.

Solution: Use locks to protect database objects.
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LOCKS VS. LATCHES

Locks Latches

Separate… Transactions Workers (threads, processes)

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update, 
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Goetz Graefe

Source: Goetz Graefe
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Lock Manager

EXECUTING WITH LOCKS
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Lock Manager
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TODAY'S AGENDA

Lock Types

Two-Phase Locking

Deadlock Detection + Prevention

Hierarchical Locking
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BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.

9

Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix
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BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.
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Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix

Table

Description automatically generated

Table

Description automatically generated

Calendar

Description automatically generated

Table

Description automatically generated

Table

Description automatically generated
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EXECUTING WITH LOCKS

Transactions request locks (or upgrades).

Lock manager grants or blocks requests.

Transactions release locks.

Lock manager updates its internal lock-table.
→ It keeps track of what transactions hold what locks and 

what transactions are waiting to acquire any locks.
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Schedule Lock Manager
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EXECUTING WITH LOCKS
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CONCURRENCY CONTROL PROTOCOL

Two-phase locking (2PL) is a concurrency control 
protocol that determines whether a txn can access 
an object in the database at runtime.

The protocol does not need to know all the queries 
that a txn will execute ahead of time.
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TWO-PHASE LOCKING

Phase #1: Growing
→ Each txn requests the locks that it needs from the DBMS’s 

lock manager.
→ The lock manager grants/denies lock requests.

Phase #2: Shrinking
→ The txn is allowed to only release/downgrade locks that it 

previously acquired. It cannot acquire new locks.

13
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TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks 
after the growing phase finishes.

14
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TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks 
after the growing phase finishes.
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TWO-PHASE LOCKING

2PL on its own is sufficient to guarantee conflict 
serializability because it generates schedules whose 
precedence graph is acyclic.

But it is subject to cascading aborts.

17
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Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in 
2PL, but the DBMS has to also 
abort T2 when T1 aborts.

Any information about T1 cannot 
be “leaked” to the outside world.

Any computation performed must 
be rolled back.
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2PL OBSERVATIONS

There are potential schedules that are serializable 
but would not be allowed by 2PL because locking 
limits concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

19
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STRONG STRICT TWO-PHASE LOCKING

The txn is only allowed to release locks after it has 
ended (i.e., committed or aborted).

Allows only conflict serializable schedules, but it is 
often stronger than needed for some apps.

20
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STRONG STRICT TWO-PHASE LOCKING

A schedule is strict if a value written by a txn is not 
read or overwritten by other txns until that txn 
finishes.

Advantages:
→ Does not incur cascading aborts.
→ Aborted txns can be undone by just restoring original 

values of modified tuples.

21
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EXAMPLES

T1 – Move $100 from Andy’s account (A) to his 
bookie’s account (B).

T2 – Compute the total amount in all accounts and 
return it to the application.

22

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
ECHO A+B
COMMIT

T1 T2
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Schedule
T1 T2

NON-2PL EXAMPLE
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A=1000, B=1000

Initial Database State

A+B=1900

T2 Output

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

T
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E
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Schedule
T1 T2

2PL EXAMPLE
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BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

A+B=2000

T2 Output

T
IM

E
A=1000, B=1000

Initial Database State
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Schedule
T1 T2

STRONG STRICT 2PL EXAMPLE
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BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

T
IM

E
A=1000, B=1000

Initial Database State

A+B=2000

T2 Output
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All Schedules

UNIVERSE OF SCHEDULES

26

View Serializable

Conflict Serializable

No Cascading
Aborts Strong Strict 2PL

Serial
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2PL OBSERVATIONS

There are potential schedules that are serializable 
but would not be allowed by 2PL because locking 
limits concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention
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Schedule
T1 T2

Lock Manager
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R(B)
S-LOCK(A)

IT JUST GOT REAL

28
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Schedule
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2PL DEADLOCKS

A deadlock is a cycle of transactions waiting for 
locks to be released by each other.

Two ways of dealing with deadlocks:
→ Approach #1: Deadlock Detection
→ Approach #2: Deadlock Prevention

29
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DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep track 
of what locks each txn is waiting to acquire:
→ Nodes are transactions
→ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

The system periodically checks for cycles in waits-
for graph and then decides how to break it.

30
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Schedule
T1 T2 T3

DEADLOCK DETECTION
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X-LOCK(B)
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T
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DEADLOCK HANDLING

When the DBMS detects a deadlock, it will select a 
“victim” txn to rollback to break the cycle.

The victim txn will either restart or abort (more 
common) depending on how it was invoked.

There is a trade-off between the frequency of 
checking for deadlocks and how long txns wait 
before deadlocks are broken.

32
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DEADLOCK HANDLING: VICTIM SELECTION

Selecting the proper victim depends on a lot of 
different variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

We also should consider the # of times a txn has 
been restarted in the past to prevent starvation.

33
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DEADLOCK HANDLING: ROLLBACK LENGTH

After selecting a victim txn to abort, the DBMS can 
also decide on how far to rollback the txn's changes.

Approach #1: Completely
→ Rollback entire txn and tell the application it was aborted.

Approach #2: Partial (Savepoints)
→ DBMS rolls back a portion of a txn (to break deadlock) and 

then attempts to re-execute the undone queries.

34
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DEADLOCK PREVENTION

When a txn tries to acquire a lock that is held by 
another txn, the DBMS kills one of them to prevent 
a deadlock.

This approach does not require a waits-for graph or 
detection algorithm.

35
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DEADLOCK PREVENTION

Assign priorities based on timestamps:
→ Older Timestamp = Higher Priority (e.g., T1 > T2)

Wait-Die (“Old Waits for Young”)
→ If requesting txn has higher priority than holding txn, then 

requesting txn waits for holding txn. 
→ Otherwise requesting txn aborts.

Wound-Wait (“Young Waits for Old”)
→ If requesting txn has higher priority than holding txn, then 

holding txn aborts and releases lock.
→ Otherwise requesting txn waits.

36
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DEADLOCK PREVENTION

37

BEGIN

X-LOCK(A)
   ⋮

BEGIN
X-LOCK(A)
   ⋮

BEGIN
X-LOCK(A)
   ⋮ BEGIN

X-LOCK(A)
   ⋮

Wait-Die

T1

Wound-Wait

T2

T1 T2

T1 T2
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DEADLOCK PREVENTION

37

BEGIN

X-LOCK(A)
   ⋮

BEGIN
X-LOCK(A)
   ⋮

BEGIN
X-LOCK(A)
   ⋮ BEGIN

X-LOCK(A)
   ⋮

Wait-Die

T1

Wound-Wait

T2

Wait-Die

T2

Wound-Wait

T2

T1 T2

T1 T2
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DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Only one “type” of direction allowed when waiting 
for a lock.

When a txn restarts, what is its (new) priority?

Its original timestamp to prevent it from getting 
starved for resources like an old man at a corrupt 
senior center.

38
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OBSERVATION

All these examples have a one-to-one mapping 
from database objects to locks.

If a txn wants to update one billion tuples, then it 
must acquire one billion locks.

Acquiring locks is a more expensive operation than 
acquiring a latch even if that lock is available.

39
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LOCK GRANULARITIES

When a txn wants to acquire a “lock”, the DBMS 
can decide the granularity (i.e., scope) of that lock.
→ Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of  
locks that a txn needs.

Trade-off between parallelism versus overhead.
→ Fewer Locks, Larger Granularity vs. More Locks, Smaller 

Granularity.

40
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DATABASE LOCK HIERARCHY

41

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

Very Common

Slightly Rare

Common

Rare

Very Common
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INTENTION LOCKS

An intention lock allows a higher-level node to be 
locked in shared or exclusive mode without 
having to check all descendent nodes.

If a node is locked in an intention mode, then some 
txn is doing explicit locking at a lower level in the 
tree.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

INTENTION LOCKS

Intention-Shared (IS)
→ Indicates explicit locking at lower level with S locks.

→ Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)
→ Indicates explicit locking at lower level with X locks.

→ Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)
→ The subtree rooted by that node is locked explicitly in S 

mode and explicit locking is being done at a lower level 

with X locks.

43
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COMPATIBILITY MATRIX

44

IS IX S SIX X

IS ×

IX × × ×

S × × ×

SIX × × × ×

X × × × × ×

T
1 H

ol
ds

T2 Wants

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

LOCKING PROTOCOL

Each txn obtains appropriate lock at highest level of 
the database hierarchy.

To get S or IS lock on a node, the txn must hold at 
least IS on parent node.

To get X, IX, or SIX on a node, must hold at least IX 
on parent node.

45
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EXAMPLE

T1 – Get the balance of Andy’s off-shore bank 
account.

T2 – Increase bookie’s account balance by 1%.

What locks should these txns obtain?
→ Exclusive + Shared for leaf nodes of lock tree.
→ Special Intention locks for higher levels.

46
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EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

Read

Read Andy’s record in R.
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EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

IS
T1

Read

Read Andy’s record in R.
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EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

Read

Read Andy’s record in R.
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EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

T2

Write

Update bookie’s record in R.
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EXAMPLE – TWO-LEVEL HIERARCHY

47

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

Update bookie’s record in R.
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EXAMPLE – THREE TXNS

Assume three txns execute at same time:
→ T1 – Scan all tuples in R and update one tuple.
→ T2 – Read a single tuple in R.
→ T3 – Scan all tuples in R.

48

Table R

Tuple 2Tuple 1 Tuple n…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

Read Read+Write

Tuple 2

Read

Scan all tuples in R and 
update one tuple.

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

Tuple 2

Scan all tuples in R and 
update one tuple.

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

Tuple 2

Scan all tuples in R and 
update one tuple.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Read

T3

Tuple 2

Read Read

Scan all tuples in R.

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

S

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

T3

Tuple 2

Scan all tuples in R.

S

…
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EXAMPLE – THREE TXNS

49

Table R

Tuple 1 Tuple n

T3

Tuple 2

Scan all tuples in R.

S
T3

…
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LOCK ESCALATION

The DBMS can automatically switch to coarser-
grained locks when a txn acquires too many low-
level locks.

This reduces the number of requests that the lock 
manager must process.

50
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LOCKING IN PRACTICE

Applications typically do not acquire a txn's locks 
manually (i.e., explicit SQL commands).

Sometimes you need to provide the DBMS with 
hints to help it to improve concurrency.
→ Update a tuple after reading it.
→ Skip any tuple that is locked.

Explicit locks are also useful when doing major 
changes to the database.

51
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SELECT...FOR UPDATE

Perform a SELECT and then sets an 
exclusive lock on the matching tuples.

Can also set shared locks:
→ Postgres: FOR SHARE
→ MySQL: LOCK IN SHARE MODE

52

SELECT * FROM <table>
 WHERE <qualification> FOR UPDATE;
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SELECT...SKIP LOCKED

Perform a SELECT and automatically ignore any 
tuples that are already locked in an incompatible 
mode.
→ Useful for maintaining queues inside of a DBMS.

53

SELECT * FROM <table>
 WHERE <qualification> SKIP LOCKED;
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CONCLUSION

2PL is used in almost every DBMS.

Automatically generates correct interleaving:
→ Locks + protocol (2PL, SS2PL ...)
→ Deadlock detection + handling
→ Deadlock prevention

Many more things not discussed…
→ Nested Transactions
→ Savepoints

54
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PROJECT #3 – QUERY EXECUTION

You will add support for optimizing 
and executing queries in BusTub.

BusTub supports (basic) SQL with a 
rule-based optimizer for converting 
AST into physical plans.

55

Prompt: Red and white bus driving on a road through 
mountains. The bus has a bubbly bath as its roof with a 
showerhead. The bus has crazy eyes and a mouth in the front. 
There are bold red letters that say "CMU" on the side of the bus

https://15445.courses.cs.cmu.edu/fall2024/project3
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PROJECT #3 – QUERY EXECUTION

56
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PROJECT #3 – TASKS

Plan Node Executors
→ Access Methods: Sequential Scan, Index Scan
→ Modifications: Insert, Delete, Update
→ Joins: Nested-Loop, Index Nested-Loop Hash Join
→ Miscellaneous: External Merge-Sort, Limit

Optimizer Rule:
→ Convert Nested Loops to Hash Join
→ Convert Sequential Scan to Index Scan 

57
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PROJECT #3 - LEADERBOARD

The leaderboard requires you to add additional rules 
to the optimizer to generate query plans.
→ It will be impossible to get a top ranking by just having the 

fastest implementations in Project #1 + Project #2.

Tasks:
→ Column Pruning
→ More Aggressive Predicate Pushdown
→ Bloom Filter for Hash Join
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DEVELOPMENT HINTS

Implement the Insert and Sequential Scan 
executors first so that you can populate tables and 
read from it.

You do not need to worry about transactions.

The aggregation hash table does not need to be 
backed by your buffer pool (i.e., use STL)

Gradescope is for meant for grading, not debugging. 
Write your own local tests.
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THINGS TO NOTE

Do not change any file other than the ones that you 
submit to Gradescope.

Make sure you pull in the latest changes from the 
BusTub main branch.

Post your questions on Piazza or come to TA office 
hours.

Compare against our solution in your browser!
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PLAGIARISM WARNING

The homework and projects must be your own 
original work. They are not group assignments.

You may not copy source code from other people 
or the web.

Plagiarism is not tolerated. You will get lit up.
→ Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for 
additional information. 
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NEXT CLASS

Timestamp Ordering Concurrency Control

Isolation Levels

62
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